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Abstract. This is a report on a joint work [12] with D. Essouabri, C. Levy and A. Sitarz.
The spectral action on noncommutative torus is obtained, using a Chamseddine–Connes

formula via computations of zeta functions. The importance of a Diophantine condition is
outlined as far as the difficulties to go beyond. Some results on holomorphic continuation of
series of holomorphic functions are presented.

1. Introduction

The spectral action introduced by Chamseddine–Connes plays an important role (see [3] and
Chamseddine’s contribution to this proceedings) in noncommutative geometry. More precisely,
given a spectral triple (A,H,D) where A is an algebra acting on the Hilbert space H and D is a
Dirac-like operator (see [9,21]), they proposed a physical action depending only on the spectrum
of the covariant Dirac operator

DA := D + Ã, Ã := A+ ǫ JAJ−1 (1)

where A is a one-form represented on H, so has the decomposition A =
∑

i ai[D, bi], with ai,
bi ∈ A, J is a real structure on the triple corresponding to charge conjugation and ǫ ∈ { 1,−1 }
depending on the dimension of this triple and comes from the commutation relation

JD = ǫDJ. (2)

This action is defined by
S(DA,Φ,Λ) := Tr

(
Φ(DA/Λ)

)
(3)

where Φ is any even positive cut-off function which could be think as a step function. This
means that Φ counts the spectral values of |DA| less than the mass scale Λ.
Even if the spectral action on NC-tori has been computed for operators of the form D + A
in [16] and for DA in [18], it is interesting to show that this can be also directly obtained from
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the Chamseddine–Connes analysis of [4]. Actually,

S(DA,Φ,Λ) =
∑

0<k∈Sd+
Φk Λ

k

∫
− |DA|

−k +Φ(0) ζDA
(0) +O(Λ−1) (4)

where DA = DA +PA, PA is the projection on KerDA, Φk = 1
2

∫∞
0 Φ(t) tk/2−1 dt and Sd+ is the

strictly positive part of the dimension spectrum of (A,H,D). As we will see, Sd+ = { 1, 2, · · · , n }
and

∫
|DA|

−n =
∫
|D|−n. Moreover, the constant term ζDA

(0) in (4) can be computed from
unperturbed spectral action since it has been proved in [4] that

ζD+A(0)− ζD(0) =
n∑

q=1

(−1)q

q

∫
−(AD−1)q, (5)

using ζX(s) = Tr(|X|−s). We show that this formula can be extended to non invertible Dirac
operators and non invertible perturbations.
All results on spectral action are quite important in physics, especially in quantum field theory
and particle physics, where one adds to the effective action some counterterms explicitly given
by (5), see for instance [2–4,6, 14,16,18,20,22,25–28].

2. How to compute Tr
(
Φ(DA/Λ)

)
?

2.1. Heat kernel approach
Constraints on Φ: Actually, the step functions is not allowed due to Gibbs’ phenomenon. So,
we can
- use the distributional approach investigated in [13],

- or follow [23] and assume that Φ ∈ C∞(R+) is a Laplace transform of ψ̂ in the Schwartz space
S(R+) = { g ∈ S(R) : g(x) = 0, x ≤ 0 }. So Φ has analytic extension on the right complex plane

and Φ(z) = (−1)m
∫∞
0 e−tz tm ψ̂(t) dt, Re(z) > 0 where m := ⌊n2 ⌋. In this case, the following is

well established

Tr
(
Φ(D/Λ)

)
=

d∑

k=0

Φk ak Λ
d−k +O(Λ−1) (6)

where ak are the Seeley–De Witt coefficients (see [19]) and when n = 2m is even, Φ2k has the
more familiar form:

Φ2k =

{
1

Γ(m−k)

∫∞
0 Φ(t) tm−1−k dt, for k = 0, · · · ,m− 1,

(−1)k Φ(k−m)(0), for k = m, · · · , n.

For n odd, the coefficients Φ2k have less explicit forms because they involve fractional derivatives
of Φ.

2.2. Pseudodifferential operators and Zeta functions approach
One can enter in the field either via the heat kernel as before or via zeta functions or Dixmier
traces.
Consider first the commutative case where A ∈ C∞(M) for a manifold M . When P ∈ ΨDO is
a pseudodifferential operator of order q

ζP (s) = Tr(P |D|−s)

is holomorphic for Re(s) > q + d, with at most poles at integers k ≤ q + d.



The leading residue is

Ress=d+q ζP (s) = c1 TrDix(P ) = c2

∫

S∗(M)
σP

(see Guillemin, Wodzicki,. . . , where in general D2 = △ is the scalar Laplacian.)
Here is the interest of the abstract setting introduced in [10, 11] where subleading residues are
equally obtained: Given a spectral triple (A,H,D) of dimension d, which means

0 < TrDix(a|D|−d) <∞ ∀ 0 6= a ∈ A+

(when D is non invertible, one replace D → D := D+ P0 where P0 is the projection on Ker D,)
one follow the construction of ΨDO on the track of Cordes’ characterization of pseudodifferential
operators:

OP 0 := {T : t→ eit|D| T e−it|D| ∈ C∞(
R,B(H)

)
},

OPα := {T : T |D|−α ∈ OP 0 }, α ∈ R.

Definition 2.1. Define D(A) as the polynomial algebra generated by A, JAJ−1, D and |D|.
A pseudodifferential operator is an operator T such that there exists d ∈ Z such that for any
N ∈ N, there exist p ∈ N0, P ∈ D(A) and R ∈ OP−N (p, P and R may depend on N) such
that P D−2p ∈ OP d and

T = P D−2p +R .

Define Ψ(A) as the set of pseudodifferential operators and Ψ(A)k := Ψ(A) ∩OP k.

The idea is to work modulo large N . This nonstandard definition pays attention to the reality
operator J and the kernel of D and allows D and |D|−1 to be pseudodifferential operators. It is
more in the spirit of [4].
Note that if A is a 1-form, A and JAJ−1 are in D(A) and moreover D(A) ⊆ ∪p∈N0

OP p. Since
|D| ∈ D(A) by definition and P0 is a pseudodifferential operator, for any p ∈ Z, |D|p is a
pseudodifferential operator (in OP p.) Remark also that D(A) ⊆ Ψ(A) ⊆ ∪k∈ZOP k.
As in [10,11], Ψ(A) is an algebra: if T ∈ Ψ(A)d, T ∈ Ψ(A)d

′

, then TT ′ ∈ Ψ(A)d+d′ .
The noncommutative integral is naturally defined as

∫
− T := Ress=0 ζ

T
D(s) = Ress=0 Tr

(
T |D|−s

)
, T ∈ ΨDO.

which makes sense since a|D|−(d+ǫ) ∈ L1(H), ∀a ∈ A, ∀ǫ > 0.
One checks that

∫
is a trace on ΨDO when all poles of Sd(A,H,D) are simple.

Another important notion is the dimension spectrum

Sd(A,H,D) := {poles of Tr
(
T |D|−s

)
: T ∈ ΨDO0 }

For example, when M is a compact spinc Riemannian manifold of dimension n, with spectral
triple A = C∞(M), H = L2(Spineurs) and D = −iγµ∂µ, then Sd(A,H,D) = {n−k : k ∈ N0 }.

Remark 2.2. It is rather difficult to compute zeta functions, even when it is a Dixmier-trace.
However, it is proved in [1] that for any 0 ≤ T ∈ B(H) such that T s ∈ L1(H) for all s > 1,
then, if l = limǫ→0 ǫTr(T

1+ǫ) exists, T is Dixmier-traceable and TrDix(T ) = l.



Remark 2.3. When D (or DA) are not invertible, one uses in noncommutative integrals D (or
DA) defined by D = D + P0 (or DA = DA + PA), where the P ’s are projections on the kernel
of the operator. Since D has a compact resolvent, DA has also a compact resolvent and these
projections are finite-rank operators.
Note that PA ∈ OP−∞, so is a smoothing operator.
For the kernels, there is a difference between DA and D+A: for the noncommutative torus, the
inclusion KerD ⊆ KerD +A is not satisfied since A does not preserve KerD contrarily to Ã.

Using (6), one obtains (4). Moreover, relation (5) proved in [4], can be extended to

Proposition 2.4. For any selfadjoint one-form A, the constant term in Λ in (6) is

ζDA
(0)− ζD(0) = −

∫
− log(1 + ÃD−1) =

n∑

q=1

(−1)q

q

∫
−(ÃD−1)q. (7)

3. The noncommutative torus

3.1. Notations
Let AΘ := C∞(Tn

Θ) be the smooth noncommutative n-torus associated to a non-zero skew-
symmetric deformation matrix Θ ∈ Mn(R) (see [7], [24]): C∞(Tn

Θ) is generated by n unitaries
ui, i = 1, . . . , n subject to the relations ui uj = eiΘij uj ui, and with Schwartz coefficients: an
element a ∈ AΘ can be written as a =

∑
k∈Zn ak Uk, where {ak} ∈ S(Zn) with the Weyl elements

defined by Uk := e−
i
2
k.χk uk11 · · · uknn , k ∈ Zn. Previous relation on the u′s reads

UkUq = e−
i
2
k.Θq Uk+q, and UkUq = e−ik.Θq UqUk (8)

where χ is the matrix restriction of Θ to its upper triangular part. Thus unitary operators Uk

satisfy U∗
k = U−k and [Uk, Ul] = −2i sin(12k.Θl)Uk+l.

Let τ be the trace on AΘ) defined by τ
(∑

k∈Zn ak Uk

)
:= a0 and Hτ be the GNS Hilbert

space obtained by completion of AΘ with respect of the norm induced by the scalar product
〈a, b〉 := τ(a∗b). On Hτ = {

∑
k∈Zn ak Uk : {ak}k ∈ l2(Zn) }, we have the left and right regular

representations of AΘ by bounded operators, denoted respectively by L(.) and R(.).
Let also δµ, µ ∈ { 1, . . . , n }, be the n (pairwise commuting) canonical derivations, defined by

δµ(Uk) := ikµUk. (9)

AΘ acts on H := Hτ ⊗ C2m where m = ⌊n2 ⌋, the square integrable sections of the trivial spin
bundle over Tn: each element of AΘ is represented on H as L(a)⊗ 12m .
The Tomita conjugation J0(a) := a∗ satisfies [J0, δµ] = 0 and we define J := J0 ⊗ C0 where C0

is an operator on C2m . The Dirac operator is then given by the selfadjoint extension of

D := −i δµ ⊗ γµ,

where we use hermitian Dirac matrices γ. This implies C0γ
α = −εγαC0, and D Uk⊗ei = kµUk⊗

γµei, where { ei } is the canonical basis of C2m . Moreover, C2
0 = ±12m depending on the parity

of m. Finally, one introduces the chirality (which in the even case is χ := id ⊗ (−i)mγ1 · · · γn)
and this yields that (AΘ,H,D, J, χ) satisfies all axioms of a spectral triple, see [9, 21].
For every unitary u ∈ A, uu∗ = u∗u = U0, the perturbed Dirac operator VuDV

∗
u by the unitary

Vu :=
(
L(u)⊗ 12m

)
J
(
L(u)⊗ 12m

)
J−1, must satisfy condition (2).

This yields the necessity of a symmetrized covariant Dirac operator: DA := D + A + ǫJ AJ−1

since VuDV
∗
u = DL(u)⊗12m [D,L(u∗)⊗12m ]: in fact, for a ∈ AΘ, using J0L(a)J

−1
0 = R(a∗), we get

ǫJ
(
L(a)⊗ γα

)
J−1 = −R(a∗)⊗ γα.



This induces some covariance property for the Dirac operator: one checks that for all k ∈ Zn,

L(Uk)⊗ 12m [D, L(U∗
k )⊗ 12m ] = 1⊗ (−kµγ

µ), (10)

so with C0γ
α = −εγαC0, we get Uk[D, U

∗
k ] + ǫJUk[D, U

∗
k ]J

−1 = 0 and

VUk
D V ∗

Uk
= D = DL(Uk)⊗12m [D,L(U∗

k )⊗12m ]. (11)

Moreover, we get the gauge transformation:

VuDAV
∗
u = Dγu(A) (12)

where the gauged transform one-form of A is

γu(A) := u[D, u∗] + uAu∗, (13)

with the shorthand L(u)⊗ 12m −→ u.
As a consequence, the spectral action is gauge invariant: S(DA,Φ,Λ) = S(Dγu(A),Φ,Λ).
An arbitrary selfadjoint one-form A, can be written as

A = L(−iAα)⊗ γα, Aα = −A∗
α ∈ AΘ, (14)

thus
DA = −i

(
δα + L(Aα)−R(Aα)

)
⊗ γα. (15)

If Ãα := L(Aα)− R(Aα), we get D2
A = −gα1α2(δα1

+ Ãα1
)(δα2

+ Ãα2
)⊗ 12m − 1

2Ωα1α2
⊗ γα1α2

where γα1α2 := 1
2(γ

α1γα2 − γα2γα1), Ωα1α2
:= [δα1

+ Ãα1
, δα2

+ Ãα2
] = L(Fα1α2

) − R(Fα1α2
)

with

Fα1α2
:= δα1

(Aα2
)− δα2

(Aα1
) + [Aα1

, Aα2
]. (16)

In summary,

D2
A = −δα1α2

(
δα1

+ L(Aα1
)−R(Aα1

)
)(
δα2

+ L(Aα2
)−R(Aα2

)
)
⊗ 12m

−1
2

(
L(Fα1α2

)−R(Fα1α2
)
)
⊗ γα1α2 . (17)

3.2. Spectral action
We first identify the dimension spectrum:

Theorem 3.1. (i) Sd(AΘ,H,D) = {n − k : n ∈ N0 } and all poles are simple.
(ii) ζD(s) = 2m

∑
k∈Zn\0 |k|

−s + dim Ker D. In particular, ζD(0) = 0.

The reader should notice that
HIC SUNT DRACONES

In fact, (i) is true when Θ is badly approximable.

Definition 3.2. (i) Let δ > 0. A vector a ∈ Rn is said to be δ−badly approximable if there
exists c > 0 such that |q.a−m| ≥ c |q|−δ, ∀q ∈ Zn \ { 0 } and ∀m ∈ Z.
We note BV(δ) the set of δ−badly approximable vectors and BV := ∪δ>0BV(δ) the set of badly
approximable vectors.
(ii) A matrix Θ ∈ Mn(R) (real n× n matrices) will be said to said badly approximable if there
exists u ∈ Zn such that tΘ(u) is a badly approximable vector of Rn.



Remark 3.3. A classical result from Diophantine approximation asserts that for all δ > n, the
Lebesgue measure of Rn \BV(δ) is zero (i.e almost any element of Rn is δ−badly approximable.)
Let Θ ∈ Mn(R). If its row of index i is a badly approximable vector of Rn (i.e. if Li ∈ BV),
then tΘ(ei) ∈ BV and thus Θ is a badly approximable matrix. It follows that almost any matrix

of Mn(R) ≈ Rn2

is badly approximable.

This difficulty is due to the presence of J : one must control the holomorphic behavior of few
Hurwitz–Epstein Zeta functions.

Theorem 3.4. Define

fa : s ∈ C →
∑

06=k∈Zn

P (k)
||k||s e

i2π k.a

where a ∈ Rn, P ∈ C[x1, . . . , xn] is a homogeneous polynomial of degree p and ||k||2 =
∑n

i=1 ki
2.

(i) When a ∈ Zn, fa has meromorphic extension to the whole complex plane C and
fa not entire ⇔ Ress=n+p fa(s) =

∫
u∈Sn−1 P (u) dS(u) 6= 0.

(ii) When a ∈ R \ Zn, fa extends holomorphically to the whole complex plane C.
(iii) When Θ is badly approximable, for any integer q > 0, the function

g(s) :=
∑

l∈(Zn)q

c(l) fΘ(
∑

i ǫi li)
(s), with c(l) ∈ S(Zn)q and ǫi ∈ { 1, 0,−1 }.

extends meromorphically to C with only one possible pole at s = n + p. If this pole exists, it is
simple and

Ress=n+p g(s) = c

∫

u∈Sn−1

P (u) dS(u), with c :=
∑

l∈Z
b(l) where Z := { l ∈ (Zn)q :

q∑

i=1

ǫili = 0 }.

Examples:

Ress=0

∑

k∈Z2

kikj
||k||s+4

= δi,j π ,

Ress=0

∑

k∈Z4

kikjklkm
||k||s+6

= (δijδlm + δilδjm + δimδjl)
π2

12 ,

with other similar results, see [12] for details. This might be helpful for computations in ζ-
regularization, multiplicative anomalies or Casimir effect.
The main result is (see (16) for notations)

Theorem 3.5. Assume 1
2πΘ is badly approximable. For any selfadjoint one-form A, the spectral

action of the noncommutative torus of dimension n is
for n=2:

S(DA,Λ,Φ) = 4πΦ2 Λ
2 +O(Λ−2),

for n=4:

S(DA,Λ,Φ) = 8π2 Φ4 Λ
4 − 4π2

3 Φ(0) τ(FµνF
µν) +O(Λ−2).

More generally, ∀n ≥ 1,

S(DA,Λ, φ) =
n∑

k=0

Φn−k cn−k(A)Λ
n−k +O(Λ−1) (18)

with cn−1(A) = 0, cn−k(A) = 0 for k odd (n odd ⇒ c0(A) = 0.)



Conjecture 3.6. The ratio
[
constant term of S(DA,Λ, φ)

]
/
[
constant term of S(D+A,Λ, φ) for

the commutative torus (i.e. Θ = 0)
]
is independent of A. Note, however that, DA = D, ∀A = A∗

in the commutative torus.

Remark 3.7. (i) For general spectral triples with simple dimension spectrum,
∫
can be defined

with D or DA: ∫
− P = Ress=0 Tr

(
P |DA|

−s
)
, ∀P ∈ ΨDO.

(ii) The top term (cosmological term) is covariance-invariant:
∫
|DA|

−n =
∫
|D|−n.

(iii) There is no tadpole term in (7) for the noncommutative torus:
∫
ÃD−1 = 0.

(iv) A Diophantine condition was characterized by Connes in [8, Prop. 49] for n = 2 in terms
of Hochschild cohomology H(AΘ,AΘ

∗).

3.3. Beyond Diophantine condition
It is interesting to overcome the Diophantine condition and to consider for instance the case
n = 2, where Θ = θ

( 0 1
−1 0

)
with θ ∈ R.

Let f : [1, ∞[→]0, ∞[ be a continuous function such that x2 f(x) is non-increasing.

K(f) := { θ ∈ R : |θ − p
q | < f(q), for infinitely many rational numbers p

q }

Such θ are termed f -approximable. Note that this is not valid for all rational p
q since (θq)q≥1

are dense in [0, 1] when θ /∈ Q.

Lemma 3.8. Jarnik (1953): For each f , there exists an uncountable set K(f) of real numbers
1
2πθ, f -approximable but not c f -approximable for any 0 < c < 1.

K(f) has zero Lebesgue measure if
∑∞

q=1 q f(q) converges and full Lebesgue measure otherwise.

Consequences: Tuning f , ∃ a, b ∈ A such that the correction term

Tr
(
L(a)R(b) e−tD2)

−
(
same term when Θ badly approximable

)

is not exponentially small, is not O(1t ) like for 1
2πθ ∈ Q, but can be of arbitrary order!

This could have consequences on computations in field theories over noncommutative tori,
see [18] for details.
Naturally, all these complications are related to the compactness of the torus, so it is natural to
consider the

4. Extension to noncompact manifolds

Let M be a n-dimensional non compact connected complete Riemannian spinc manifold with
bounded curvature and control of its heat kernel Kt(., .) like

sup
p∈M

∫ ∞

0
tk e−tKt(p, p) dt <∞, ∀k > n

2 − 1

sup
p∈M

∫ ∞

m

e−t√
t
Kt(p, p) dt < cm−(n−1)/2, ∀m ∈ [0, 1]

This hypotheses are valid in the following cases (see [17]):
- M has Ricci curvature bounded from below.
- M has a positive injectivity radius and control of isoperimetric constants of balls of a given
radius.



- M has a bounded geometry.
Moreover, M is given a smooth isometric proper action α of Rl.
Example: The Moyal planes where M = R2n and α = translation. A Moyal multiplication can
be defined for any n× n-skew-symmetric matrix Θ by

f ⋆~ g(x) :=

∫

R2n×R2n

f(x−Θu) g(x− v) e−i u·v du dv.

Theorem 4.1. [17] When f ∈ C∞
c (M),

∫
Lf |D|−d =

∫
Mf |D|−d = c

∫
M f.

Remarks:
- When M is compact, α being proper must be periodic.
- When M is non compact and as above, D has a continuous spectrum but for any f ∈ C∞

c (M),
and any p ≥ 2, Lf (1 + |D|)−2k ∈ Lp(H), ∀k > n

2p . This particularly fit our purpose since for
noncompact spectral triple, we must have by hypothesis

a (D − λ)−1 is compact ∀a ∈ A. (19)

This is indeed the case for Moyal planes:

Theorem 4.2. [15] Moyal planes are spectral triples.

To compute a spectral action in the noncompact case, one can use (19) for instance with some
spatial localization: Given ρ ∈ A, the action is defined by

S(D,Λ,Φ, ρ) := Tr
(
ρΦ(D/Λ)

)
. (20)

In this setting,

Theorem 4.3. [16] S(D,Λ,Φ, ρ) has same coefficients as in (18) with replacement ck(A) ↔∫
Rn/2 ρ(x) ck(A)(x) dx.

Remark 4.4. Definition (20) is not satisfactory since there are too many choices. This question
has been investigated in [5] where a dilaton field φ is used and the squared Dirac operator D2

is replaced by e−φD2 e−φ, φ = φ∗ ∈ Z(A). Thus in spectral action, the counting of eigenvalues
N(Λ) := dim{D2 ≤ Λ2 } is replaced by N(ρ) := dim{D2 ≤ ρ2 } where ρ = eφ.
A general framework for a good definition of spectral action in the noncompact setting is still
lacking.
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