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ABSTRACT

State-of the art audio codecs use time-frequency transforms
derived from cosine bases, followed by a quantification stage.
The quantization steps are set according to perceptual con-
siderations. In the last decade, several studies applied adap-
tive sparse time-frequency transforms to audio coding, e.g. on
unions of cosine bases using a Matching-Pursuit-derived algo-
rithm [1]. This was shown to significantly improve the coding
efficiency. We propose another approach based on a varia-
tional algorithm, i.e. the optimization of a cost function tak-
ing into account both a perceptual distortion measure derived
form a hearing model and a sparsity constraint, which favors
the coding efficiency. In this early version, we show that, using
a coding scheme without perceptual control of quantization,
our method outperforms a codec from the literature with the
same quantization scheme [1]. In future work, a more sophis-
ticated quantization scheme would probably allow our method
to challenge standard codecs e.g. AAC.

Index Terms– Audio coding, Sparse approximation, Iterative
thresholding algorithm, Perceptual model.

1. INTRODUCTION

Actually, state-of-the-art lossy audio coders (e.g. MP3, AAC, OGG)
globally share the same structure [2]: The signal is first processed
using a time-frequency (TF) transform, the transform coefficients
are quantized according to a psycho-acoustic model and finally
lossless binary coded. The TF transform is usually adaptive (i.e. it
can switch between two pre-defined resolutions), perfectly invert-
ible and introduces no redundancy. The most popular choice is the
Modifed Discrete Cosine Transform (MDCT) [3]. Optimizing the
quantization is performed in the frequency domain (i.e. indepen-
dently in each time slot corresponding to one analysis/synthesis
long window or a block of consecutive short windows). This pro-
cess takes into account a perceptual weighting of frequency com-
ponents computed by a psychoacoustic model.

However, this structure introduces two main limitations: 1)
the invertible and non-redundant (i.e. orthogonal) TF transform
takes advantage of an aliasing-cancelation property [3]. But when
some spectral components are removed, because they are consid-
ered perceptually less relevant that others, some disturbing arti-
facts may become audible (called birdies). This occurs usually
at low bitrate, where many components have to be removed. 2)
Optimizing in the frequency domain does not allow to take into

∗ This work was supported by the joint French ANR and Austrian FWF
project "POTION", refs. ANR-13-IS03-0004-01 and FWF-I-1362-N30.

account the time-domain properties of audition (e.g. the temporal
masking effect), which implies sub-optimal performance. Some
propositions have been made to compensate for these drawbacks
(e.g. [4, 5]), but it only resulted in marginal improvements.

The most important breakthrough in the last few years consists
in performing a sparse approximation of the signal on an over-
complete dictionary of waveforms instead of using an orthogonal
transform [1]. This does not guarantee perfect reconstruction, but
this property is not mandatory in a lossy codec. This approach
was proved to significantly improve the audio quality on some au-
dio files, especially at low bitrate. The proposed method relies on
a Matching-Pursuit (MP) derived algorithm, which was modified
to reduce artifacts called pre-echo. In its basic version, the MP is
optimal with respect to the minimum Mean Square Error (MSE)
criterion. Some improvements have been proposed in order to in-
troduce perceptual weights in MP, but this was not selected in [1]
because it significantly increases the complexity. Recently, a more
sophisticated method for sparse audio signal decomposition was
proposed [6]. It uses a variational algorithm and includes a per-
ceptual weighting. However, the optimization is still performed
only in the frequency domain and its implementation remains un-
complete (no quantization and binary coding were proposed).

In this paper, we describe a new method that is partially in-
spired by [1] and [6]. Our algorithm performs a sparse approxi-
mation on a over-complete dictionary, more precisely a union of
MDCT bases, as in [1]. The optimization uses a variational al-
gorithm, which appears to be more flexible than MP with respect
to the distortion constraint. Our main contribution is that this al-
gorithm performs the optimization in the TF plane, using a new
TF audition model based on recent studies [7]. Then, we apply a
quantization and binary coding scheme from the literature to eval-
uate the potential of this method in an audio-coding context. In
[1], two codecs are described: #1 uses a simple bit-plane algo-
rithm as a quantization and binary coding stage and #2 uses a so-
called Perceptual bit-plane algorithm. It was shown that codec #1
usually does not perform as well as AAC, but codec #2 is able to
outperform AAC, especially at low bitrate. In this paper, we only
implement the simple bit-plane algorithm, because using the per-
ceptual version is not straightforward in our coding scheme. For
the same bitrates, we compare the audio quality for our codec and
codec #1. In further works, we plan to improve our method by
implementing a perceptual quantizer.

This paper is organized as follows: In section 2, we present
the general method for sparse decomposition. In section 3, we
motivate and describe our implementation. And in section 4, we
compare our method to codec #1 described in [1].
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2. THE METHOD FOR SPARSE DECOMPOSITION

Let’s consider a block of audio samples noted as a vector x of
size 1 × N , N being the number of samples. x can indifferently
represent the whole signal, or a time-segment. We define the cod-
ing dictionary as a matrix S of size M × N . Each row can be
interpreted an elementary waveform, often called atom. The re-
constructed signal is a linear combination of atoms, which can be
written as:

x̂ = a S (1)

x̂ is the reconstructed signal and a is a vector of coefficients of
size 1×M , M being the number of atoms in the dictionary. This
general scheme applies to state-of-the-art audio codecs: S is de-
termined by the TF transform and a represents the transform co-
efficients to be quantized and coded. If we assume an invertible
dictionary, M = N and the coefficients can be easily computed
using:

a = x S−1

This is the case for instance with TF transforms derived from the
Fourier transform (DFT, DCT). An over-complete dictionary im-
plies that M > N , which means that S is not invertible. In the
general case, there is no a such that x̂ = x. Then, a must be com-
puted using an iterative algorithm, with respect to a pre-defined
distortion measure. For instance, the MP algorithm [8] finds a
which minimizes the mean-square-error (MSE):

D(a) = ‖a S− x‖2

For audio signals, MSE is known to be poorly correlated to the
auditory perception of distortion. In [6], a more efficient measure
is proposed based on the concept of perceptual weights for each
frequency component.

Here, we propose a more general formulation of the percep-
tual weighting technique. This comes from the observation that
reasonably good perceptual distortion measures have already been
proposed, e.g. the mean Noise-to-Mask Ratio (NMR) [9]. But
these measures are usually associated to an analysis filterbank that
follows the characteristics of human perception. Thus, we intro-
duce a second matrix P of sizeN×K that represents a perceptual
transform. We assume that K > N , i.e. this transform is redun-
dant. In the general case, P and S are not directly related, because
a good perceptual filterbank (with respect to the accuracy of per-
ceptual modeling) is generally not so good for coding purposes
(with respect to the efficiency of coding). The coefficients of this
transform corresponding to the signal x can be written as:

px = x P

We define the perceptual distortion measure as a weighted version
of MSE computed in the perceptual-transform domain:

Dp(a) = ‖ (px̂ − px) ∆x‖2 = ‖ (aS− x) P∆x‖2

Where ∆x = diag (µk(x)) is a diagonal matrix of size K × K
containing perceptual weights µk associated to the components
of px. These weights depend on x and can be computed us-
ing a hearing model of masking. If we note Tk(x) the mask-
ing threshold values corresponding to the signal x, we choose
µk(x) = (Tk(x))−

1
2 . Then, the perceptual distortion Dp(a) can

be interpreted as a mean NMR. Note that, if the perceptual trans-
form performs a TF analysis with a sufficiently good time preci-
sion, both temporal and frequential masking can be modeled.

The general coding problem then consists in finding, for any
input signal x, the optimal vector of coefficients a which mini-
mizes the perceptual distortion measure Dp(a). The existence of
a solution depends on the matrix K = SP called the mixture ma-
trix. It is quite easy to prove that the maximum value for the rank
of K is N . The minimization problem would have a single min-
imum if K would have a full-rank (i.e. min{M,K}), which is
never the case here because N < min{M,K}. In other words,
there are many equivalent solutions. We must add a sparsity con-
straint on a to select the best solution, i.e. we add a regularization
term Ψ to the distortion measure and then we minimize the follow-
ing objective function:

Φ(a) = Dp(a) + Ψ(a)

This class of problem can be solved using an iterative thresholding
algorithm [10, 11]. However, when K has not a maximum rank
(i.e. N ), the convergence is not always satisfactory.

In the literature, Ψ is often assimilated to an `α norm on the
coefficients, where α is usually equal to 1. Although `1 norm does
not directly measure the amount of zero coefficients, one usually
assume that the minimum `1 norm corresponds to a sparse solution
[10]. Then,

Φ(a) = ‖ (aS− x) P∆x‖2 + λ‖a‖α (2)

where the λ parameter allows to set the tradeoff between the dis-
tortion constraint and the sparsity constraint.

3. OUR PROPOSED IMPLEMENTATION

Figure 1 shows a block-diagram of our coder. It is mainly com-
posed of 3 parts: The adaptive analysis over a coding dictionary
which is a union of MDCT bases, a psycho-acoustic model and a
quantization and coding section. The main point consists in find-
ing a suitable coding dictionary S and a perceptual transform P
such that K = SP has a maximum rank.

X	   Adap%ve	  analysis	  	  
Union	  of	  MDCT	  

bases	  	  
Interleaving	   Bitplane	  coding	  

Bitstream	  a	  

Perceptual	  
Transform	  

Time	  -‐Frequency	  
masking	  model	  

Psychoacoustic 
model 

Quantization and 
coding 

μ (X)	  

Figure 1: Diagram of the proposed coder.

3.1. Union of MDCT bases

First, we assume a coding scheme that splits the audio file in time-
segments of reasonably long duration, called macro blocks, in or-
der to be compatible with audio streaming applications (e.g. over
the internet). Thus, we assume that the signal x corresponds to a
macro-block. This approach requires an overlap between macro-
blocks, and we wish that it does not introduce redundancy. Thus, a
suitable choice for S is a union of MDCTs of different sizes, in the
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same way as in [1]. In this paper, the authors proposed a union of
8 MDCTs: 64, 128, 256, 512, 1024, 2048, 4096 and 8192 bands.
In this study, we restrained our dictionary to a union of 2 MDCTs
with medium numbers of bands: 256 and 2048. In this implemen-
tation, one macro-bloc is composed of 16 short-windows (for 256-
band) and 2 long-windows (for 2048-band). Choosing the number
of MDCT sizes is tricky: More MDCTs, especially longer ones,
would increase the efficiency of the decomposition, but would also
degrade the efficiency of the coding stage: More MDCTs means
more coefficients in a, and even with the same number of non-zero
coefficients, the additional zero coefficients require more coding
bits.

The vector of MDCT coefficients a is made of two parts:

a = [a256 a2048]

where a256 stands for the coefficients of the short MDCT and
a2048 for the long MDCT. The time-support corresponding to one
macro-block is determined by the long MDCT, i.e. Nmb = 3 ×
2048 = 6144 samples. But practically, the optimization must be
performed on an analysis-segment longer than a macro-block, in
order to avoid sharp variations of coding parameters between suc-
cessive macro-blocks. Thus, N corresponds to the length of one
analysis segment. Here, we chose N = 7 × 2048 = 14336 sam-
ples. This is illustrated on figure 2. Both a2048 and a256 are of
size 1 ×Mas, with Mas = 6 × 2048 = 12288, and a is of size
1 × 2Mas, which means M = 2Mas = 24576. But practically,
only 8192 coefficients (in the middle) are actually coded. The first
and last 8192 coefficients are discarded. This part of signal will
be analyzed and coded respectively in the previous and the next
macro-blocks.

Figure 2: MDCT windows in the coding dictionary for one macro-
block, and corresponding analysis segment.

3.2. Perceptual model

For the perceptual transform, we seek for a filterbank that follows
the audition, but also with nice mathematical properties. The rank
constraint on K requires that P is a full-rank matrix, i.e. its rank is
N . A good choice is the ERB-MDCT, which is a near-orthogonal
transform that follows the ERB frequency-scale [12]. In this trans-
form, the time-resolution is adapted to the frequency resolution
in each frequency band: Low frequencies have a high frequency-
resolution and a low time-resolution, whereas high frequencies
have a lower-frequency resolution and a higher time-resolution.
We choose an ERB-MDCT with one band per ERB, which cor-
responds to K = 15126. One can check that we actually have
K > N .

The square-value of ERB-MDCT coefficients is interpreted as
the temporal and spectral density of energy. To obtain a masking
threshold, we convolve the TF energy image with the TF masking
kernel described in [7], and plotted on figure 3. We assume the ad-
ditivity of masking patterns in the energy scale, which is known to
sometimes under-estimate the masking level. Finally, we keep the
minimum value of the masking threshold and the absolute thresh-
old of hearing in quiet as described in MPEG #1 psycho-acoustic
model [13], and get an estimation of the µk(x).

Figure 3: Time-frequency masking kernel.

3.3. Adaptive decomposition

For the optimization in the adaptive analysis step, we used the
FISTA algorithm proposed by Beck et al. in [11]. The algorithm
includes a gradient step followed by a shrinkage/soft-thresholding
step. The general update rule in FISTA is

ai = Tλγ (G(yi))

where i is the iteration index, γ is the gradient stepsize, G(.) is the
gradient of the distortion term Dp, yi is a specific linear combina-
tion of the previous two iterations {ai−1,ai−2} and Tλγ : RM →
RM is the shrinkage operator:

Tλγ(a)m = sign(am) max (0, |am| − λγ)

A typical condition which guarantees the convergence to a single
minimiser a? is γ ∈

[
0, 1/

∥∥KTK∆x

∥∥].
In the following, we assume for each macro-block:

• α = 1, which amounts to perform a soft thresholding on
the coefficients a.

• γ = 1/
∥∥KTK∆x

∥∥.

• For i = 0, a0 = 01×M .

A crucial parameter for the optimization process is λ. We
found out that a constant value for λ does not always produce the
same sparsity ratio for a. Thus, the suitable value for λ has to
be set for each macro-block in order to get a constant sparsity ra-
tio. Our goal was to get approximately the same rate of non-zero
coefficients in a as with quantized MDCT coefficients in a MPEG-
AAC bitstream. We measured that, for a monophonic AAC oper-
ating at 48 kbps, approximately 30 % of the MDCT coefficients
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are equal to zero. Then, we target a sparsity ratio of 15 %, since
our dictionary has a redundancy factor of 2.

Furthermore, we found out that setting the same value of λ
for a256 and a2048 was not the optimal choice. Thus, we rewrite
equation (2) as

Φ(a) = ‖ (aS− x) P∆x‖2 + λ1‖a256‖α + λ2‖a2048‖α (3)

where λ1 and λ2 are respectively the regularization parameters
corresponding to a256 and a2048. From informal listening tests,
it appears that the best audio quality is obtained with λ1 > λ2,
which means more non-zero coefficients in the long MDCT than
in the short one.

In the literature, the choice of a suitable value for λ is known to
be a difficult problem [14, 15], that would deserve a more specific
study by itself. In this work, we use a simplified formula from [10]
which is valid in the following conditions: (i) K is the identity
operator and (ii) α = 1:

Tλ(x) =

 x + λ
2

if x ≤ −λ
2
,

0 if |x| < λ
2
,

x− λ
2

if x ≥ λ
2
.

(4)

Then, assuming that ∀k ∈ {1 · · ·K} , |px(k)∆x(k)| ≥ λ
2

, we
get:

λ = 2Ys bK(1− sp) + 1c ;

where sp is the amount of sparsity, Ys are the values of |px∆x|
sorted in increasing order, and b.c denotes the rounding operator
towards −∞. Although K is not the identity operator in our case,
this formula still gives a good approximation of the optimal λ in
each macro-block. Thus, controlling sparsity only requires to a
adjust the parameter sp.

3.4. Coefficients quantization and coding

When the coefficients a are computed, we carry out the quantifi-
cation and binary coding preceded by an interleaving step which
aims to group together the coefficients that are close in the time-
frequency plane, and to make the coding algorithm more efficient.
We chose the same binary coder as in [1]: a bit-plane coder, which
is a special case of adaptive Rice-Golomb codes. It also performs
an implicit quantization: the number of coding bits corresponds
to the number of bit-planes used for coding. This method is par-
ticularly efficient when the sequence to be encoded exhibits long
ranges of zeros, and thus is well suited for encoding sparse vec-
tors. However, our interleaving scheme, as illustrated on figure 4,
is different from the one described in [1]. The idea is to group the
low frequencies at the beginning and the high frequencies at the
end. We found out that our method reduces the bitrate, because it
favors long ranges of zeros at the end.

4. RESULTS AND DISCUSSION

To test our method, we used the same audio material as in [1].
This collection of 4 musical pieces, sampled at 44.1 KHz, is de-
scribed on table 1. Note that all the audio signals mentioned in
this paper (unprocessed, re-synthesized and coded/decoded sig-
nals) can be downloaded from the companion webpage of this pa-
per: http://potion.cnrs-mrs.fr/dafx2015.html.

Figure 4: Interleaving scheme for MDCT coefficients.

Test signal Description Duration (s)
harp Harpsichord 8.0
bagp Bagpipes 11.1
orch Orchestral piece 12.7

popm Contemporay pop music 11.6

Table 1: Test signals used for evaluation.

4.1. Performance of the adaptive decomposition algorithm

In a first step, we analyze the results of the adaptive decompo-
sition algorithm on the harp signal. For evaluation purpose, we
re-synthesize the audio signal without quantization by applying
equation (1). As explained in section 3.3, the sparsity ratio is
about 10% on 256-band MDCT coefficients and 20% on 2048-
band MDCT coefficients.

We can see on the spectrograms plotted on figure 5 that the
original and re-synthesized signals are very similar. However, the
reconstructed signal has less energy on the regions of the TF plane
that are between the partials, which should correspond to masked
regions. One can also notice that partials sometimes cross verti-
cal structures corresponding to attacks, which can be associated
to pre-echo. This is most probably due to the fact that our short
MDCT has 256 bands, whereas in [1], the shortest MDCT has
only 64 bands.

We also plot the TF maps of the coefficients a256 and a2048

on figure 6. In other words, we plot the magnitude of MDCT coef-
ficients in the TF plane for both MDCT bases separately. First, one
can see that the long MDCT exhibits a good frequency resolution,
but a poor time-resolution. The short MDCT has opposite proper-
ties. One can also see that partials are essentially represented by
long MDCT coefficients, and attacks by short MDCT coefficients.
This proves that our optimization algorithm dispatches the energy
between MDCT bases in an accurate way. However, this process
is not perfect: some partials are represented in the short MDCT.

Finally, we plot on figure 7 the spectrograms of the re-synthe-
sized signal after quantization and coding at 48 kbps and 24 kbps,
for the same original test signal. At 48 kbps, one can see that
the spectrogram of the re-synthesized signal is highly similar to
the spectrogram before quantization and coding. However, at low
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Figure 5: Spectrograms of the harp signal

bitrate (24 kbps), the spectrogram is somewhat different, with a
slight degradation in high frequencies and less energy between par-
tials.

4.2. Evaluation of audio quality

In order to evaluate the impact of our method on the audio quality
and to compare our codec (denoted in section codec A) to the codec
#1 proposed in [1], we organized a MUSHRA listening test [16]
on the four audio signals described in table 1, with scores ranging
from 0 (very bad quality) to 100 (excellent quality). Six versions
of the test signals were evaluated by a total number of 16 listeners:

• A hidden reference,

• A 4 kHz low-pass anchor,

• Two coded versions with codec A at 24 and 48 kbps,

• Two coded versions with codec #1 at 24 and 48 kbps.

The listeners were post-screened according to the scoring of the
reference: If the score attributed to the reference is lower than 80,
the listener was judged unreliable and discarded. Finally, only 10
subjects were kept.

The results of MUSHRA listening tests are plotted on figure 8
and 9, respectively at 24 and 48 kbps (mean values and 95% con-
fidence intervals). For both bitrates, one can see that results highly
depend on the test signal. Signals with naturally sparse spectrums
(harp, bagp) are associated to high audio quality at both bitrates.
This can be interpreted as follows: The amount of perceptually rel-
evant information in these signals is relatively low, and a good re-
construction in achievable at low bitrate. For bagp, the results ob-
tained with both codecs are similar at 24 and 48 kbps but for harp,
codec #1 is better rated. According to the listeners’ feedback, this
was mainly due to the fact that attacks are not as sharp with our
codec as with codec #1, which is probably related to the length of
the short MDCT. Signals with more dense spectrums (orch, popm)
are associated to lower audio quality, especially a 24 kbps, prob-
ably because the amount of perceptually relevant information in
these signals is higher. At 24 kbps, both codecs perform similarly
on these two signals, but at 48 kbps, our codec is slightly better on

Figure 6: TF maps of coefficients for the harp signal. Up: short
MDCT. Down: long MDCT.

popm, and much better on orch. Note that, at 24 kbps, both codecs
were rated lower than the anchor, because a reduced band-pass was
judged less disturbing than a high level of coding artifacts.

Finally, on average over the 4 test signals, our codec was rated
slightly worse at 24 kbps, only because it does not perform as well
on harp, and rated significantly better at 48 kbps, because it per-
forms better on orch and popm.

5. CONCLUSION

In this paper, we described a method that performs an adaptive
decomposition of audio signal on redundant coding dictionary (a
union of 2 MDCT bases) using a variational algorithm, i.e. the op-
timization of a cost function taking into account both a perceptual
distortion measure derived form a hearing model and a sparsity
constraint. We applied a simple quantization and coding scheme
from the literature (simple bit-plane coder) and compared the fi-
nal audio quality to one achieved by codec #1 in [1], which uses
the same quantization and coding scheme. We show that at low
bitrate (24 kbps), our codec performs worse on signal with many
sharp attacks, and performs similarly on other signals. This can
be explained by the fact that our short MDCT has only 256 bands.
At medium bitrate (48 kbps), our codec performs better on audio
signals with a dense spectrum. This point is particularly interest-
ing since in [1], codec #2 was able to outperform AAC but not
on signals with dense spectrum (orch and popm), despite the use
of a complex perceptual quantization scheme. Thus, these results
are promising: As it is, our codec can not outperform codec #2
or AAC, but it may seriously challenge both if we design a suit-
able perceptual quantization scheme. This would also require to
extend the coding dictionary by adding a shorter MDCT (128 or
64 bands).

DAFX-5



Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

Figure 7: Spectrograms of the harp signal after quantization and
coding.

Figure 8: Results of MUSHRA listening test at 24 kbps.
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