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Abstract

Polynomial preserving processes are defined by the property that conditional expec-
tations of polynomial functions of the process are again polynomials of the same or lower
degree. Many fundamental stochastic processes, including a�ne processes, are polynomial
preserving, and their tractable structure makes them important in applications. In this
paper we study polynomial preserving di↵usions whose state space is a compact quadric
set. Necessary and su�cient conditions for existence, uniqueness, and boundary attain-
ment are given. The existence of a convenient parameterization of the generator is shown
to be closely related to the classical problem of expressing nonnegative polynomials—
specifically, biquadratic forms vanishing on the diagonal—as a sum of squares. We prove
that in dimension d  4 every such biquadratic form is a sum of squares, while for d � 6
there are counterexamples. The case d = 5 remains open. An equivalent probabilistic
description of the sum of squares property is provided, and we show how it can be used
to obtain results on pathwise uniqueness and existence of smooth densities.

Keywords: Polynomial preserving processes; sums of squares; biquadratic forms; stochas-
tic invariance; pathwise uniqueness; smooth densities.

MSC2010 subject classifications: 60J60, 60H10, 11E25.

1 Introduction

Many fundamental stochastic processes appearing in probability theory are polynomial pre-
serving, meaning that conditional expectations of polynomial functions of the process again
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have polynomial form; see (1.4) below. Examples include Brownian motion, geometric Brow-
nian motion, Ornstein-Uhlenbeck processes, squared Bessel processes, Jacobi processes, Lévy
processes, as well as large classes of multidimensional generalizations, such as a�ne processes
and Fisher-Wright di↵usions. Polynomial preserving processes have been studied in various
degrees of generality by several authors, for instance Wong (1964), Mazet (1997), Forman
and Sørensen (2008), Cuchiero (2011), Cuchiero et al. (2012), Bakry (2014), Bakry et al.
(2014), Filipović and Larsson (2015). Polynomial preserving processes are also important in
applications. In mathematical finance, the polynomial preserving property is useful to build
tractable and flexible pricing models in a variety of situations; see for instance Zhou (2003),
Delbaen and Shirakawa (2002), Larsen and Sørensen (2007), Gourieroux and Jasiak (2006),
Cuchiero et al. (2012), Filipović et al. (2015a,b), Ackerer et al. (2015), and Filipović and
Larsson (2015). Every a�ne di↵usion is polynomial preserving; however, non-deterministic
a�ne di↵usions do not admit compact state spaces, see Krühner and Larsson (2015), which
may be a drawback in applications. In the present paper we consider polynomial preserving
di↵usions on (possibly solid) compact quadric sets. This is a natural class of simple state
spaces that nonetheless exhibit a rich mathematical structure.

The state space E is defined as follows. Fix d 2 N and let

E = {x 2 Rd : p(x) � 0} or E = {x 2 Rd : p(x) = 0}

for some p 2 Pol
2

such that E is compact and nondegenerate (nonempty and not a point).
Here Polk denotes the vector space of polynomial functions on Rd of total degree less than or
equal to k. After an a�ne change of coordinates, E is either the closed unit ball Bd or the
unit sphere S d�1; see Section 2.

Next, consider continuous maps a : Rd ! Sd and b : Rd ! Rd such that

aij 2 Pol
2

and bi 2 Pol
1

for all i, j 2 {1, . . . , d}, (1.1)

where Sd is the set of d⇥d symmetric matrices. We are interested in E-valued weak solutions
to stochastic di↵erential equations of the form

dXt = b(Xt) dt+ �(Xt) dWt, (1.2)

where � : Rd ! Rd⇥n for n 2 N is a continuous map with ��> = a on E, and W is an n-
dimensional Brownian motion. In particular, we are interested in how probabilistic properties
of (1.2) are connected to algebraic properties of the coe�cients a, b and the state space E.

Di↵usions whose coe�cients satisfy (1.1) are called polynomial preserving. The reason is
that (1.1) holds if and only if the associated generator G , given by

G f(x) =
1

2
Tr(a(x)r2f(x)) + b(x)>rf(x), (1.3)

is polynomial preserving in the sense that GPolk ✓ Polk holds for all k 2 N. If X is a
polynomial preserving di↵usion with generator G , a simple argument based on Itô’s formula
shows that conditional expectations of polynomials have a particularly simple form: For any
q 2 Polk, one has

E[q(XT ) | Xt] = H(Xt)
>e(T�t)Gk ~q, (1.4)
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where H(x) = (h
1

(x), . . . , hNk(x)) with Nk = dimPolk is a basis for Polk, and Gk 2 RNk⇥Nk

and ~q 2 RNk are the corresponding coordinate representations of G |
Polk

and q, respectively;
see Filipović and Larsson (2015, Theorem 3.1) or Cuchiero et al. (2012, Theorem 2.7) for
details.

Let us summarize the main results of the present paper. Conditions for existence and
uniqueness in law of solutions to (1.2) can be extracted from known results in the literature,
and we briefly review these issues in Section 2. A related question in the case E = Bd

is whether the interior of the state space is stochastically invariant, to which we provide
a complete answer; see Proposition 2.2. Next, in Section 3 we undertake a more detailed
investigation of how to parameterize all weak solutions to (1.2). Theorem 3.3 gives a general
representation, modulo the requirement that the di↵usion matrix a(x) be positive semidef-
inite on the state space. Characterizing positivity is a di�cult problem, which translates
into the algebraic question of describing when certain biquadratic forms BQ(x, y) are non-
negative. This is closely related to the representability of BQ(x, y) as a sum of squares of
polynomials. Such a representation always exists if d  4, but not if d � 6; see Theorem 3.5.
The case d = 5 remains open. In Section 4 we study the probabilistic consequences of the
existence of a sum of squares representation. We show that such a representation exists if
and only if (1.2) can be replaced by a certain much more structured SDE; see Theorem 4.1.
Solutions to this SDE can sometimes be shown to have the pathwise uniqueness property; see
Corollary 4.4 and Theorem 4.6. Moreover, it becomes possible to make detailed assertions
regarding the existence of smooth densities by relying on the classical Hörmander condition;
see Theorem 4.9 and its corollaries. Finally, in Section 5, we collect the algebraic develop-
ments needed for the results presented in Section 3. Here an important role is played by the
so-called Plücker relations from algebraic geometry.

The following notation will be used throughout this paper: Elements of Rd are viewed as
column vectors. Homk denotes the subspace of Polk consisting of homogeneous polynomials
of total degree exactly k. For two matrices A and B of compatible size, we write hA,Bi =
Tr(A>B) for the trace product. The convex cone of positive semi-definite matrices in Sd is
denoted Sd

+

. The space of skew-symmetric d ⇥ d matrices is written Skew(d), and we let
Skew(2, d) denote the subset of rank-two elements. Let ei = (0, . . . , 0, 1, 0, . . . , 1)> be the ith
canonical unit vector in Rd. We denote by D

1

, . . . , Dm, with m = dimSkew(d) =
�

d
2

�

, the
elementary skew-symmetric matrices Sij = eie>j � eje>i listed in lexicographic order. That is,

(D
1

, . . . , Dm) = (S
12

, . . . , S
1d, S23

, . . . , S
2d, . . . , Sd�1,d). (1.5)

2 Existence, uniqueness, and boundary attainment

We consider polynomial preserving processes whose state space is either the unit ball Bd or
the unit sphere S d�1. Up to an a�ne change of coordinates, this covers all nondegenerate
compact quadric sets. Indeed, consider a compact set E = {x 2 Rd : p(x) � 0} that is
nonempty and not a point, where p 2 Pol

2

. Then r2p is constant and negative definite, so
by completing the square one sees that E is an a�ne transformation of Bd. Similarly, the set
{x 2 Rd : p(x) = 0} is an a�ne transformation of S d�1. Note also that the condition (1.1)
is invariant under a�ne transformations.
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The following sets play an important role in the description of polynomial preserving
di↵usions on Bd and S d�1:

C = {c : Rd ! Sd : cij 2 Hom
2

for all i, j, and c(x)x ⌘ 0},
C
+

= {c 2 C : c(x) 2 Sd
+

for all x}.
(2.1)

We have the following crude characterization theorems, most of which follows fairly directly
from known results. We start with the unit ball.

Theorem 2.1. Assume a and b satisfy (1.1) and the state space is E = Bd. The following
conditions are equivalent:

(i) There exists a continuous map � : Rd ! Rd⇥d with ��> = a on Bd such that (1.2)
admits a Bd-valued weak solution for any initial condition in Bd.

(ii) The coe�cients a and b are of the form

a(x) = (1� kxk2)↵+ c(x),

b(x) = b+Bx,
(2.2)

for some ↵ 2 Sd
+

, c 2 C
+

, b 2 Rd, and B 2 Rd⇥d such that

b>x+ x>Bx+
1

2
Tr(c(x))  0 for all x 2 S d�1. (2.3)

Proof. It is proved in Filipović and Larsson (2015, Proposition 7.1) that (ii) is equivalent to
the conditions

a(x) ⌫ 0 on E, a(x)x = 0 on S d�1, G p(x) � 0 on S d�1, (2.4)

where p(x) = 1�kxk2 and G is given by (1.3). That (i) implies (2.4) follows from Theorem 6.1
in Filipović and Larsson (2015). The reverse implication follows from Theorem 6.3 and
Proposition 7.1 in Filipović and Larsson (2015) when the inequality in (2.3) is strict. For
the general case one can, for instance, invoke Example 2.5 and Theorem 2.2 in Da Prato and
Frankowska (2007). Alternatively, one can use (2.4) to verify the positive maximum principle
directly, and then apply Ethier and Kurtz (2005, Theorem 4.5.4).

If d = 1, the polynomial preserving di↵usions on B1 = [�1, 1] are simply the Jacobi
processes dXt = (b+ BXt)dt+ �

p

1�X2

t dWt. In this case C
+

= C = {0}. In contrast, for
d > 1 the set C

+

is non-trivial, and its elements c induce di↵usive fluctuations tangentially
to the sphere due to the property c(x)x ⌘ 0. Theorem 2.1 provides no explicit description
of C

+

, and a significant part of the present paper is devoted to studying this set in detail.
This is the topic Section 3.

It is frequently of interest to know whether a solution X to (1.2) that starts in the
interior of Bd remains in the interior. This question of boundary attainment is resolved by
the following result, which is a refinement of Theorem 6.7 in Filipović and Larsson (2015).
In its statement, we assume that a(x) and b(x) satisfy (1.1) along with the two equivalent
conditions in Theorem 2.1. In particular, (2.3) is satisfied. Let Px denote the law of the
solution X to (1.2) with initial condition x 2 Bd. A measurable subset D ✓ Bd is said to
be invariant for X if, for every x 2 D, one has Px(Xt 2 D for all t � 0) = 1.
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Proposition 2.2. The interior Bd \ S d�1 is invariant for X if and only if

b>x+ x>(B + ↵)x+
1

2
Tr(c(x))  0 for all x 2 S d�1. (2.5)

Proof. Let p(x) = 1� kxk2 and note that

a(x)rp(x) = p(x)h(x) where h(x) = 2↵x.

Furthermore,

2G p(x)� h(x)>rp(x) = �Tr(↵)p(x)� 2

✓

b>x+ x>(B + ↵)x+
1

2
Tr(c(x))

◆

. (2.6)

If (2.5) fails, then the right-hand side is strictly positive for some x 2 S d�1. Also, G p(x) � 0
due to (2.3). Thus Filipović and Larsson (2015, Theorem 6.7(iii)) implies that Bd \ S d�1

is not invariant for X (a look at the proof of that result shows that its assumption that
{t : Xt 2 S d�1} has Lebesgue measure zero is not needed when X

0

/2 S d�1).
Suppose now (2.5) holds, and let X

0

= x
0

2 Bd \ S d�1. Define ⌧ = inf{t : Xt 2 S d�1}.
We must show that Px0(⌧ < 1) = 0. For t 2 [0, ⌧), Itô’s formula yields

log p(Xt) = log p(x
0

) +

Z t

0

2G p(Xs)� h(Xs)>rp(Xs)

2p(Xs)
ds+

Z t

0

rp(Xs)>�(Xs)

p(Xs)
dWs.

Suppose we can find a constant 
1

> 0 such that

2G p(x)� h(x)>rp(x) � �2
1

p(x) for all x 2 Bd. (2.7)

Then log p(Xt)+
1

t is a local submartingale on [0, ⌧), bounded from above on bounded time
intervals. The supermartingale convergence theorem then implies inft<T^⌧ log p(Xt) > �1
for all deterministic T < 1, which gives ⌧ = 1 as desired. This is the same “McKean’s
argument” as in the proof of Filipović and Larsson (2015, Theorem 6.7(i)–(ii)). A suitable
version of the supermartingale convergence theorem can found in, for instance, Larsson and
Ruf (2014, Lemma 4.14).

It remains to argue (2.7). Since Tr(c(x)) is a quadratic form in x, we can find C 2 Sd
such that Tr(c(x)) = x>Cx. Define ⌃ = �↵ � 1

2

(B + B> + C) 2 Sd. In view of (2.6),
condition (2.7) then becomes

x>⌃x� b>x � �(1� kxk2) for all x 2 Bd, (2.8)

where the constant  is related to 
1

by  = 
1

� Tr(↵)/2. On the other hand, the assump-
tion (2.5) written in terms of ⌃ becomes

x>⌃x� b>x � 0 for all x 2 S d�1. (2.9)

We claim that (2.9) in fact implies that (2.8) holds for  = kbk. For x = 0 the statement is
obvious. For x 6= 0, define x = x/kxk and apply (2.9) to get x>⌃x � b>x. Multiplying both
sides by kxk2, rearranging, and applying the Cauchy-Schwartz inequality gives

x>⌃x� b>x � �b>x(1� kxk) � �kbkkxk(1� kxk) � �kbk(1� kxk2),

as required.
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The case of the sphere is simpler. In particular, the question of boundary attainment
becomes vacuous.

Theorem 2.3. Assume a and b satisfy (1.1) and the state space is E = S d�1. The following
conditions are equivalent:

(i) There exists a continuous map � : Rd ! Rd⇥d with ��> = a on S d�1 such that (1.2)
admits an S d�1-valued weak solution for any initial condition in S d�1.

(ii) The coe�cients a and b satisfy a = c on S d�1 for some c 2 C
+

, and b(x) = Bx for
some B 2 Rd⇥d, where

2x>Bx+Tr(c(x)) ⌘ 0. (2.10)

Proof. Filipović and Larsson (2015, Theorem 6.3) yields that (ii) implies (i). For the reverse
implication, one argues as in the proof of Theorem 2.1 that (i) implies Theorem 2.1(ii), but
with equality in (2.3). This in turn implies that a(x) = c(x) for x 2 S d�1 and that b = 0,
whence (2.10) holds.

Theorems 2.1 and 2.3 do not make any uniqueness statements. However, since the
state space E is compact, the polynomial preserving property implies that uniqueness in
law for (1.2) always holds. More precisely, we have the following result:

Lemma 2.4. Assume a and b satisfy (1.1), let � : Rd ! Rd⇥n, n 2 N, be a continuous map
with ��> = a on E, and let x 2 E. Let X be an E-valued weak solution to (1.2) with initial
condition X

0

= x. Then the law of X is uniquely determined by a, b, and x.

Proof. See Filipović and Larsson (2015, Corollary 5.2). The argument relies on the fact
that a, b, and x uniquely determine all joint moments of all finite-dimensional marginal
distributions of X due to (1.4); see Filipović and Larsson (2015, Corollary 3.2) for details.
Due to the compactness of E, this in turn determines the law of X.

Remark 2.5. So far no assertions have been made regarding pathwise uniqueness of solutions
to (1.2). Pathwise uniqueness depends on the choice of �, and the existence of a suitable � is
a delicate question in general. See Spreij and Veerman (2012, Remark 2.3) for an instructive
discussion in connection with a�ne di↵usions on parabolic sets. Sometimes pathwise unique-
ness is immediate: If a(x) is positive definite on the interior Bd \S d�1 then �(x) = a(x)1/2

is locally Lipschitz there, which by standard arguments yields pathwise uniqueness up to the
first hitting time of the boundary. In Section (2.2) we discuss other situations where pathwise
uniqueness can be established.

3 Tangential di↵usion, biquadratic forms, and sums of squares

In this section we undertake a detailed analysis of the linear space C and the convex cone
C
+

appearing in Theorems 2.1 and 2.3, and whose role is to generate di↵usive movements
tangentially to S d�1. It tuns out that a complete description is di�cult to obtain in general;
see Theorem 3.5 below. Fortunately, a partial characterization suitable for applications is
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within reach. We start with some general remarks, introducing some concepts and notation
along the way.

Any map c : Rd ! Sd whose components lie in Hom
2

induces a map BQ : Rd ⇥ Rd ! R
via the expression

BQ(x, y) = y>c(x)y. (3.1)

This map is a biquadratic form: a quadratic form in x for each fixed y, and a quadratic form in
y for each fixed x. Conversely, any biquadratic form in d+d variables induces a corresponding
map c by the formula cij(x) = @2

yiyjBQ(x, y) for i 6= j, and cii(x) = @2

yiyiBQ(x, y)/2. Further-
more, the positive semidefiniteness condition c(x) ⌫ 0 for all x is equivalent to BQ(x, y) � 0
for all (x, y). Finally, in the presence of this condition, one has c(x)x ⌘ 0 if and only if the
corresponding biquadratic form vanishes on the diagonal, BQ(x, x) ⌘ 0; indeed, c(x)x = 0 if
and only if x>c(x)x = kc(x)1/2xk2 = 0. These observations can be summarized as follows:

Lemma 3.1. The set C
+

is in one-to-one correspondence with the set of all nonnegative
biquadratic forms vanishing on the diagonal. The correspondence is given by (3.1).

Remark 3.2. Note that the set C does not correspond one-to-one with the set of all (not
necessarily nonnegative) biquadratic forms vanishing on the diagonal. The reason is that
x>c(x)x ⌘ 0 does not imply c(x)x ⌘ 0 in the absence of positive semidefiniteness. An
example is the map

c(x) =

✓

�2x
1

x
2

x2
1

x2
1

0

◆

,

which satisfies x>c(x)x ⌘ 0 but not c(x)x ⌘ 0. It will become apparent that the relevant
stepping stone toward an understanding of C

+

is the set C , not the set of biquadratic forms
vanishing on the diagonal.

Our first main result is a characterization of C . Let m =
�

d
2

�

= dimSkew(d). For any
H = (hpq) 2 Sm, define a map cH by

cH(x) =
m
X

p,q=1

hpq Dp xx
>D>

q , (3.2)

where D
1

, . . . , Dm are given by (1.5). It is clear that cH 2 C , and it turns out that every
element of C is in fact of this form. Naively one might then conjecture that the dimension of
C equals dim Sm =

�

m+1

2

�

, the number of free parameters hpq appearing in (3.2). However,
this turns out to be incorrect. Indeed, there exist linear relations among the maps Dp xx>D>

q

in (3.2); to capture them, we consider the linear space

K = {H 2 Sm : cH(x) ⌘ 0} . (3.3)

The proof of the following theorem is provided in Section 5.1.

Theorem 3.3. The set C and its dimension are given by

C = {cH : H 2 Sm} and dimC = 2

✓

d

4

◆

+ 3

✓

d

3

◆

+

✓

d

2

◆

=
d2(d2 � 1)

12
, (3.4)

where m =
�

d
2

�

and we set
�

d
k

�

= 0 for k > d. Moreover, dimK = dimSm � dimC =
�

d
4

�

.
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The linear space K has several interesting properties that are used in the proofs of our
subsequent results. This is discussed in detail in Section 5.2. In a nutshell, the situation is
the following: Each H 2 Sm naturally corresponds to a quadratic form on the space of skew-
symmetric matrices, which when evaluated at A = xy> � yx> 2 Skew(2, d) yields precisely
BQ(x, y); see (5.1). Now, it turns out that K admits a set of basis vectors that can be
identified with the so-called Plücker polynomials from algebraic geometry. The zero set of
these polynomials is isomorphic to Skew(2, d). As a consequence, the quotient Sm/K can be
identified with the set of quadratic forms acting on Skew(2, d). Thus, in view of Theorem 3.3,
each element of C corresponds to a unique quadratic form on Skew(2, d). Finally, we mention
that it is possible to explicitly write down a basis for K ; see Remark 5.4.

We now turn to the delicate question of positivity: c(x) ⌫ 0 for all x, or equivalently
BQ(x, y) � 0 for all (x, y). A simple example where this holds is c(x) = Axx>A>, where
A 2 Skew(d). More generally, by taking conic combinations, elements of the form

c(x) = A
1

xx>A>
1

+ · · ·+Am xx>A>
m, A

1

, . . . , Am 2 Skew(d), (3.5)

lie in C
+

. The corresponding biquadratic form is given by

BQ(x, y) = (y>A
1

x)2 + · · ·+ (y>Amx)2,

which has the important property that it can be written as a sum of squares of polynomials
(indeed, of quadratic forms). The converse is also true: whenever BQ(x, y) is a sum of
squares, the corresponding c(x) is of the form (3.5). Specifically, one has the following:

Lemma 3.4. Let c 2 C , m =
�

d
2

�

. The following conditions are equivalent.

(i) BQ(x, y) = y>c(x)y is a sum of squares of polynomials.

(ii) c = cH for some H 2 Sm
+

.

(iii) c(x) =
Pm

p=1

Ap xx>A>
p for some A

1

, . . . , Am 2 Skew(d).

Proof. (iii) =) (i): Obvious.
(i) =) (ii): We first show that (i) implies that there exist m0 2 N and A

1

, . . . , Am0 2
Skew(d) such that y>c(x)y =

Pm0

p=1

(y>Ap x)2. To this end, suppose y>c(x)y = f
1

(x, y)2 +

· · ·+ fm0(x, y)2 for some polynomials fp, p = 1, . . . ,m0, where m0 2 N. By setting x = y = 0,
we see that fp(0, 0) = 0 for all p. Since also fp(sx, y)2  y>c(sx)y = s2y>c(x)y, each fp is
linear in x. Similarly, each fp is linear in y. It follows that fp(x, y) = y>Apx for some matrix
Ap 2 Rd⇥d. Finally, (x>Apx)2  x>c(x)x ⌘ 0, whence Ap is skew-symmetric. This proves
the claimed representation.

Now, sinceD
1

, . . . , Dm form a basis for Skew(d), for each p there exists up = (u1p, . . . , u
m
p ) 2

Rm such that Ap =
Pm

i=1

uipDi. Thus,

y>c(x)y = y>
⇣

m0
X

p=1

Ap xx
>A>

p

⌘

y = y>
⇣

m
X

i,j=1

hij Di xx
>D>

j

⌘

y,
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where H = (hij) 2 Sm is given by H = u
1

u>
1

+ · · ·+um0u>m0 and thus is positive semidefinite.
We deduce (ii).

(ii) =) (iii): Writing H = u
1

u>
1

+ · · · + umu>m for some vectors up with components
(u1p, . . . , u

m
p ) and substituting into (3.2) yields

cH(x) =
m
X

p=1

(u1pD1

+ · · ·+ ump Dm)xx>(u1pD1

+ · · ·+ ump Dm)>,

which is of the desired form with Ap =
Pm

i=1

uipDi.

Lemma 3.4 shows that those c 2 C
+

whose associated biquadratic form is a sum of
squares have a nice parameterization in terms of positive semidefinite matrices H. One
is thus naturally led to ask whether every nonnegative biquadratic form vanishing on the
diagonal can be written as a sum of squares. Our next main result addresses this question.
Its proof is provided in Sections 5.3 and 5.4, relying on the material developed in Section 5.2.
The proof also depends on a known result (Lemma 5.5) on existence of low-rank elements in
the intersection of Sm

+

with certain a�ne subspaces of Sm.

Theorem 3.5. (i) If d  4, then any nonnegative biquadratic form in d + d variables
vanishing on the diagonal is a sum of squares. Equivalently, any c 2 C

+

is of the form
c = cH for some H 2 Sm

+

.

(ii) If d � 6, then there exists a nonnegative biquadratic form in d+ d variables vanishing
on the diagonal that is not a sum of squares. Equivalently, there exists c 2 C

+

that is
not of the form c = cH for some H 2 Sm

+

.

Remark 3.6. In László (2010) it was observed that the conclusion of Theorem 3.5(i) holds
for d  3, while the case d � 4 was left open; see also László (2012). The case d = 3 can also
be deduced from Quarez (2015). We have not been able to determine whether there exists a
nonnegative biquadratic form in 5+ 5 variables, vanishing on the diagonal, that is not a sum
of squares. The counterexample that establishes Theorem 3.5(ii) comes from László (2010).
For the benefit of the reader we recap this construction in Section 5.4 using the setting and
notation of the present paper. The study of sum of squares representations of nonnegative
biquadratic forms (not necessarily vanishing on the diagonal) goes back to Choi (1975).

4 Consequences of the sum of squares property

Throughout this section, we assume that a(x) and b(x) satisfy (2.2)–(2.3) for some fixed
↵ 2 Sd

+

, c 2 C
+

, b 2 Rd, B 2 Rd⇥d, and let BQ(x, y) = y>c(x)y be the associated nonnegative
biquadratic form. Theorem 2.1 guarantees that a Bd-valued weak solution to (1.2) exists for
a suitable choice of � and for any initial condition x 2 Bd. Denote its law by Px, and observe
that it is uniquely determined by a, b, and x; see Lemma 2.4. In this section we discuss
consequences of the existence of a sum of squares representation of BQ(x, y).
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4.1 SDE representation

Our first result shows that Px can be represented as the law of the solution to a certain
structured SDE if and only if BQ(x, y) is a sum of squares. Before stating it, we give the
following definition:

Definition 4.1. A process Y is called a Skew(d)-valued correlated Brownian motion with
drift if it is of the form

Yt = A
0

t+A
1

cW 1

t + · · ·+Am
cWm

t , (4.1)

where A
0

, . . . , Am 2 Skew(d) and cW = (cW 1, . . .cWm) is an m-dimensional Brownian motion.

Theorem 4.2. The following conditions are equivalent:

(i) BQ(x, y) = y>c(x)y is a sum of squares of polynomials.

(ii) For each x 2 Bd, Px is the law of the unique Bd-valued weak solution to the SDE

dXt = (b+ bBXt) dt+
p

1� kXtk2 ↵1/2 dWt + (� dYt)Xt (4.2)

with initial condition X
0

= x, where � bB 2 Sd
+

, W = (W 1, . . . ,W d) is a d-dimensional
Brownian motion, and Y is a Skew(d)-valued correlated Brownian motion with drift,
independent of W . Here � dYt denotes Stratonovich di↵erential.

In this case, B is related to bB and A
0

, . . . , Am in (4.1) through

1

2
(B �B>) = A

0

and
1

2
(B +B>) = bB � 1

2

m
X

p=1

A>
p Ap. (4.3)

Proof. (i) =) (ii): Lemma 3.4 implies that

c(x) =
m
X

p=1

Ap xx
>A>

p (4.4)

for some A
1

, . . . , Am 2 Skew(d). Define A
0

2 Skew(d) and bB 2 Sd via (4.3). We claim that
� bB 2 Sd

+

. Indeed, writing the condition (2.3) in terms of bB, and using that x>A
0

x = 0 by
skew-symmetry, yields

b>x+ x> bBx  0 for all x 2 S d�1. (4.5)

Inserting x and �x into this inequality and adding, one obtains x> bBx  0 for all x 2 S d�1,
whence � bB 2 Sd

+

as claimed. Next, writing the SDE (4.2) in Itô form yields

dXt = (b+BXt) dt+ b�(Xt)

✓

dWt

dcWt

◆

,

where
b�(x) =

⇣

p

1� kxk2 ↵1/2 A
1

x · · · Amx
⌘

2 Rd⇥(d+m). (4.6)
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In view of (4.4) we have b�(x)b�(x)> = (1�kxk2)↵+c(x) = a(x). Thus (4.2) has the same drift
and di↵usion coe�cients as (1.2), which by Lemma 2.4 implies that the law of any solution
to (4.2) with initial condition x is indeed Px, as desired. Finally, the existence of a Bd-valued
solution to (4.2) follows, as in the proof of Theorem 2.1, from Example 2.5 and Theorem 2.2
in Da Prato and Frankowska (2007).

(ii) =) (i): Let b�(x) be given by (4.6). Since Px is the uniquely determined law of the
solution to (4.2), one obtains

a(x) = b�(x)b�(x)> = (1� kxk2)↵+
m
X

p=1

Ap xx
>A>

p .

Since a(x) = (1� kxk2)↵+ c(x), it follows that (4.4) holds. Lemma 3.4 then implies (i).

The terms on the right-hand side of (4.2) have natural interpretations. Since bB is sym-
metric with real non-positive eigenvalues, the drift has a mean-reverting component bBXt in
addition to the constant part b. The term involving Wt induces di↵usive motion along the
eigenvectors of ↵, with quadratic variation that is scaled by the squared distance 1� kXtk2
to the boundary of Bd. Finally, the term (� dYt)Xt can be viewed as an infinitesimal ran-
dom rotation of Xt; see also Price and Williams (1983) and Van den Berg and Lewis (1985).
Heuristically, the Stratonovich increment � dYt is a small random Skew-symmetric matrix
that maps Xt to an infinitesimal tangent vector of the ball with radius kXtk.
Remark 4.3. In the setting of Theorem 4.2, (4.3) implies that the necessary and su�cient
condition (2.5) for boundary attainment reduces to

b>x+ x>( bB + ↵)x  0 for all x 2 S d�1.

If X takes values in S d�1, the sum of squares property of BQ(x, y) has stronger impli-
cations. In particular, X can now be constructed as the unique strong solution to a suitable
SDE.

Corollary 4.4. Assume the coe�cients a and b satisfy Theorem 2.3(ii). The following con-
ditions are equivalent:

(i) BQ(x, y) = y>c(x)y is a sum of squares of polynomials.

(ii) For each x 2 S d�1, Px is the law of the S d�1-valued unique strong solution to the
SDE

dXt = (� dYt)Xt (4.7)

with initial condition X
0

= x, where Y is a Skew(d)-valued correlated Brownian motion
with drift.

(iii) The operator G = 1

2

Tr(ar2) + b>r corresponding to the SDE (1.2) can be expressed
in Hörmander form as

G = V
0

+
1

2

m
X

p=1

V 2

p , (4.8)

where for p = 0, . . . ,m, Vp is the linear vector field given by Vp(x) = Apx for some
Ap 2 Skew(d).
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Proof. (i) () (ii) is deduced from the corresponding equivalence in Theorem 4.2. Indeed,
the forward implication follows since b = 0, ↵ = 0, and bB = 0. Here the latter is due to (2.10)
and (4.3), which give

x> bBx = x>Bx+
1

2

m
X

p=1

x>ApA
>
p x = x>Bx+

1

2
Tr(c(x)) = 0, x 2 Rd.

Note that the form of c(x) follows from Lemma 3.4. For the converse, simply note that (ii)
implies that Theorem 4.2(ii) is satisfied with b = 0, ↵ = 0, and bB = 0. This yields (i). The
implication (ii) =) (iii) is well-known, and follows from a brief calculation using the identity
V 2

p f(x) = Tr(r2f(x)Ap xx>A>
p )� (A>

p Ap x)>rf(x). Finally, the implication (iii) =) (i) is

again a calculation showing that c(x) = A
1

xx>A>
1

+ · · · + Am xx>A>
m, which gives (i) via

Lemma 3.4.

Example 4.5. The classical Brownian motion on the sphere is covered by Corollary 4.4.
In particular, it is a polynomial preserving di↵usion. Indeed, by taking Ap = Dp for p =
1, . . . ,m, one obtains

c(x) =
X

i<j

(eie
>
j � eje

>
i )xx

>(eje
>
i � eie

>
j ) = (x>x)Id� xx>,

so that a(x) = c(x) = Id� xx> on S d�1. This is the orthogonal projection onto the tangent
space of S d�1 at x. Setting A

0

= 0, we thus recover the following well-known quadratic SDE
for Brownian motion on the sphere:

dXt = (Id�XtX
>
t ) � dWt.

The linear SDE in Corollary 4.4 is di↵erent, and was originally obtained by Price and
Williams (1983); see also Van den Berg and Lewis (1985).

4.2 Pathwise uniqueness

It is natural to ask whether polynomial preserving di↵usions on the unit ball can be realized
as solutions to SDEs for which pathwise uniqueness holds. As mentioned in Remark 2.5, if
a(x) is positive definite on the interior of Bd, one obtains pathwise uniqueness up to the first
hitting time of S d�1 by taking �(x) = a(x)1/2.

If BQ(x, y) is a sum of squares, more can be said. Indeed, in this case Theorem 4.2
yields pathwise uniqueness up to the first hitting time of S d�1, regardless of whether or not
a(x) is nonsingular. Moreover, if the state space is S d�1, Corollary 4.4 shows that pathwise
uniqueness always holds (still under the sum of squares assumption, of course).

Looking at the SDE (4.2) in Theorem 4.2, there may be some hope that pathwise unique-
ness holds globally, not just up the first hitting time of S d�1. We have not been able to
prove this in general. Instead, we present a partial result relying on the method developed
by DeBlassie (2004) for proving pathwise uniqueness for certain SDEs on the unit ball; see
also Swart (2002). Specifically, we consider the following special case of (4.2):

dXt = �Xt dt+ ⌫
p

1� kXtk2 dWt +A
0

Xt dt+A
1

Xt � dcW 1

t + · · ·+AmXt � dcWm
t , (4.9)
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where A
0

, . . . , Am 2 Skew(d), W = (W 1, . . . ,W d) and cW 1, . . . ,cWm are independent Brow-
nian motions, and, crucially,  and ⌫ are positive scalar constants. Within the polynomial
preserving class, this is a generalization of the equation considered by Swart (2002) and De-
Blassie (2004), who take the tangential components A

0

, . . . , Am to be zero. Note that even
in this case, it is not known whether pathwise uniqueness holds for (4.9) for arbitrary values
of  and ⌫.

The reason why DeBlassie (2004) method can be applied in the present situation is con-
tained in the following calculation. Define Yt = 1 � kXtk2. Then, an application of Itô’s
formula and the change-of-variable formula for the Stratonovich integral yield

dYt = 2kXtk2 dt� 2⌫
p

YtX
>
t dWt � d ⌫2Yt dt� 2X>

t A
0

Xt dt� 2
m
X

p=1

X>
t ApXt dcW

p
t .

The skew-symmetry of the Ap implies that the quadratic terms X>
t ApXt all vanish, so that

dYt =
�

2kXtk2 � d ⌫2Yt
�

dt� 2⌫
p

YtX
>
t dWt. (4.10)

This no longer involves the matrices Ap. Note that this crucially relies on the linearity in Xt

of the last m + 1 terms of (4.9). This property is specific for the sum of squares case (4.2),
and is in general not present in (1.2).

Theorem 4.6. Assume /⌫2 >
p
2� 1. Then pathwise uniqueness holds for (4.9).

Proof. Let X and eX be two solutions to (4.9), driven by the same Brownian motions and
starting from the same starting point x

0

2 Bd. Pathwise uniqueness clearly holds up to
the first time the boundary is attained, so it su�ces to take x

0

on the boundary, and prove
Xt = eXt for all t  ⌧ , where ⌧ = inf{t � 0: kXtk ^ k eXtk  1� "} for some arbitrary " > 0.
Define Yt = 1 � kXtk2 and eYt = 1 � k eXtk2. In order to improve readability we often omit
time subscripts below. We also omit the details of several cumbersome but straightforward
calculations.

We apply the method by DeBlassie (2004). Define the function

F (y, ey) = (yp � eyp)2

where p 2 (1/2, 1) is required to satisfy  > ⌫2(1 � p). It then follows from Lemma 2.1 in
DeBlassie (2004) together with (4.10) that F (Y, eY ) satisfies Itô’s formula on the time interval
[0, ⌧ ], provided " > 0 is small enough depending on , ⌫, and p. Writing F

1

= @yF (Y, eY ),

F
2

= @eyF (Y, eY ), etc., this means that the following calculations are rigorous. First,

dF (Y, eY ) = F
1

dY + F
2

deY +
1

2
F
11

dhY, Y i+ F
12

dhY, eY i+ 1

2
F
22

dheY , eY i.
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Next, in view of (4.10), a calculation yields

dF (Y, eY ) = (local martingale)

+
⇣

(F
1

+ F
2

) + ⌫2(F
11

Y + 2F
12

Y 1/2
eY 1/2 + F

22

eY )
⌘

(kXk2 + k eXk2) dt

+
⇣

(F
1

� F
2

) + ⌫2(F
11

Y � F
22

eY )
⌘

(kXk2 � k eXk2) dt

� 2⌫2F
12

Y 1/2
eY 1/2kX � eXk2 dt� d ⌫2(F

1

Y + F
2

eY ) dt

= (local martingale) + I

1

(kXk2 + k eXk2) dt+ I

2

dt+ I

3

dt+ I

4

dt.

We now insert the explicit expression for F and its derivatives. Define Z = (Y p�1 �
eY p�1)(eY p � Y p) and note that Lemma A.1 in DeBlassie (2004) yields

(Y p�1/2 � eY p�1/2)2  (2p� 1)2

4p(1� p)
Z

whenever p 2 (1
2

, 1). Making use of this inequality, one obtains

I

1

= �2pZ+2p⌫2(1�p)Z+2p2⌫2(Y p�1/2� eY p�1/2)2  �2p⌫2
✓



⌫2
� 1 + p� (2p� 1)2

4(1� p)

◆

Z.

The expression in parentheses on the right-hand side is maximized by p = 1�
p
2/4 2 (1

2

, 1),

which makes its value equal to /⌫2 + 1�
p
2. Note that the hypothesis on  and ⌫ ensures

that  > ⌫2(1� p) holds for this choice of p, as was required above. Thus, on [0, ⌧ ],

I

1

(kXk2 + k eXk2)  �4(1� ")p⌫2
⇣ 

⌫2
+ 1�

p
2
⌘

Z.

Next, we have

I

2

= �2p⌫2
⇣ 

⌫2
� 1 + p

⌘

(Y p�1 + eY p�1)(Y p � eY p)(Y � eY )� 2p2⌫2(Y 2p�1 � eY 2p�1)(Y � eY ).

Since /⌫2 � 1� p, one obtains I
2

 0. Furthermore, since

�F
12

Y 1/2
eY 1/2 = 2p2Y p�1/2

eY p�1/2  2p2"2p�1

for t  ⌧ , we get I

3

 4p2"2p�1⌫2kX � eXk2 on [0, ⌧ ]. Finally, I
4

= �2pd ⌫2F  0. Putting
together these estimates yields, for t  ⌧ ,

F (Yt, eYt)  (local martingale)� 4(1� ")p⌫2
⇣ 

⌫2
+ 1�

p
2
⌘

Z t

0

Zs ds

+ 4p2"2p�1⌫2
Z t

0

kXs � eXsk2 ds.
(4.11)

We need the dynamics of kX � eXk2. Similar calculations as those leading to (4.10) yield

dkX � eXk2 =
⇣

�2kX � eXk2 + d ⌫2(Y 1/2 � eY 1/2)2
⌘

dt+ 2⌫(Y 1/2 � eY 1/2)(X � eX)>dW.
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Moreover, one has the inequality (Y 1/2� eY 1/2)2  c"2�2pZ on [0, ⌧ ], where c is a constant that
only depends on p; see the proof of (DeBlassie, 2004, Lemma 3.6). In conjunction with (4.11)
one then obtains, for t  ⌧ ,

F (Yt, eYt) + kXt � eXtk2  (local martingale)

+
⇣

d ⌫2c"2�2p � 4(1� ")p⌫2
⇣ 

⌫2
+ 1�

p
2
⌘⌘

Z t

0

Zs ds

+ (4p2"2p�1⌫2 � 2)

Z t

0

kXs � eXsk2 ds.

Since /⌫2+1�
p
2 > 0 by assumption, we may choose " su�ciently small to make the finite

variation terms nonpositive. Thus, on [0, ⌧ ], F (Yt, eYt) + kXt � eXtk2 is bounded from above
by a nonnegative local martingale Mt with M

0

= 0. Thus Mt = 0 on [0, ⌧ ], implying that
the same holds for the left-hand side. This yields X = eX on [0, ⌧ ], as desired. The proof is
complete.

Remark 4.7. While the restriction on  and ⌫ excludes some specifications, there is cer-
tainly an overlap with the set of parameters for which the boundary is attained. Indeed, by
Proposition 2.2 the boundary may be attained if and only if /⌫2 < 1.

4.3 Existence of smooth densities

If BQ(x, y) is a sum of squares and the state space is the unit sphere, Corollary 4.4(iii) and
Hörmander’s theorem lead to simple conditions under which the solution to (1.2) possesses a
smooth density. To state the precise result we introduce some notation. Let A

0

, . . . , Am be
elements of Skew(d) and fix x

0

2 S d�1. Define

g
0

= {A
1

, . . . , Am}
gk = gk�1

[ {[B,Ap] : B 2 gk�1

, p = 0, . . . ,m} (k � 1)

g = span
[

k�0

gk (4.12)

h = Lie algebra generated by A
0

, . . . , Am.

Here [A,B] = AB�BA is the usual matrix commutator. Note that g is a Lie sub-algebra of
h, and that h = g+RA

0

. In fact, g is even an ideal in h, meaning that [g, h] ✓ g. Let G denote
the connected Lie subgroup of SO(d) generated by eB, B 2 g, and H the connected Lie group
similarly generated by h. Then g (respectively h) is the Lie algebra of G (respectively H).
Finally, define Gx

0

= {Qx
0

: Q 2 G}, the orbit of x
0

under G, and similarly Hx
0

. These
are smooth submanifolds of S d�1, and their tangent spaces are given by

Tx(Gx
0

) = gx and Tx(Hx
0

) = hx.

In view of the identities Q�1gQ = g and Q�1hQ = h for all Q 2 G, it follows that

TQx(Gx
0

) = QTx(Gx
0

) and TQx(Hx
0

) = QTx(Hx
0

), Q 2 G. (4.13)
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All these properties are well-known, and simply reflect the fact that Gx
0

and Hx
0

are
homogeneous spaces for G and H, respectively.

The natural state space for solutions to (4.7) starting from x
0

2 S d�1 is Hx
0

. However,
by slightly adjusting such a solution one obtains a process which remains in Gx

0

. Specifically,
one has the following lemma.

Lemma 4.8. Let X be the solution to (4.7) with X
0

= x
0

, and define a process Z by

Zt = e�tA0Xt.

Then Zt 2 Gx
0

for all t � 0.

Proof. Since g is an ideal in h, we have for each p 2 {1, . . . ,m},

e�tA0Ape
tA0z 2 gz = Tz(Gx

0

) for all z 2 Gx
0

, t � 0. (4.14)

To see this, write f(t) = e�tA0ApetA0 . Then f (k+1)(0) = [f (k)(0), A
0

] for all k 2 N. Since g
is an ideal in h one has f 0(0) = [Ap, A0

] 2 g, whence f (k)(0) 2 g for all k 2 N by induction.
Thus e�tA0ApetA0 = f(t) 2 g since f is analytic with infinite radius of convergence. Hence
(4.14) follows. Now, a brief calculation shows that Z satisfies the time-inhomogeneous SDE

dZt = e�tA0A
1

etA0Zt � dW 1

t + · · ·+ e�tA0AmetA0Zt � dWm
t ,

which admits a unique strong solution. In view of (4.14), the vector fields on the right-hand
side are tangent to Gx

0

, which by Hsu (2002, Theorem 1.2.9) implies that Z takes values
there.

One now has the following fairly precise result regarding existence of smooth densities in
the case where BQ(x, y) admits a sum of squares representation.

Theorem 4.9. Let X be the solution to (4.7) with X
0

= x
0

2 S d�1; in particular, BQ(x, y)
is a sum of squares of polynomials. Then X takes values in Hx

0

. Moreover, the following
conditions are equivalent:

(i) Xt has a smooth density with respect to surface area measure on Hx
0

for all t > 0.

(ii) Hx
0

= Gx
0

.

(iii) A
0

x
0

2 gx
0

.

Proof. It follows from Lemma 4.8 and the definition of H that X takes values in Hx
0

.
We now prove that the stated conditions are equivalent. To this end, first note that since
Gx

0

✓ Hx
0

, and Hx
0

is connected due to the connectedness of H, one has Gx
0

= Hx
0

if
and only if Tx(Gx

0

) = Tx(Hx
0

) for all x 2 Gx
0

. Thanks to (4.13) this yields

Gx
0

= Hx
0

() Tx(Gx
0

) = Tx(Hx
0

) for some x 2 Gx
0

. (4.15)

() Tx0(Gx
0

) = Tx0(Hx
0

).
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The latter condition is equivalent to gx
0

= hx
0

. Since h = g+ RA
0

, this holds if and only if
A

0

x
0

2 gx
0

. This proves (ii) () (iii).
To prove (i) =) (ii), let � denote surface area measure on Hx

0

and note that for any
measurable subset U ✓ Hx

0

, one has �(U) > 0 if and only if �(etA0U) > 0, where t 2
R is arbitrary. Fix some t > 0. Since Lemma 4.8 yields Xt 2 etA0Gx

0

, it follows that
�(etA0Gx

0

) > 0 and hence �(Gx
0

) > 0. This in turn implies that there exists some x 2 Gx
0

for which the tangent space Tx(Gx
0

) cannot be a proper subspace of Tx(Hx
0

); that is,
Tx(Gx

0

) = Tx(Hx
0

). Thus (ii) follows by (4.15)
It remains to prove (ii) =) (i). Consider the vector fields Vp given by Vp(x) = Apx,

appearing in the expression (4.8) for the generator G . One has [Vp, Vq](x) = [Ap, Aq]x,
where [Ap, Aq] = ApAq � AqAp. Hörmander’s parabolic condition (see Hörmander (1967),
or Theorem 1.3 in Hairer (2011) for a formulation suited to our current setting) is therefore
equivalent to requiring Tx(Hx

0

) = gx for all x 2 Hx
0

. This holds thanks to the assumption
Hx

0

= Gx
0

. Applying Hörmander’s theorem in each smooth coordinate chart of Hx
0

now
gives the existence of a smooth density.

Corollary 4.10. Let X be the solution to (4.7) with X
0

= x
0

2 S d�1. Then Xt has a
smooth density with respect to surface area measure on S d�1 for all t > 0 if and only if
g = Skew(d).

Example 4.11. As a simple illustration of the distinction between G and H, let d = 4 and
consider the skew-symmetric matrices

A
0

=

0

B

B

@

0 1 0 0
�1 0 0 0
0 0 0 0
0 0 0 0

1

C

C

A

, A
1

=

0

B

B

@

0 0 0 0
0 0 0 0
0 0 0 1
0 0 �1 0

1

C

C

A

.

Then we have A
0

A
1

= A
1

A
0

= 0, so that g = span{A
1

} and h = span{A
0

, A
1

}. Moreover,
e�tA0A

1

etA0 = A
1

, whence the process Z in Lemma 4.8 satisfies dZt = A
1

Zt�dW 1

t . It follows
that (Z3

t )
2+(Z4

t )
2 is constant, showing that Z is confined to a circle embedded in R4, namely

Gx
0

= eRA1x
0

. On the other hand, the process X given by Xt = etA0Zt is not restricted to
any fixed subset of Hx

0

, although for a fixed time t � 0 it necessarily lies in the transformed
circle etA0Gx

0

(we suppose that A
0

x
0

6= 0 to avoid a trivial situation). This is a nullset in
Hx

0

, so a density cannot exist.

By means of a projection argument, Corollary 4.10 can be used to derive conditions that
guarantee the existence of smooth densities for a particular class of polynomial preserving
di↵usions taking values in the ball Bd.

Corollary 4.12. Let X be the solution to (4.2) with X
0

= x
0

2 S d�1 and bB = �1

2

↵. Write

↵ = a
1

a>
1

+ · · ·+ada>d for some vectors a
1

, . . . , ad 2 Rd, and define matrices eAp 2 Skew(d+1)
by

eAp =

✓

Ap 0
0 0

◆

for p = 0, . . . ,m, and eAp =

✓

0 ai
�a>i 0

◆

for p = m+ i, i = 1, . . . , d.

17



Let eg be defined as in (4.12) with Ap replaced by eAp. If eg = Skew(d+ 1), then for all t > 0,
Xt has a density that is smooth on the interior of Bd.

Proof. Let z
0

= (x
0

,
p

1� kx
0

k2) 2 S d, and define the S d-valued process Z as the unique
solution to the SDE

dZt =
⇣

eA
0

dt+ (� dfW 1

t ) eA
1

+ · · · (� dfWm+d
t ) eAm+d

⌘

Zt, Z
0

= z
0

,

where fW = (fW 1, . . . ,fWm+d) is an (m+ d)-dimensional Brownian motion. Let

⇡ : S d ! Rd, (z
1

, . . . , zd, zd+1

) 7! (z
1

, . . . , zd)

be the canonical projection of S d onto Rd, and define X 0 = ⇡(Z). Then X 0 satisfies

dX 0
t = A

0

X 0
t dt+ Zd+1,t

d
X

i=1

ai � dfWm+i
t +

⇣

m
X

p=1

Ap � dfW p
t

⌘

X 0
t.

Moreover, since

dZd+1,t = �
d

X

i=1

a>i X
0
t � dfWm+i

t ,

one has hZd+1

,fWm+iit = �a>i X
0
tdt. Thus, writing the middle term in the above expression

for dX 0
t in Itô form, one obtains

dX 0
t =

✓

A
0

� 1

2
↵

◆

X 0
t dt+ Zd+1,t

d
X

i=1

ai dfW
m+i
t +

⇣

m
X

p=1

Ap � dfW p
t

⌘

X 0
t.

Note that Zd+1,t =
p

1� kX 0
tk2 sign(Zd+1,t). Thus X 0 satisfies an SDE of the form (1.2), and

its generator coincides with that of X. Thus X and X 0 have the same law by Lemma 2.4.
Next, let � be surface area measure on S d. By Corollary 4.10, Zt has a smooth density

pZ(t; z) with respect to � for all t > 0. We claim that this implies that X 0
t has a density,

smooth on the interior of Bd, for every t > 0. Since X and X 0 have the same law, this will
complete the proof of the corollary.

Let S d
+

= {z 2 S d : zd+1

> 0} denote the upper hemisphere of S d. Let µ = �|S d
+
� ⇡�1

be the pushforward under ⇡ of the restriction of � to S d
+

, and recall that one has

µ(dx) = (1� kxk2)�1/2 dx, x 2 Bd.

For any measurable subset A ✓ Bd we compute:

P(X 0
t 2 A) = P(Zt 2 ⇡�1(A)) =

Z

⇡�1
(A)

pZ(t; z)�(dz)

=

Z

S d
+\⇡�1

(A)

�

pZ(t; z1, . . . , zd, zd+1

) + pZ(t; z1, . . . , zd,�zd+1

)
�

�(dz)

=

Z

A

⇣

pZ(t;x,
p

1� kxk2) + pZ(t;x,�
p

1� kxk2)
⌘

µ(dx).
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Thus X 0
t, hence Xt, has a density pX(t;x) given by

pX(t;x) =
⇣

pZ(t;x,
p

1� kxk2) + pZ(t;x,�
p

1� kxk2)
⌘

(1� kxk2)�1/2,

which is smooth on the interior of Bd.

5 Proofs for Section 3

In this section we collect the proofs of the main results in Section 3. In particular, the proof
of Theorem 3.5 relies on results regarding the space K defined in (3.3); we develop these
results in Section 5.2.

5.1 Proof of Theorem 3.3

Recall that we set
�

d
k

�

= 0 for k > d. Consider the linear spaces

D =
n

c : Rd ! Sd : cij 2 Hom
2

for all i, j
o

E =
n

f : Rd ! Rd : fi 2 Hom
3

for all i
o

as well as the linear map T : D ! E defined by (Tc)(x) = c(x)x. Then kerT = C , so we
need to prove that kerT = {cH : H 2 Sd}. We make the following observations.

(i) dimD =
�

d+1

2

�

2

, since each c 2 D is specified by
�

d+1

2

�

independently chosen elements

of Hom
2

, each of which is specified by dimHom
2

=
�

d+1

2

�

independent parameters.

(ii) dimE = d
�

d+2

3

�

, since each f 2 E is specified by d independently chosen elements of

Hom
3

, each of which is specified by dimHom
3

=
�

d+2

3

�

independent parameters.

(iii) dimD � dimE = 2
�

d
4

�

+ 3
�

d
3

�

+
�

d
2

�

. This follows from a direct calculation.

(iv) T is surjective. To see this, fix any i, j, k, l 2 {1, . . . , d}. We need to find c 2 D such
that c(x)x = xixjxkel. One such c is given by c(x) = xi(xjEkl + xkEjl � xlEjk), where
we define Est = ese>t + ete>s .

Since the collection {Dp xx>D>
q +Dq xx>D>

p : 1  p < q  m} is a subset of kerT , the rank-
nullity theorem together with (iii) and (iv) implies (3.4) once we prove that this collection
contains 2

�

d
4

�

+ 3
�

d
3

�

+
�

d
2

�

linearly independent elements. To this end, recall the elementary
skew-symmetric matrices

Sij = eie
>
j � eje

>
i
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appearing in (1.5), and consider the sub-collection

B = {Sij xx
>S>

kl + Skl xx
>S>

ij : 1  i < j < k < l  d}
[{Sik xx

>S>
jl + Sjl xx

>S>
ik : 1  i < j < k < l  d}

[{Sij xx
>S>

ik + Sik xx
>S>

ij : 1  i < j < k  d}
[{Sij xx

>S>
jk + Sjk xx

>S>
ij : 1  i < j < k  d}

[{Sik xx
>S>

jk + Sjk xx
>S>

ik : 1  i < j < k  d}
[{2Sij xx

>S>
ij : 1  i < j  d}.

It contains 2
�

d
4

�

+ 3
�

d
3

�

+
�

d
2

�

elements, which as we now show are linearly independent. For
any i < j, the matrix 2Sij xx>S>

ij is the only matrix in B with x2i appearing in position

(j, j). Moreover, for any i < j < k, Sij xx>S>
jk + Sjk xx>S>

ij is the only matrix in B with

x2j in position (i, k); Sik xx>S>
jk + Sjk xx>S>

ik is the only matrix with x2k in position (i, j);

and Sij xx>S>
ik + Sik xx>S>

ij is the only matrix with x2i in position (j, k). Finally, for any

i < j < k < l, Sij xx>S>
kl+Skl xx>S>

ij is the only matrix in B with xixl in position (j, k); and

Sik xx>S>
jl + Sjl xx>S>

ik is the only matrix with xkxl in position (i, j). These observations
imply that B is a linearly independent set, as claimed. Hence (3.4) is proved.

It remains to show that dimK =
�

d
4

�

. To see this, observe that K is the kernel of the
linear map

Sm ! C , H 7! cH .

By (3.4), this map is surjective, and the dimension of its kernel is

dim Sm � dimC =

✓

m+ 1

2

◆

� 2

✓

d

4

◆

� 3

✓

d

3

◆

�
✓

d

2

◆

=

✓

d

4

◆

,

where the last equality follows from a direct calculation.

5.2 The space K and the Plücker relations

The goal is now to develop a better understanding of the space K in (3.3). The main
outcome is Lemma 5.3 below, which is crucial for the proof of Theorem 3.5. The lemma
shows in particular that the set K can be identified with the Plücker relations from algebraic
geometry.

Let m =
�

d
2

�

= dimSkew(d). Each matrix H = (hpq) 2 Sm can be viewed as a symmetric
linear map on Skew(d), acting on matrices A = (aij) 2 Skew(d) by the formula

H[A]ij =
X

k<l

h⇡(i,j),⇡(k,l)akl, i < j,

with the remaining components of H[A] given by skew-symmetry. Here the map ⇡ lists
strictly upper-triangular matrix elements in lexicographic order,

(i, j) (1, 2) (1, 3) (1, 4) · · · (1, d) (2, 3) · · · (2, d) · · · (d� 1, d)

⇡(i, j) 1 2 3 · · · d� 1 d · · · 2d� 3 · · · m =
�

d
2

�
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The symmetry property hA,H[B]i = hH[A], Bi is immediate from the symmetry of H as
a matrix. Using this notation, the biquadratic form corresponding to an element cH 2 C ,
where H 2 Sm, can be expressed as

y>cH(x)y =
1

2
hA,H[A]i where A = xy> � yx>. (5.1)

This follows from (3.2) using that x>D⇡(i,j)y = xiyj � xjyi. Together with Lemma 5.1 below
this immediately yields

K = {K 2 Sm : hA,K[A]i = 0 for all A 2 Skew(2, d)} . (5.2)

In particular, this shows that C ⇠= Sm/K can be identified with the set of restrictions to
Skew(2, d) of quadratic forms on Skew(d).

Lemma 5.1. Let A 2 Skew(d). Then rankA = 2 if and only if A = xy> � yx> for some
linearly independent x, y 2 Rd.

Proof. Only the necessity needs proof, so pick A 2 Skew(2, d). Any rank-two matrix A can
be written A = xx>A + yy>A, where {x, y} is an orthonormal basis for the range of A.
By skew-symmetry of A, we have A>x = �y and A>y = ��x, where � = x>Ay. Thus
A = (�x)y> � y(�x)>, which is of the stated form.

For each ordered 4-tuple i < j < k < l of indices from {1, . . . , d}, define a polynomial
Pijkl in the entries of A 2 Skew(d) by

Pijkl(A) = aijakl � aikajl + ailajk.

These polynomials generate the variety of rank-two skew-symmetric matrices: all Pijkl vanish
at a nonzero A 2 Skew(d) if and only if rankA = 2. Moreover, they constitute a basis for
the homogeneous ideal generated by this variety: any homogeneous polynomial vanishing
on Skew(2, d) is a polynomial linear combination of the Pijkl. The classical use of this fact
is to give the Grassmannian manifold of two-dimensional subspaces of Rd the structure of
a projective variety. This is achieved via the Plücker embedding, which maps a subspace
V = span{x, y} of Rd to A = xy> � yx> 2 Skew(d). Note that, up to scaling, A only
depends on V , not on the choice of spanning vectors x and y. Conversely, any A 2 Skew(2, d)
corresponds to a unique two-dimensional subspace V ⇢ Rd due to Lemma 5.1. The entries
aij of A are called the Plücker (or Grassmann) coordinates of V , and the quadratic equations
Pijkl(A) = 0 that they satisfy are called the Plücker relations. For us, the relevant result is
the following:

Lemma 5.2. The polynomials Pijkl have the following properties:

(i) Skew(2, d) = {A 2 Skew(d) \ {0} : Pijkl(A) = 0 for all i < j < k < l}.

(ii) Let P (A) be a homogeneous polynomial in the entries of A 2 Skew(d). Then P (A) = 0
for all A 2 Skew(2, d) if and only if it is of the form

P (A) =
X

i<j<k<l

Qijkl(A)Pijkl(A)

for some polynomials Qijkl.
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Proof. Keeping in mind the identification of Skew(2, d) with the set of two-dimensional sub-
spaces as above, part (i) follows from Theorem II on page 312 in Hodge et al. (1994), and
part (ii) follows from Theorem I on page 315 in the same reference.

The following lemma is the primary reason for studying K in such detail; it is a crucial
ingredient in the proof of Theorem 3.5. In particular, it shows that the set K can be identified
with the Plücker relations.

Lemma 5.3. The set K can be identified with the linear span of the polynomials Pijkl,
i < j < k < l. Moreover, one has

Skew(2, d) = {A 2 Skew(d) \ {0} : hA,K[A]i = 0 for all K 2 K } . (5.3)

Proof. Lemma 5.2(ii) together with (5.2) implies that K 2 K holds if and only if the poly-
nomial P (A) = hA,K[A]i is a linear combination of the Pijkl(A). The latter polynomials
can therefore be identified with a basis for K . It follows that the right-hand side of (5.3)
is equal to {A 2 Skew(d) \ {0} : Pijkl(A) = 0 for all i < j < k < l}. This, in turn, is equal to
Skew(2, d) by Lemma 5.2(i).

Remark 5.4. The identification of K with the linear span of the polynomials Pijkl leads to
an explicit description of a basis for K . Indeed, one has

Pijkl(A) =
1

4
hA,K

(i,j,k,l)[A]i,

where K
(i,j,k,l) is the linear map on Skew(d) characterized by

K
(i,j,k,l)[A]ij = akl

K
(i,j,k,l)[A]ik = �ajl

K
(i,j,k,l)[A]il = ajk

K
(i,j,k,l)[A]jk = ail

K
(i,j,k,l)[A]jl = �aik

K
(i,j,k,l)[A]kl = aij

K
(i,j,k,l)[A]rs = 0 if {r, s} 6✓ {i, j, k, l}.

The collection of all such K
(i,j,k,l) for i < j < k < l thus constitutes a basis for K . Note that

there are
�

d
4

�

ways of choosing the indices i, j, k, l, which is in agreement with the dimension
of K as given in Theorem 3.3.

5.3 Proof of Theorem 3.5(i)

A preliminary result is required for the proof of Theorem 3.5(i). Recall that an a�ne subspace
of a vector space is a subset A such that x, y 2 A , � 2 R implies �x + (1 � �)y 2 A . If
A is an a�ne subspace and x 2 A , then A � x is a linear subspace that does not depend
on x. The dimension of A is the dimension of A �x. The following result is Theorem 1.1 in
Barvinok (2001); see Theorem 1.3 and its reformulation (2.2) in Barvinok (1995) for a proof.

22



Lemma 5.5. Let A ⇢ Sm be an a�ne subspace such that the intersection A \Sm
+

is nonempty
and codimA 

�

r+2

2

�

� 1 for some r 2 N. Then there exists some B 2 A \ Sm
+

with
rankB  r.

We now proceed with the proof of Theorem 3.5(i). We need to show that, for any H 2 Sm,

y>cH(x)y � 0 for all x, y 2 Rd implies (H + K ) \ Sm
+

6= ;. (5.4)

Indeed, then any cH 2 C
+

is equal to cH+K for some K 2 K such that H +K 2 Sm
+

.
We prove the contrapositive. Thus, consider any H 2 Sm such that (H + K ) \ Sm

+

= ;.
We need to prove that y>cH(x)y < 0 for some (x, y) 2 Rd ⇥ Rd. The separating hyperplane
theorem gives some B 2 Sm such that hC,Bi � 0 for all C 2 Sm

+

and hH +K,Bi < 0 for all
K 2 K . The former inequality yields B 2 Sm

+

by self-duality of Sm
+

. The latter inequality
yields hK,Bi = 0 for all K 2 K , since otherwise hH + tK,Bi would become positive for
some K 2 K and some su�ciently large t. Thus, after scaling B if necessary, we have
B 2 K ? \ Sm

+

and hH,Bi = �1. Hence A \ Sm
+

6= ; for the a�ne subspace

A =
n

C 2 Sm : C 2 K ? and hC,Hi = �1
o

.

Note that A � B = {C 2 Sm : C 2 K ? and hC,Hi = 0}. Our initial assumption excludes
H 2 K , since otherwise we would have 0 2 (H + K ) \ Sm

+

. Thus codimA = 1 + dimK ,
so that codimA = 2 for d = 4, and codimA = 1 for d 2 {2, 3}. In either case, codimA 
�

3

2

�

� 1. Applying Lemma 5.5 with r = 1 then yields a rank-one matrix zz>, z 2 Rm \ {0},
in the intersection A \ Sm

+

. In particular, z>Kz = 0 for all K 2 K . Identifying z with the
skew-symmetric matrix A whose entries are given by aij = z⇡(i,j) for i < j, this says that

hA,K[A]i = 0 for all K 2 K . Thus rankA = 2 by Lemma 5.3, whence A = xy> � yx>

for some x, y 2 Rd by Lemma 5.1. Consequently, (5.1) yields y>cH(x)y = hA,H[A]i/2 =
z>Hz = hzz>, Hi = �1, as required. Theorem 3.5(i) is proved.

5.4 Proof of Theorem 3.5(ii)

We will use the construction given in László (2010) to obtain an example for d = 6. In order
to make the presentation self-contained, we summarize the construction here. Note that it
su�ces to consider the case d = 6. Indeed, suppose f(x

1

, . . . , x
6

, y
1

, . . . , y
6

) is a nonnegative
biquadratic form in 6 + 6 variables vanishing on the diagonal that is not a sum of squares.
For d > 6, define

g(x, y) = f(x
1

, . . . , x
6

, y
1

, . . . , y
6

).

The left-hand side is then a nonnegative biquadratic form in d+ d variables vanishing on the
diagonal that is not a sum of squares.

From now on we thus take d = 6 and hence m = 15. In view of Lemma 3.4 we must find
H 2 S15 such that y>cH(x)y � 0 for all x, y, but at the same time

(H + K ) \ S15
+

= ;; (5.5)

in other words, we must find a counterexample to (5.4). A candidate H is obtained from the
inequality

2(kXk2kY k2 � Tr(X>Y )2)� kXY � Y Xk2 � 0, (5.6)
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which is valid for any d⇥ d matrices X and Y ; see for instance Böttcher and Wenzel (2008,
Theorem 2.2). Here kXk =

p

Tr(X>X) is the Frobenius norm. Note also that the left-hand
side defines a biquadratic form vanishing on the diagonal. Consider now the special case
where for x, y 2 R6,

X =

0

@

x
1

x
2

x
3

0 x
6

x
4

0 0 x
5

1

A , Y =

0

@

y
1

y
2

y
3

0 y
6

y
4

0 0 y
5

1

A .

As in Section 5.2 we use the notation

A = xy> � yx>.

One then easily verifies the identities 2(kXk2kY k2�Tr2(X>Y )) = kAk2 and kXY �Y Xk2 =
(a

12

+ a
26

)2+(a
45

� a
46

)2+(a
13

+ a
24

+ a
35

)2. Furthermore, Lemma 5.2(i) yields P
1234

(A) =
P
2345

(A) = 0. In view of (5.6) it follows that the function

f(x, y) = kAk2 � (a
12

+ a
26

)2 � (a
45

� a
46

)2 � (a
13

+ a
24

+ a
35

)2 � P
1234

(A)� P
2345

(A)

is a nonnegative biquadratic form vanishing on the diagonal. The correspondence established
in (5.1) then yields

f(x, y) = y>cH(x)y,

where the matrix H 2 S15 can be found to be

H =
1

2

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

2 0 0 0 0 0 0 0 �2 �1 0 0 0 0 0
0 2 0 0 0 0 �1 0 0 0 �2 0 0 0 0
0 0 4 0 0 �1 0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
0 0 �1 0 0 4 0 0 0 0 0 0 �1 0 0
0 �1 0 0 0 0 2 0 0 0 �1 0 0 0 0
0 0 0 0 0 0 0 4 0 �1 0 0 0 0 0
�2 0 0 0 0 0 0 0 2 0 0 0 0 0 0
�1 0 0 0 0 0 0 �1 0 4 0 0 0 0 0
0 �2 0 0 0 0 �1 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 �1 0 0 0 0 0 0 2 2 0
0 0 0 0 0 0 0 0 0 0 0 0 2 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

The characteristic polynomial of H is given by

det(s Id�H) = 2�5(s� 2)7 (2s2 � 2s� 1) (4s3 � 16s2 + 14s+ 1)2.

Here 2s2 � 2s � 1 has one single negative root � = (1 �
p
3)/2. Moreover, the polynomial

�(s) = 4s3�16s2+14s+1 has one single negative root µ, since �(0) = 1 > 0, �(2) = �3 < 0,
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lims!1 �(s) = 1, and lims!�1 �(s) = �1. We now define the three vectors

v
1

=
1

2
e
2

� � e
7

+
1

2
e
11

v
2

=
µ

2
e
3

+ µ(2� µ) e
6

+
1

2
(µ� 1) e

13

+
1

2
e
14

v
3

=
1

2
(1� µ) e

1

� µ

2
e
8

+
1

2
e
9

+ µ(µ� 2) e
10

,

where ei denotes the ith canonical basis vector in R15. A calculation shows that v
1

is an
eigenvector of H corresponding to the eigenvalue �, and v

2

, v
3

are linearly independent
eigenvectors of H corresponding to the eigenvalue µ. We now define the positive semidefinite
matrix

B = �v
1

v>
1

+ v
2

v>
2

+ v
3

v>
3

,

where � = µ(µ� 2)(2µ� 1)/� > 0. This matrix satisfies

hH,Bi = Tr(HB) = ��kv
1

k2 + µkv
2

k2 + µkv
3

k2 < 0. (5.7)

In addition, by considering each of the
�

6

4

�

= 15 basis elements K
(i,j,k,l) of K described in

Remark 5.4, one can check by direct computation that

hK,Bi = 0 for all K 2 K . (5.8)

Since B is nonzero and positive semidefinite, (5.7) and (5.8) imply (5.5). This completes the
proof of Theorem 3.5(ii).

Remark 5.6. The condition (5.5) and its relation to sum of squares representations can also
be expressed via the following primal-dual pair of semidefinite programs:

v(P ) = min
B2Sm

{hH,Bi : B ⌫ 0, hId, Bi = 1, hK,Bi = 0 for all K 2 K } (5.9)

v(D) = max
�2R
K2K

{� : H � �Id +K ⌫ 0} . (5.10)

Note that v(D) � 0 if and only if (H + K ) \ S15
+

6= ;. Moreover, weak duality v(D)  v(P )
always holds. Indeed, for any primal feasible solution B and dual feasible solution (�,K) one
has 0  hB,H��Id+Ki = hH,Bi��. Thus, for a given candidate c = cH , a primal feasible
solution B with hH,Bi < 0 provides a certificate that no sum of squares representation can
exist. Furthermore, (5.7) and (5.8) imply that the matrix B/Tr(B) is thus a feasible solution
to the primal problem (5.9) with negative value, and hence certifies that no sum of squares
representation can exist.
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Remark 5.7. One can write down the component functions of the resulting map c = cH :

c
11

(x) = x2
2

+ x2
3

+ 2x2
4

+ 2x2
5

+ 2x2
6

c
33

(x) = x2
1

+ 2x
1

x
5

+ 2x2
2

+ 2x2
4

+ x2
5

+ 2x2
6

c
12

(x) = �x
1

x
2

� x
2

x
6

� x
3

x
4

c
34

(x) = �x
1

x
2

+ x
2

x
5

� 2x
3

x
4

c
13

(x) = �x
1

x
3

� x
3

x
5

c
35

(x) = �x
1

x
3

� x
3

x
5

c
14

(x) = x
2

x
3

� 2x
1

x
4

c
36

(x) = �2x
3

x
6

c
15

(x) = �2x
1

x
5

+ x2
3

c
44

(x) = 2x2
1

+ x2
2

+ 2x2
3

+ x2
5

+ 2x
5

x
6

+ x2
6

c
16

(x) = �2x
1

x
6

+ x2
2

c
45

(x) = �x
2

x
3

� x
4

x
5

� x
4

x
6

c
22

(x) = x2
1

+ 2x
1

x
6

+ 2x2
3

+ x2
4

+ 2x2
5

+ x2
6

c
46

(x) = �x
4

x
5

� x
4

x
6

c
23

(x) = x
1

x
4

� 2x
2

x
3

� x
4

x
5

c
55

(x) = 2x2
1

+ 2x2
2

+ x2
3

+ x2
4

+ 2x2
6

c
24

(x) = �x
2

x
4

c
56

(x) = x2
4

� 2x
5

x
6

c
25

(x) = x
3

x
4

� 2x
2

x
5

c
66

(x) = 2x2
1

+ x2
2

+ 2x2
3

+ x2
4

+ 2x2
5

c
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(x) = �x
1

x
2

� x
2

x
6
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D. Ackerer, D. Filipović, and S. Pulido. The Jacobi stochastic volatility model. Working
paper, 2015.

D. Bakry, S. Orevkov, and M. Zani. Orthogonal polynomials and di↵usion operators.
arXiv:1309.5632v2, 2014.

Dominique Bakry. Symmetric di↵usions with polynomial eigenvectors. In Stochastic Analysis
and Applications 2014, volume 100 of Springer Proceedings in Mathematics & Statistics,
pages 25–49. Springer International Publishing, 2014.

Alexander Barvinok. A remark on the rank of positive semidefinite matrices subject to a�ne
constraints. Discrete & Computational Geometry, 25(1):23–31, 2001.

Alexander I. Barvinok. Problems of distance geometry and convex properties of quadratic
maps. Discrete & Computational Geometry, 13(1):189–202, 1995.
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