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Travis Fisher† Sergio Pulido‡ Johannes Ruf§

November 13, 2015

Abstract

Financial models are studied where each asset may potentially lose value relative to any other. To this
end, the paradigm of a pre-determined numéraire is abandoned in favour of a symmetrical point of view
where all assets have equal priority. This approach yields novel versions of the Fundamental Theorems
of Asset Pricing, which clarify and extend non-classical pricing formulas used in the financial commu-
nity. Furthermore, conditioning on non-devaluation, each asset can serve as proper numéraire and a
classical no-arbitrage condition can be formulated. It is shown when and how these local conditions can
be aggregated to a global no-arbitrage condition.

Keywords: Defaultable numéraire; Devaluation; Fundamental Theorem of Asset Pricing; Non-classical
pricing formulas.
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1 Introduction

Classical models of financial markets are built of a family of stochastic processes describing the random
dynamics throughout time of the underlying assets’ prices in units of a pre-specified numéraire. Such a
numéraire, often also interpreted as money market account, is an asset that cannot devaluate. In this paper
we cover the case when there are multiple financial assets, any of which may potentially lose all value
relative to the others. Thus, none of these assets can serve as a proper numéraire. We shift away from
having a pre-determined numéraire to a more symmetrical point of view that does not prioritize any of
the assets. The symmetry not only improves the aesthetics of the no-arbitrage theory, but also clarifies
non-classical pricing formulas for contingent claims written on these assets.

Pricing models for contingent claims that allow for the devaluation of the underlying assets are ample.
For example, they appear naturally in credit risk. In the terminology introduced by Schönbucher (2003,
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2004) such assets are called defaultable numéraires.1 Jarrow and Yu (2001), Collin-Dufresne et al. (2004),
and Jamshidian (2004) are further examples of this literature. Financial models for foreign exchange yield
another source of assets that might devaluate due to the possibility of hyperinflation occurring; see, for
example, Câmara and Heston (2008), Carr et al. (2014), and Kardaras (2015).

Another class of models that has drawn much attention involves strict local martingale dynamics for
the asset price processes; see, for example, Sin (1998) and Heston et al. (2007). Often such models are
particularly chosen as they can be interpreted as bubbles (Protter (2013)) or they are easily analytically
tractable (Hulley and Platen (2012), Carr et al. (2013)). Both practitioners (Lewis (2000), Paulot (2013))
and academics (Cox and Hobson (2005), Madan and Yor (2006)) suggest non-classical pricing formulas
for contingent claims in such models in order to be consistent with market prices. In this paper, we argue
that strict local martingale dynamics are consistent with the interpretation that the corresponding numéraire
devaluates. This point of view then allows us to interpret the correction term in the pricing formula of Lewis
(2000) as the value of the contingent claim’s payoff in the scenarios where the numéraire devaluates. Thus,
the pricing formulas of Lewis (2000), Madan and Yor (2006), Paulot (2013), or Kardaras (2015) arise as
special cases of this paper’s framework.

This paper’s contributions can now be summarized in three points:

1. It provides a formulation of the First and Second Fundamental Theorem of Asset Pricing and of
the superreplication duality in the case that any asset may devaluate with respect to any other. The
formulation is symmetric in the sense that none of the assets is prioritized.

2. It provides an interpretation of strict local martingale models, which can arise by fixing a numéraire
that has positive probability to default. Non-classical pricing formulas, restoring put-call parity, can
then be economically justified and extended.

3. Assume, for the moment, that for each asset there exists a probability measure under which the
discounted prices (with the corresponding asset as numéraire) are local martingales (or, even, su-
permartingales). These measures need not be equivalent. By introducing the notion of numéraire-
consistency, this paper shows when these measures can be aggregated to an arbitrage-free pricing
operator that takes all events of devaluations into account.

In Section 2, we introduce the framework. We consider a model for d assets. For convenience of
terminology, we will call these assets “currencies,” but really these could represent any asset of non-negative
value. We denote the value of one unit of the j:th currency, measured in terms of the i:th currency, as Si,j .
We model the full matrix (Si,j)i,j of these exchange rates. This is redundant, but convenient, because the
matrix of exchange rates is precisely the concept that gives symmetry to our results. If the j:th currency has
devaluated with respect to the i:th currency at time t we have Si,j(t) = 0 and Sj,i(t) = ∞. In this case,
the j:th currency cannot be used as a numéraire, and the standard results of mathematical finance in units of
this currency do not apply. Nevertheless, considering all currencies simultaneously shall allow us to derive
Fundamental Theorems of Asset Pricing with a symmetric formulation.

In Section 3, these versions of the Fundamental Theorems of Asset Pricing are stated and the corre-
sponding superreplication duality is derived. These results widen the already existent bridge between the
mathematics and the finance by covering cleanly and symmetrically the case when there are multiple fi-
nancial assets, any of which may potentially lose all value relative to the others. The First Fundamental
Theorem states that the symmetric version of the condition of No Free Lunch with Vanishing Risk for al-
lowable trading strategies holds if and only if there is a martingale valuation operator. Hence, in this

1The term “defaultable numéraire” sometimes appears in the credit risk literature with a different meaning, namely to describe
assets with strictly positive but not measurable price processes; for example, Bielecki et al. (2004) use this definition. In this paper,
however, a defaultable numéraire is an asset whose price has positive probability to become zero, as in Schönbucher (2003, 2004).
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framework, the dual objects are no longer local martingale measures for the prices quoted in terms of the
pre-specified numéraire, but martingale valuation operators. These operators, which are defined in an ax-
iomatic and economically meaningful way, provide in a vectorized fashion the prices of contingent claims
quoted in terms of all the currencies.

In Section 4, martingale valuation operators are related to families of numéraire-consistent probabil-
ity measures. Each of these measures corresponds, in a certain sense, to fixing a specific currency as the
underlying numéraire. We call disaggregation the step that constructs this family of numéraire-consistent
probability measures from a martingale valuation operator. We call aggregation the reverse step, namely
taking a possibly non-equivalent family of probability measures, corresponding to the different currencies
as numéraires, and constructing a martingale valuation operator from it. Embedding a strict local martingale
model in a family of numéraire-consistent probability measures and then aggregating this family to a mar-
tingale valuation operator yields the non-classical pricing formulas of Lewis (2000), Madan and Yor (2006),
Paulot (2013), and Carr et al. (2014). This point of view has two advantages. First of all, it yields generic
pricing formulas for any kind of contingent claim. These formulas are consistent with the above-mentioned
non-classical pricing formulas, which are usually only provided for specific claims. Secondly, it gives an
economic interpretation to the lack of martingale property as the possibility of a default of the underlying
numéraire.

Finally, Section 5 contains the proofs of the main results. The symmetric approach, insisting in quoting
prices in terms of the primitive underlying assets and not giving priority to any of them, leads in a natural way
to consider the basket asset – the portfolio consisting of one unit of each currency – as a proper numéraire.
The proofs of the main results are based on this observation – see also Delbaen and Shirakawa (1996) and,
most importantly, Yan (1998).

We point out the recent work of Tehranchi (2014), who considers an economy where prices quoted in
terms of a given non-traded currency are not necessarily positive. Relative prices between the assets are not
studied. Instead, Tehranchi (2014) focuses on different arbitrage concepts taking into consideration that the
agent might not be able to substitute today’s consumption by tomorrow’s consumption.

Empirical evidence for devaluations in foreign exchange

We now briefly provide some empirical evidence for devaluations of currencies motivating the use of models
that contain such events. Cagan (1956) defines a hyperinflation as a price index increase by 50 percent or
more within a month. Such an economic event basically corresponds to a complete devaluation of the
corresponding numéraire.

In the past century, there have been several examples for such extreme price increases. At the beginning
of the the 1920s, hyperinflations happened, among others, in Austria, Germany and Poland. For example,
the price of one Dollar, measured in units of the respective domestic currency, went up by a factor of over
4500 in Austria from January 1919 to August 1922 and by a factor of over 1010 from January 1922 to
December 1923 in Germany; these and many more facts concerning the hyperinflations following World
War 1 can be found in Sargent (1982). Hungary experienced one of the most extreme hikes in prices from
August 1945 to July 1946. Prices soared by a factor of over 1027 in that 12-month period to which the
month of July contributed a staggering raise of 4 ∗ 1016 percent of prices; see Cagan (1987) and Romer
(2001). Sachs (1986) discusses another hyperinflation in Bolivia from August 1984 to August 1985. In
this period, price levels increased by 20, 000 percent. More recently, price levels of Zimbabwe increased
dramatically; for instance, prices there increased by an annualized inflation rate of over 2 ∗ 108 percent
in July 2008.2 These are only some of the more famous occurrences of hyperinflation in the last century;
others have happened, for example, in China, Greece and Argentina; a more complete list can be found on

2See http://news.bbc.co.uk/1/hi/world/africa/7660569.stm, retrieved August 5, 2015.
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Wikipedia3. In this context, Frankel (2005) studies 103 developing countries between 1971 and 2003 and
finds 188 currency crashes, which are devaluations of a currency by at least 25 percent within a 12-month
period.

Notation

Throughout the paper we fix a deterministic time horizon T > 0 and consider an economy with d ∈ N
traded assets, called “currencies.” To reduce notation, we shall use the generic letter t for time and abstain
from using the qualifier “∈ [0, T ].” We shall also use the generic letters i, j, k for the currencies and again
abstain from using the qualifier “∈ {1, · · · , d}.” For example, we shall write “

∑
i” to denote “

∑d
i=1.” When

introducing a process X = (X(t))t∈[0,T ], we usually omit “= (X(t))t∈[0,T ].” If v ∈ Rd, we understand
inequalities of the form v ≥ 0 componentwise. For a matrix Γ ∈ Rd×d, we shall denote by Γi the i:th row
of Γ. Moreover, we use the convention inf ∅ = ∞ and we denote the cardinality of a countable set A by
|A|. Furthermore, we emphasize that a product xy of two numbers x, y ∈ [0,∞] is always defined except if
either (a) x = 0 and y =∞ or (b) x =∞ and y = 0.

We fix a filtered space (Ω,F(T ), (F(t))t), where the filtration (F(t))t is assumed to be right-continuous
and F(0) to be trivial. In the absence of a probability measure, all statements involving random variables
or events are supposed to hold pathwise for all ω ∈ Ω. For an event A ∈ F(T ), we set 1A(ω) ×∞ and
1A(ω) × (−∞) to∞ and −∞, respectively, for all ω ∈ A and to 0 for all ω /∈ A. Let us now consider a
probability measure Q on (Ω,F(T )). We write EQ for the corresponding expectation operator and EQ

t for
the conditional expectation operator, given F(t), for each t. If Y = (Yi)i is a d–dimensional process we say
that Y is a Q–(semi / super) martingale if Yi is a Q–(semi / super) martingale for each i. For a real-valued
semimartingale X with X(0) = 0 we write E(X) to denote its stochastic exponential; that is,

E(X) = eX−[X]c/2
∏
s≤·

(1 + ∆Xs)e
−∆Xs

where ∆X = X −X− and [X]c denotes the continuous part of the quadratic variation of X .

2 Framework

This section introduces the concept of exchange matrices to represent prices of the underlying currencies and
the related concept of value vectors to describe prices of contingent claims with the currencies as underlying.
Then, in Subsection 2.2, we define trading strategies and the no-arbitrage condition of No Free Lunch with
Vanishing Risk. This is straightforward but necessary since we have not assumed that any currency is a
proper numéraire. Finally, in Subsection 2.3, we define martingale valuation operators, which will play the
role of risk-neutral probability measures.

2.1 Exchange matrices and value vectors

We put ourselves in an economy that is characterized by the price processes of d currencies relative to each
other via an [0,∞]d×d–valued, right-continuous, (F(t))t–adapted process S = (Si,j)i,j . Here, the process
Si,j denotes the price process of the j:th currency in units of the i:th currency. We also refer to Večeř (2011),
where a similar point of view is taken. In order to simplify the analysis below we assume that interest rates
are zero. Alternatively, we might interpret Si,j(t) as the price of one unit of the j:th money market in terms
of units of the i:th money market at time t, for each i, j, and t.

3See http://en.wikipedia.org/wiki/Hyperinflation, retrieved August 5, 2015.
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In order to provide an economic meaning to the matrix-valued process S we shall assume that it satisfies
certain consistency conditions. Formally, we assume that S(t) is an exchange matrix for each t, in the sense
of the following definition:

Definition 2.1 (Exchange matrix). An exchange matrix is a d × d-dimensional matrix s = (si,j)i,j taking
values in [0,∞]d×d with the property that si,i = 1 and si,jsj,k = si,k for all i, j, k, whenever the product is
defined.

Note that the definition implies, in particular, that an exchange matrix s also satisfies that si,j = 0 if
and only if sj,i = ∞ for all i, j. The consistency conditions of Definition 2.1 guarantee the following: for
fixed i, j, k, an investor who wants to exchange units of the i:th currency into units of the k:th currency
is indifferent between exchanging directly si,k units of the i:th currency into the k:th currency or, instead,
going the indirect way and first exchanging the appropriate amount of units of the i:th currency into the j:th
currency and then exchanging those units into the k:th currency.

As long as no asset has defaulted, that is, as long as all entries in an exchange matrix s are strictly
positive, s is said to have the triangle property; see, for example, Barrett (1979). The associated properties
of such matrices, however, will not be further relevant for us.

For each t, we define the index set of “active currencies”

A(t) =

i :
∑
j

Si,j(t) <∞

 .

If i ∈ A(t) for some t then the i:th currency is not devaluated against any other currency. Note that
Si,j(t) = 0 for all i ∈ A(t) and j /∈ A(t), for each t. To wit, if a currency is devaluated with respect
to another “active” currency, the consistency conditions of Definition 2.1 guarantee that that currency is
also devaluated with respect to any other “active” currency. For sake of notational simplicity only, we shall
assume that A(0) = {1, · · · , d}; that is, at time 0 no currency is devaluated.

Remark 2.2 (Existence of a strong currency). We always have A(t) 6= ∅ for each t. More precisely, if s is
an exchange matrix, there exists i such that si,j ≤ 1 for all j. To see this, we define, on the set of indices
{1, . . . , d}, a total preorder as follows: j � k if and only if sj,k ≥ 1, that is, if and only if the k:th currency
is “stronger” than the j:th currency. The consistency conditions of Definiton 2.1 guarantee that this is a
total preorder. Since the set of indices is finite, there exists a (not necessarily unique) maximal index i
corresponding to the “strongest” currency. For such an index i we have si,j ≤ 1 for all j.

We are interested in additional assets in the economy besides the d currencies and in their relative
valuation with respect to those currencies. Towards this end, we introduce the notion of value vector:

Definition 2.3 (Value vector for exchange matrix). A value vector for an exchange matrix s is a d-dimensional
vector v = (vi)i taking values in [−∞,∞]d with the property that si,jvj = vi for all i, j, whenever the prod-
uct is defined.

A value vector encodes the price of an asset in terms of the d currencies. More precisely, the i:th
component describes how many units of the i:th currency are required to obtain one unit of that specific
asset. The consistency condition in Definition 2.3 guarantees again that an investor who wants a unit of the
new asset does not prefer to first exchange her currency into another one in order to obtain that asset.

Remark 2.4 (Value vectors exist and are essentially unique). If s is an exchange matrix, j is a non-devaluated
currency, that is,

∑
i sj,i < ∞, and v̂ ∈ [−∞,∞] \ {0} denotes the price of an asset in terms of the j:th

currency then there exists always a unique value vector v ∈ [−∞,∞]d with vj = v̂. Indeed, we may always
set vi = si,j v̂ for all i. If v̂ = 0 then we could set vi = 0 for all i and note that there might exist other value
vectors ṽ with ṽj = v̂.
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We use the following numéraire-independent notation, introduced for each t, for sets ofF(t)–measurable
contingent claims:

Ct =

{
C : C is an F(t)–measurable value vector for S(t) such that

there exists K > 0 with Ci ≥ −K
∑
j

Si,j(t) for all i

}
; (1)

Dt = Ct ∩
(
−Ct

)
.

Thus, for each t, the set Ct corresponds to the family of F(t)–measurable value vectors whose payoff is
bounded from below by a multiple of the basket value, uniformly across all scenarios ω ∈ Ω. Similarly,
for each t, the set Dt corresponds to the family of F(t)–measurable value vectors whose payoff is bounded
from below and from above by a multiple of the basket value.

For all i we denote by I(i)(·) the value vector corresponding to the value of one unit of the i:th currency
at time t in terms of the other currencies:

I(i)(·) = (Sj,i(·))j . (2)

Remark 2.5 (Examples of value vectors in Dt). Note that, for each i and t, the value vector I(i)(t), given
in (2), belongs toDt. In other words, all value vectors associated to the relative prices of the traded currencies
belong to Dt for each t. This implies, for instance, that also the value vectors corresponding to call and put
payoffs with maturity t written on these currencies belong to Dt.

2.2 Dynamic trading and the concept of no-arbitrage

We start by introducing some helpful notation. For an Rd–valued process h = (hi)i we let V h = (V h
i )i

denote the process given by
V h
i (t) =

∑
j

hj(t)Si,j(t) (3)

for all i ∈ A(t) and t. When i /∈ A(t), by using Remark 2.2, we can define V h
i (t) as in Remark 2.4.

As already pointed out there, V h(t) is not necessarily the unique value vector such that (3) holds for all
i ∈ A(t). Note that V h is progressively measurable if h is. Here, we interpret hi(t) as the number of units
of the currency an investor holds at time t for each i and V h(t) as the value of the corresponding position,
relative to all d currencies, for each t.

We are interested in continuous, self-financing trading and the associated wealth process. These concepts
require the notation of stochastic integrals which again require an underlying probability measure along with
the semimartingale property of the currencies. Towards this end, we now formulate the precise assumption
that allows us to connect self-financing trading strategies with the associated wealth processes.

Definition 2.6 (PSmg). We say that a probability measure P on (Ω,F(T )) satisfies (PSmg) if there ex-
ists a sequence (Ai)i of events with

⋃
iAi = Ω such that P(Ai) > 0 and Si is a (d–dimensional) Pi–

semimartingale for each i, where Pi(·) = P(·|Ai); that is Pi is the probability measure P, conditioned on
the event Ai.

Assume for a moment that we are given a probability measure P that satisfies (PSmg). Under the
probability measure Pi the i:th currency does not devaluate against any other currency since Si is a semi-
martingale and therefore, in particular, Rd–valued, for each i. Alternatively, the probability measure Pi
satisfies Pi(

⋂
t{i ∈ A(t)}) = 1. Thus, the i:th currency can be used as a numéraire under the probability
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measure Pi. Observe also that Pi is in general only absolutely continuous with respect to P for each i but P
and

∑
i Pi/d are equivalent.

The property (PSmg) now allows the introduction of the self-financing property in terms of stochastic
integration. To this end, for a probability measure Q and an Rd–valued Q–semimartingale X we write
L(X,Q) to denote the space of Rd–valued predictable processes h such that the (vector) stochastic integral
h ·Q X is well-defined, Q–almost surely.

Definition 2.7 (P–trading strategy and P–allowable strategy). Assume that a given probability measure P
on (Ω,F(T )) satisfies (PSmg). A predictable Rd–valued process h is called a P–trading strategy if h ∈
L(Si,Pi) and the self-financing condition holds, that is, V h

i − V h
i (0) = h ·Pi Si, Pi–almost surely, for each

i.
We say that the P–trading strategy h is P–allowable if there exists δ > 0 such that Vi(t) ≥ −δ

∑
j Si,j(t)

for all i and t, P–almost surely.

Remark 2.8 (Allowability and admissibility). We emphasize that the standard setup, see, for instance, Del-
baen and Schachermayer (1994), focuses on the notion of P–admissible strategies instead of P–allowable
strategies. However, the notion of admissibility depends strongly on a choice of numéraire, while the notion
of allowability, studied by Yan (1998), treats all currencies equally important, and thus, is more suited for
our approach. See also Ruf (2013) for more comments on this topic.

We are now ready to provide an important notion of no-arbitrage.

Definition 2.9 (NFLVR for P–allowable strategies). Assume that a given probability measure P on (Ω,F(T ))
satisfies (PSmg). We say that S satisfies No Free Lunch with Vanishing Risk (NFLVR) for P–allowable
strategies if for any sequence of P–allowable strategies (h(n))n∈N with V h(n)(0) ≤ 0 and such that there
exists a sequence of P–almost surely bounded random variables (ξ(n))n∈N satisfying

V h(n)

i (T ) ≥ ξ(n)
∑
j

Si,j(T )

for all i ∈ A(T ), P–almost surely, the following conclusion holds. If there exists a random variable ξ ≥ 0
such that limn↑∞ ess sup |ξ(n) − ξ| = 0 then P(ξ = 0) = 1.

We now introduce the notion of an obvious devaluation and argue afterwards that such an obvious
devaluation cannot occur if the exchange process S satisfies (NFLVR).

Definition 2.10 (NOD). We say that a probability measure P on (Ω,F(T )) satisfies No Obvious Devalua-
tions (NOD) if P(i ∈ A(T )|F(τ)) > 0 on {τ < ∞} ∩ {i ∈ A(τ)}, P–almost surely, for all i and stopping
times τ .

A probability measure P that satisfies (NOD) guarantees the following. If at any point of time τ a
certain currency i has not yet defaulted then the probability is strictly positive that this currency will not
default in the future. Carr et al. (2014) study the case d = 2 and also introduce the notion of “no obvious
hyperinflations,” seemingly different. However, that paper has an additional standing hypothesis, namely
that there are no sudden complete devaluations through a jump (see Definition 4.10 below). Under this
condition, their notion of “no obvious hyperinflations” and this paper’s notion (NOD) agree.

Proposition 2.11 ((NOD) holds under no-arbitrage). If a probability measure P on (Ω,F(T )) satisfies
(PSmg) and S satisfies (NFLVR) for P–allowable strategies then P satisfies (NOD).

Proof. Assume that P satisfies (PSmg) and suppose that there exists i and a stopping time τ such that
P(i ∈ A(T )|F(T ∧ τ)) = 0 on {τ <∞}∩{i ∈ A(τ)} and P({τ <∞}∩{i ∈ A(τ)}) > 0. To wit, at time
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τ , if the i:th currency has not devaluated, it is sure that it will completely devaluate at time T . Consider now
the P–trading strategy h that sells the i:th currency at time τ if this currency is active at that time; that is,

hi = −
∑

j 6=i Si,j(τ)∑
j Si,j(τ)

1]]τ,∞[[1{τ<∞}∩{i∈A(τ)};

hj =
1∑

j Si,j(τ)
1]]τ,∞[[1{τ<∞}∩{i∈A(τ)} for all j 6= i .

Clearly, h is P–allowable and yields a free lunch with vanishing risk in the sense of Definition 2.9. This
observation then yields the statement.

2.3 Martingale valuation operators

We would like to derive a Fundamental Theorem of Asset Pricing, but, in general, none of the d currencies
can serve as a proper numéraire as each currency might completely devaluate. To avoid such problems
we replace the concept of equivalent local martingale measure with the notion of a martingale valuation
operator, in the spirit of Harrison and Pliska (1981) and Biagini and Cont (2006).

Definition 2.12 (Martingale valuation operator). We say that a family of operators V = (Vr,t)r≤t, with

Vr,t : Dt → Dr,

is a martingale valuation operator (with respect to S) if the following conditions hold.

(a) (Positivity) If C ∈ DT and C ≥ 0 then V0,T (C) ≥ 0.

(b) (Linearity) If H is a bounded F(r)–measurable random variable and C, C̃ ∈ Dt then

Vr,t
(
H1{H 6=0}C + C̃

)
= H1{H 6=0}Vr,t(C) + Vr,t(C̃) (4)

for all r ≤ t, whenever the sums are well-defined.

(c) (Continuity From Below) If (C(n))n∈N ⊂ DT is a nondecreasing sequence of nonnegative value vec-
tors that converge (path– and componentwise) to a value vector C ∈ DT , then V0,T (C(n)) converges
to V0,T (C), as n increases to infinity.

(d) (Time Consistency) For all r ≤ t and C ∈ DT ,

Vr,t(Vt,T (C)) = Vr,T (C).

(e) (Martingale Property) For all i and t, we have

Vt,T (I(i)(T )) = I(i)(t)1{i∈A(t)}, (5)

with I(i) as in (2).

(f) (Redundancy) For all r ≤ t and C ∈ Dt with
∑

i 1{Ci=0} > 0, we have Vr,t(C) = 0.

We denote the projection of Vr,t on its i:th component by Vr,ti for all i.
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Suppose there exists a family of probability measures (Qi)i such that Si is a Qi–martingale for each i.
Under certain consistency conditions, given in Definition 4.1 below, a martingale valuation operator V can
then be defined by

Vr,ti (C) = EQi
r [Ci], (6)

for all C ∈ Dt, i, and r ≤ t. Vice versa, the results in Section 4 below yield that any martingale valuation
operator has a representation similar to (6); however, for a given i, Si is not necessarily a Qi– martingale, in
which case a correction term is added to the right-hand side of (6).

The properties of Positivity and Linearity reflect the corresponding properties of the expectation operator.
The indicator appearing in (4) resolves possible conflicts when multiplying zero and infinity; see also the
section on notation above. Such a conflict appears whenever, for some scenario ω ∈ Ω, some currency has
completely devaluated, the contingent claim’s payoff C(ω) is not zero when measured in a strong currency,
and H(ω) = 0. Continuity From Below corresponds to the monotone convergence theorem and arises
from the fact that the family of set functions (Qi)i is not only finitely but also countably additive. Time
Consistency corresponds to the tower property for conditional expectations. Martingale Property reflects
the fact that Si is a Qi–martingale for all i if the representation in (6) without a correction term holds.
The indicator in (5) is motivated by Remark 2.4. Indeed, if for some i and t the i:th currency has already
completely devaluated at time t then its value, measured in terms of a active currency j ∈ A(t), equals zero.
The indicator now takes care of the uniqueness issue raised in Remark 2.4 and forces the corresponding
value vector to be zero in each component. Finally, Redundancy assures that an asset that has zero value
with respect to some currency in each possible scenario has to have value zero at any earlier time.

As the following remark discusses, Redundancy implies in particular that all assets whose values agree
on the active currencies have the same value under a martingale valuation operator.

Remark 2.13 (Valuation of essentially equal value vectors). Any martingale valuation operator V satisfies
Vr,t(C) = Vr,t(C̃) whenever C, C̃ ∈ Dt and Ci = C̃i for all i ∈ A(t) and r ≤ t. Indeed, in this case either
C = C̃ or Ci = 0 = C̃i for all i ∈ A(t). Therefore,

Vr,t(C) = Vr,t(C1{C=C̃} + C1{C 6=C̃}) = Vr,t(C̃1{C=C̃}) + Vr,t(C1{C 6=C̃})

= Vr,t(C̃1{C=C̃}) = Vr,t(C̃),

by Linearity and Redundancy of Vr,t.
The following definitions extend the concept of equivalence of probability measures and of almost-sure

statements.

Definition 2.14 (Equivalence between martingale valuation operators and probability measures). We say that
two martingale valuation operators V and Ṽ are equivalent and write V ∼ Ṽ if the following equivalence
holds for any nonnegative C ∈ DT : V0,T

1 (C) = 0 if and only if Ṽ0,T
1 (C) = 0.

Analogously, we say that a martingale valuation operator V and a probability measure P are equivalent
and write P ∼ V or V ∼ P if the following equivalence holds for any nonnegative C ∈ DT : V0,T

1 (C) = 0
if and only if

∑
i 1{Ci=0} > 0, P–almost surely.

Remark 2.15 (Transitivity of equivalence). Let P and P̂ denote two probability measures and let V and
Ṽ denote two martingale valuation operators. Then P ∼ V in conjunction with P ∼ Ṽ implies V ∼ Ṽ;
moreover, P ∼ V in conjunction with P̂ ∼ V implies P ∼ P̂; and also P ∼ P̂ in conjunction with P ∼ V
implies P̂ ∼ V.

Definition 2.16 (V–almost surely). Suppose that V is a martingale valuation operator. We say that an event
A holds V–almost surely if the contingent claim C = 1Ω\A

∑
i I

(i)(T ) satisfies V0,T (C) = 0.

9



To wit, two contingent claims C and C̃ are V–almost surely equal if the contingent claim Ĉ, which pays
one unit of each currency in the case that the two contingent claims C and C̃ differ, has zero valuation under
V. Moreover if P ∼ V then an event holds V–almost surely if and only if it holds P–almost surely.

To discuss the concept of superreplication below in full generality we make the following observation.

Lemma 2.17 (Extending the domain of a martingale valuation operator). Fix r ≤ t and C ∈ Ct. Then
there exists a nondecreasing sequence (C(n))n∈N ⊂ Dt with limn↑∞C

(n) = C. Moreover, the limit
Vr,t(C) = limn↑∞Vr,t(C(n)) exists and is well-defined in the following sense. If (C̃(n))n∈N ⊂ Dt is
another nondecreasing sequence with with limn↑∞ C̃

(n) = C, then limn↑∞Vr,t(C̃(n)) = Vr,t(C). Thus,
Vr,t can be extended to the unique mapping Ct → Cr such that the family (Vr,t)r≤t satisfies Definition 2.12
with Dt replaced by Ct.

Proof. The first statement is clear. The remaining statements follow directly from Proposition 5.12 below.

3 The Fundamental Theorems of Asset Pricing

In this section, the two Fundamental Theorems of Asset Pricing and some of its consequences are stated.
We provide the corresponding proofs in Section 5.

The First Fundamental Theorem of Asset Pricing relates the economic concept of no-arbitrage to the
existence of a linear pricing rule, usually formulated in terms of an equivalent local martingale measure.
Dybvig and Ross (1987) first used the term Fundamental Theorem of Asset Pricing, but already de Finetti
studied these concepts in the context of gambles; see Schervish et al. (2008) for a survey of his original
insights.4 The most general version of the First Fundamental Theorem of Asset Pricing, in the presence
of a numéraire, is due to Delbaen and Schachermayer (1994, 1998a). The following version, in terms of
martingale valuation operators, resembles the original approach in Harrison and Pliska (1981), and more
recently the study in Biagini and Cont (2006).

Theorem 3.1 (First Fundamental Theorem of Asset Pricing). The following implications hold:

(a) If there exists a probability measure P on (Ω,F(T )) that satisfies (PSmg) and S satisfies (NFLVR)
for P–allowable strategies then there exists a martingale valuation operator V ∼ P.

(b) If there exists a martingale valuation operator V then there exists a probability measure P ∼ V that
satisfies (PSmg) and such that S satisfies (NFLVR) for P–allowable strategies.

Corollary 3.2 (First Fundamental Theorem of Asset Pricing in the presence of a reference measure). Sup-
pose P is a probability measure on (Ω,F(T )). Then the following statements are equivalent:

(i) P satisfies (PSmg) and S satisfies (NFLVR) for P–allowable strategies.

(ii) There exists a martingale valuation operator V ∼ P.

Proof. Note that if P̂ ∼ P then P satisfies (PSmg) and S satisfies (NFLVR) for P–allowable strategies if and
only if P̂ satisfies (PSmg) and S satisfies (NFLVR) for P̂–allowable strategies. Therefore, the equivalence
follows directly from Theorem 3.1 and Remark 2.15.

4We thank Marco Fritelli and Marco Maggis for pointing us to Schervish et al. (2008).
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The recent papers of Herdegen (2014) and Herdegen and Schweizer (2015), which are closely related
to Delbaen and Schachermayer (1997), develop a numéraire-independent theory of arbitrage and bubbles
and obtain a version of the First Fundamental Theorem of Asset Pricing. Their version, however, a-posteriori
fixes a numéraire on which the linear pricing operator acts, while Theorem 3.1 is symmetric and does not
prioritize any currency.

We next have a closer look at the condition in Corollary 3.2(i). Towards this end, we call a predictable
process h simple if it has the form h(t) = h01{0}(t) +

∑m
n=1 h

n1(τn−1,τn](t), where 0 = τ−1 = τ0 ≤
· · · τm ≤ T with m ∈ N is a finite sequence of stopping times and hn ∈ F(τn−1) is an Rd–valued
random variable for all n ∈ {0, · · · ,m}. Note that in the case of simple predictable processes the stochastic
integrals in the self-financing condition of Definition 2.7 can be defined in a pathwise sense. Thus, the
condition of (NFLVR) for P–allowable simple strategies can be formulated without the assumption that P
satisfies (PSmg). As the following proposition shows, the property (PSmg) can then be deduced from the
financial condition of (NFLVR) for P–allowable simple strategies.

Proposition 3.3 ((NFLVR) for simple strategies implies (PSmg)). Let P be a probability measure on
(Ω,F(T )). Suppose that S satisfies (NFLVR) for P–allowable simple strategies. Then P satisfies (PSmg).

To state the Second Fundamental Theorem of Asset Pricing in this paper’s framework, we introduce the
following concepts.
Definition 3.4 (V–trading strategies and V–allowable strategies). Suppose that V is a martingale valuation
operator. By Theorem 3.1, there exists a probability measure P ∼ V that satisfies (PSmg). We say that a
predictable process h is a V–trading strategy if h is a P–trading strategy. For a V–trading strategy h, we say
that h is V–allowable if h is P–allowable.

As a consequence of Remark 2.15, the previous definition is independent of the chosen probability
measure P; see also Theorem 4.14 in Shiryaev and Cherny (2002).
Definition 3.5 (Superreplication strategy, replication strategy, market completeness). Assume that there ex-
ists a martingale valuation operator V. We say that a V–allowable trading strategy h superreplicates a claim
C ∈ CT if Ci ≤ V h

i (T ) for all i ∈ A(T ), V–almost surely. We say that a V–allowable trading strategy h
replicates a claim C ∈ CT if

(a) V h
i (T ) = Ci for all i ∈ A(T ), V–almost surely; and

(b) for all V–allowable trading strategies h̃ with V h̃(0) = V h(0) and V h̃(T ) ≥ V h(T ), V–almost surely,
we have V h̃(T ) = V h(T ), V–almost surely.

Moreover, we say that the market is complete if for all C ∈ DT there exists a V–allowable trading strategy
h that replicates C.

Theorem 3.6 (Second Fundamental Theorem of Asset Pricing). Suppose that there exists a martingale
valuation operator V. Then the market is complete if and only if V is the unique martingale valuation
operator equivalent to V.

Finally, we state the superreplication duality in terms of martingale valuation operators.

Theorem 3.7 (Superreplication duality). Assume that there exists a martingale valuation operator V and
let C ∈ CT . Then we have

inf
{
V h(0) : h superreplicates C

}
= sup

{
Ṽ0,T (C) : Ṽ ∼ V is a martingale valuation operator

}
, (7)

where the sup and the inf are taken componentwise and for each martingale valuation operator Ṽ we con-
sider the extension of Lemma 2.17. Additionally, when the supremum in (7) is finite the infimum is equal to
a minimum, that is, there exists a minimal superreplication strategy for C. Moreover, the supremum in (7)
is finite and equals to a maximum if and only if C can be replicated by a V–allowable strategy h.
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4 Aggregation and disaggregation of measures

In this section, we investigate how to aggregate risk-neutral measures, each supported on a subset of the
set Ω of possible scenarios and relative to one of the d currencies, to a martingale valuation operator. We
provide the proofs of the theorems in Section 5. We structure this study in three parts.

In the first part, Subsection 4.1, we note that the existence of a martingale valuation operator yields a
family of d probability measures, which are not necessarily equivalent. However, each of these d measures
can be interpreted as a risk-neutral measure with one of the d numéraires fixed. Moreover, the measures
are related to each other via a generalized change-of-numéraire formula. This property is called numéraire-
consistency. We then show that if a family of probability measures is numéraire-consistent they can be
“stuck together” to yield a global martingale valuation operator.

Subsection 4.2 provides several examples. They illustrate, in particular, how the results of Carr et al.
(2014) and Câmara and Heston (2008) are special cases of this paper’s setup. A further example studies an
economy, in the spirit of Jarrow and Yu (2001), where each currency might devaluate with respect to any
other currency, and where such a devaluation increases the likelihood of another devaluation occuring.

In Subsection 4.3 we start with d probability measures, each serving again as a risk-neutral measure for
a fixed numéraire. However, this time we do not assume that these measures are numéraire-consistent. We
then study conditions such that a martingale valuation operator exists, nevertheless.

4.1 Aggregation with numéraire-consistency and disaggregation

We start by introducing and discussing the following consistency condition.

Definition 4.1 (Numéraire-consistency of probability measures). Suppose that (Qi)i is a family of probabil-
ity measures. We say that (Qi)i is a numéraire-consistent family of probability measures if for all A ∈ F(t)
we have

EQi [Si,j(t)1A] = Si,j(0)Qj(A ∩ {Sj,i(t) > 0}) (8)

for all i, j and t.

Proposition 4.2 (Properties of a numéraire-consistent family of probability measures). Suppose that (Qi)i
is a numéraire-consistent family of probability measures. Then the following statements hold, for each i, j.

(a) Si is a Qi–supermartingale; thus, in particular, Qi(
⋂
t{i ∈ A(t)}) = 1. More precisely, we have

EQi
r [Si,j(t)X] = Si,j(r)E

Qj
r [X1{Sj,i(t)>0}], Qi–almost surely (9)

for all bounded F(t)–measurable random variables X and r ≤ t.

(b) Si,j is a Qi–local martingale if and only if Sj,i does not jump to zero under Qj .

(c) For each stopping time τ , Sτi,j is a Qi–martingale if and only if Qj(Sj,i(τ) > 0) = 1. Moreover, in
this case we have dQj/dQi|F(τ) = Sj,i(0)Si,j(τ). In particular, the i:th currency does not completely
devaluate with respect to the j:th currency, if and only if Si,j is a true Qi–martingale.

Note that (9) can be interpreted as a change-of-numéraire formula.

Remark 4.3 (An interpretation for numéraire-consistency). Let (Qi)i be a numéraire-consistent family of
probability measures. Then with wi,j = Si,j(0)/

∑
k Si,k(0) ∈ (0, 1) for all i, j, we have

∑
j wi,j = 1 and

1− 1∑
k Si,k(0)

EQi

∑
j

Si,j(T )

 =
∑
j

wi,j

(
1− Sj,i(0)EQi [Si,j(T )]

)
=
∑
j

wi,jQj(Sj,i(T ) = 0)
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for all i. Therefore, the normalized expected decrease of the total value of all currencies, measured in
terms of the i:th currency, equals to the sum of the weighted probabilities that the i:th currency completely
devaluates. The weights correspond exactly to the proportional value of the corresponding currency at time
zero.

We are now ready to relate martingale valuation operators to numéraire-consistent families of probability
measures.

Theorem 4.4 (Aggregation and disaggregation). The following statements hold.

(a) Given a martingale valuation operator V there exists a unique numéraire-consistent family of proba-
bility measures (Qi)i such that (

∑
iQi/d) ∼ V and

Vr,tj (C) =
d∑
i=1

Sj,i(r)EQi
r

[
Ci
|A(t)|

]
(10)

for all r ≤ t, j ∈ A(r), and C ∈ Dt.

(b) Given a numéraire-consistent family of probability measures (Qi)i there exists a unique martingale
valuation operator V ∼ (

∑
iQi/d) that satisfies (10) for all r ≤ t, j ∈ A(r), and C ∈ Dt.

(c) Consider a martingale valuation operator V and the corresponding numéraire-consistent family of
probability measures (Qi)i from (a) and fix r ≤ t. If a contingent claim C ∈ Dt satisfies Vr,t(C) =
Vr,t(C1{i∈A(t)}) for some i, then we have

Vr,tj (C) = Sj,i(r)EQi
r [Ci] (11)

for all j ∈ A(r).

Let us first interpret the representation in (10). In order to compute the valuation V0,T (C) of a contingent
claim C ∈ DT under a martingale valuation operator V one can proceed according to the following steps.
First, one replaces the claim C by the claim C̃ = C/|A(t)|; to wit, one divides the payoff of the contingent
claim by the number of active currencies at maturity T . Then, one computes the risk-neutral expectation of
this payoff under Qi corresponding to fixing the i:th currency as numéraire, for each i. One then converts
all these values into one currency (the j:th one in (10)), and adds them up. This then yields V0,T (C). If
the contingent claim C has no payoff in the case that the i:currency completely devaluates, then (11) holds
so that one can compute the valuation V0,T (C) by only computing the risk-neutral expectation with the i:th
currency as numéraire.

In the terminology of Schönbucher (2003, 2004), Qi is called a “survival measure” (corresponding to
the i:th currency) as it is equivalent to the probability measure P (corresponding to V by Theorem 3.1(b)),
conditioned on the i:th currency not completely devaluating.

4.2 Examples

As already pointed out in Lewis (2000), Cox and Hobson (2005), Madan and Yor (2006), and Carr et al.
(2014), among others, a strict local martingale measure is not always suitable for pricing purposes because
prices computed through expectations with this measure fail to be in accordance with market conventions
such as put-call-parity. The works of Lewis (2000) and Madan and Yor (2006) propose ad-hoc correction
terms to solve these deficiencies. Similarly to the study in Carr et al. (2014), we recognize that the problems
arise from the fact that a strict local martingale measure does not take into account the states of the world
where the corresponding currency devaluates. Martingale valuation operators correct this deficiency, and
they do it in a symmetric and financially meaningful form.
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Example 4.5 (A representation of V when d = 2). Consider an economy with d = 2 currencies and assume
the existence of a martingale valuation operator V. Next, we derive a representation of V. To this end, fix
two times r < t, a contingent claim C ∈ Dt, and some active currency j ∈ A(r). We then have

Vr,tj (C) = Sj,1(r)EQ1
r

[
C1

|A(t)|

]
+ Sj,2(r)EQ2

r

[
C2

|A(t)|

]
= Sj,1(r)

(
EQ1
r

[
C1

2
1{S1,2(t)>0}

]
+ EQ1

r

[
C11{S1,2(t)=0}

])
+ Sj,2(r)

(
EQ2
r

[
C2

2
1{S1,2(t)<∞}

]
+ EQ2

r

[
C21{S1,2(t)=∞}

])
= Sj,1(r)EQ1

r [C1] + Sj,2(r)EQ2
r [C21{S1,2(t)=∞}]. (12)

Here we used (9) to deduce that

Sj,2(r)EQ2
r

[
C2

2
1{S1,2(t)<∞}

]
= Sj,1(r)EQ1

r

[
C1

2
1{S1,2(t)>0}

]
.

Therefore, in the case d = 2, V corresponds exactly to the pricing formula in Carr et al. (2014), constructed
to restore put-call parity in a strict local martingale model. Looking closer at (12), say with j = 1, yields
that V can be written as the sum of two terms. The first term is the risk-neutral expectation of the contingent
claim if the first currency is chosen as numéraire. The second term can be interpreted as a correction factor. It
is a product of the exchange rate, converting units of the second currency into units of the first currency, and
another risk-neutral expectation. This time, the risk-neutral expectation is chosen with respect to the second
currency as numéraire. It considers the contingent claim on the event when the first currency completely
devaluates. In the case when the contingent claim C is a European call (with the first currency chosen
as numéraire), this second term corresponds exactly to the ad-hoc correction in Lewis (2000). Thus, (12)
retrieves exactly the pricing formulas in Lewis (2000), Madan and Yor (2006), Paulot (2013), and Kardaras
(2015).

In the following, we discuss the superreplication duality of Theorem 3.7 and illustrate that one may not
argue currency-by-currency in order to compute the minimal superreplication cost.

Example 4.6 (Superreplication duality: a counter-example). Consider again an economy with d = 2 cur-
rencies. Assume that Q1 and Q̃1 denote two equivalent probability measures such that S1,2 is a strict local
Q1–martingale but a true Q̃1–martingale. Such examples exist; see, for instance, Delbaen and Schacher-
mayer (1998b), or Carr et al. (2014) for a finite-horizon example. Let Q2 denote another probability measure
such that S2,1 is a Q2–local martingale and such that (Q1,Q2) is a numéraire-consistent family. Such a mea-
sure can be constructed, for example by the approach pioneered in Föllmer (1972); see also Perkowski and
Ruf (2014). In particular, we have Q2(S1,2(T ) =∞) > 0.

Now, consider the consistent claim C = I(2)(T ) corresponding to one unit of the second currency and
defined in (2). The superreplication value vector of this payoff is given by (7) and clearly bounded from
above by (S1,2(0), 1)T, as buying and holding the second currency superreplicates C. Having Example 4.5
and in particular (12) in mind, we now consider

sup
Q∼Q1:S1,2 is a Q–local martingale

EQ[C1] + S1,2(0) sup
Q̂∼Q2:S2,1 is a Q̂–local martingale

EQ̂[C21{S1,2(T )=∞}] (13)

≥ EQ̃1 [S1,2(T )] + S1,2(0)EQ2 [1{S1,2(T )=∞}] > S1,2(0).

Hence, the expression in (13) does usually not yield the minimum superreplication price. Thus, for the
superreplication formula, the supremum cannot be taken component-wise by looking at each currency as
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numéraire separately. To conclude, this example illustrates that the supremum in (7) cannot be split into d
suprema in (10).

We next study the extension of the Black-Scholes-Merton model proposed in Câmara and Heston (2008).
They suggest to augment the original Black-Scholes-Merton model by allowing the relative prices to jump
to zero and infinity. The jump to zero “adjust[s] the Black-Scholes model for biases related with out-of-
the-money put options,” and the jump to infinity “captures the exuberance and the extreme upside potential
of the market and leads to a risk-neutral density with more positive skewness and kurtosis than the density
implicit in the Black-Scholes model.” Câmara and Heston (2008) then illustrate that such a modification
indeed yields an implied volatility which is closer to the ones observed in the market.

Example 4.7 (Black-Scholes with jumps to zero and infinity). We consider again two currencies, that is,
d = 2. We assume that the relative prices are described through the Black-Scholes model; however, now
with the additional feature that the price may either jump to zero or infinity at some exponential time.
We introduce the model formally by specifying a probability measure P on (Ω,F(T )). Towards this end,
suppose that τ1 and τ2 are exponentially distributed stopping times with intensity λP1 and λP2 , respectively,
and satisfy P(τ1 = τ2) = 0. We then set

S1,2(t) = S1,2(0) exp

(
σW (t)− σ2

2
t+ µt

)
1{t<τ1∧τ2} +∞1{τ1≤t∧τ2},

where µ, σ ∈ R are constant with σ 6= 0 and W is a P–Brownian motion, independent of τ1 and τ2. This
yields directly

S2,1(t) = S2,1(0) exp

(
−σW (t) +

σ2

2
− µt

)
1{t<τ1∧τ2} +∞1{τ2≤t∧τ1}.

Thus, on the event {τ1 < τ2}, the first currency devaluates completely at time τ1, while on {τ2 < τ1} the
second currency devaluates completely at time τ2.

We now want to construct a martingale valuation operator. Towards this end, we first construct a
numéraire-consistent family of probability measures (Q1,Q2) and then apply Theorem 4.4(b). In partic-
ular, under Q1 the process S1,2 stays real-valued and is a supermartingale; a similar statement holds for Q2.
To start, we define the probability measures P1 and P2 by

dP1

dP
=

1{τ1>τ2∧T}

P(τ1 > τ2 ∧ T |τ2)
= 1{τ1>T∧τ2}e

λP1(T∧τ2); (14)

dP2

dP
=

1{τ2>τ1∧T}

P(τ2 > τ1 ∧ T |τ1)
= 1{τ2>T∧τ1}e

λP2(T∧τ1). (15)

We next fix some, for the moment arbitrary, constants µ1, µ2 ∈ R and λ1, λ2 > 0 and define the
probability measures Q1 and Q2 by

dQ1

dP1
= E

((
µ1 − µ
σ

)
W

)
(T ) e(λP2−λ2)(T∧τ2)

(
λ2

λP2

)1{τ2≤T}

; (16)

dQ2

dP2
= E

((
µ2 − µ+ σ2

σ

)
W

)
(T ) e(λP1−λ1)(T∧τ1)

(
λ1

λP1

)1{τ1≤T}

. (17)

Then the Q1–intensity of τ2 equals λ2 and the Q2–intensity of τ1 equals λ1. Moreover, we get

S1,2(t) = S1,2(0) exp

(
σW1(t)− σ2

2
t+ λ2t

)
1{t<τ2}e

µ1t−λ2t, Q1–almost surely; (18)
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S2,1(t) = S2,1(0) exp

(
σW2(t)− σ2

2
t+ λ1t

)
1{t<τ1}e

−µ2t−λ1t, Q2–almost surely (19)

for all t, with W1 a Q1–Brownian Motion independent of τ2 and W2 a Q2–Brownian motion independent
of τ1. It is clear that it is necessary to have λ1 ≥ −µ2 and λ2 ≥ µ1 for the supermartingale property of S1,2

and S2,1, respectively.
Fix now t ∈ [0, T ] and A ∈ F(t). Then, by (16)–(17), (14)–(15), and (18)–(19)

Q1(A ∩ {S1,2(t) > 0}) = EP
[
E
((

µ1 − µ
σ

)
W

)
(t) e(λP1+λP2−λ2)t1{t<τ1∧τ2}1A

]
;

S1,2(0)EQ2 [S2,1(t)1A] = EP
[
E
((

µ2 − µ
σ

)
W

)
(t) e(λP1+λP2−µ2−λ1)t1{t<τ1∧τ2}1A

]
.

This yields that for (8) to hold we need to impose that

λ2 − λ1 = µ1 = µ2.

Indeed, this is sufficient for the numéraire-consistency of (Q1,Q2) since then also, in the same manner,

S2,1(0)EQ1 [S1,2(t)1A] = Q2(A ∩ {S2,1(t) > 0}).

Theorem 4.4(b) now yields a martingale valuation operator V, corresponding to the family (Q1,Q2).
Consider next an exchange option C = (C1, C2) with C1 = (S1,2(T ) − K)+ and C2 = (1 −

KS2,1(T ))+, where K ∈ R. That is, at time T , the option gives the right to swap K units of the first
currency into one unit of the second currency. Then the representation of V in (12) of Example 4.5 yields

V0,T
1 (C) = EQ1 [(S1,2(T )−K)+1{τ2>T}] + S1,2(0)Q2(τ1 ≤ T )

= Q1(τ2 > T )EQ1

[(
S1,2(0)eσW1(T )+(λ2−λ1−σ2/2)T −K

)+
]

+ S1,2(0)(1− e−λ1T )

= e−λ1TS1,2(0)Φ(d1)−Ke−λ2TΦ(d2) + S1,2(0)(1− e−λ1T ), (20)

where

d1 =
1

σ
√
T

(
ln

(
S1,2(0)

K

)
+

(
λ2 − λ1 +

σ2

2

)
T

)
; d2 = d1 − σ

√
T

and Φ is the standard normal cumulative distribution function. For the last equality in (20), we have used
the standard Black-Scholes-Merton formula with interest rate λ2 − λ1. This then directly yields also

V0,T
2 (C) = e−λ2TΦ(d1)−KS2,1(0)e−λ2TΦ(d2) + 1− e−λ1T .

The expression in (20) corresponds to formula (16) in Câmara and Heston (2008). That formula has
been derived via solving a partial integral differential equation. In contrast, (20) has been derived by a
purely probabilistic approach based on equivalent supermartingale measures. Note that the use of mar-
tingale valuation operators yields a systematic way to price more complicated, possibly path-dependent
contingent claims in the Câmara-Heston framework. Moreover, this example also shows that the Câmara-
Heston framework is free of arbitrage, in the sense of Definition 2.9. Due to the presence of a jump to zero
and due to the incompleteness of the model this example is not covered by Carr et al. (2014).

We emphasize that this approach is not restricted to the Black-Scholes model. One might take any
model, for example the Heston model, and then add a jump to zero and a jump to infinity. Going through
the same steps as in this example then yields a martingale valuation operator that corrects deep out-of-the
money puts and call prices.
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We now present an example of a multi-currency market that illustrates the usefulness of the aggregation
results of Theorem 4.4. It is motivated by Jarrow and Yu (2001) who study counterparty default risk and the
interdependence of default processes. Here, each currency may devaluate completely with respect to any
other currency and a currency’s default might increase the probability of another currency’s default. See
also Collin-Dufresne et al. (2004) for a treatment of this setup.

Example 4.8 (Multi-currency market). We now consider a market with d ∈ N \ {1} currencies such that
any currency can devaluate completely with respect to any other currency. We assume that relative prices
either jump to zero or to infinity, respectively, and before that time they only drift. To begin, for each i, let
τi denote a random time, modelling the default of the i:th currency. For sake of simplicity, we shall assume
from now on that the underlying filtration (F(t))t is the smallest right-continuous sigma algebra which
makes τi, for each i, a stopping time. Moreover, we set F =

∨
tF(t). Then each probability measure on

(Ω,F) is described through the compensators of the stopping times (τi)i.
We let (Bi,j)i,j denote a family of continuous processes of finite variation, representing the integrated

rate of returns of S. We then consider the market model given by the exchange process S with Si,i(·) = 1
and

Si,j(·) = eBi,j(·)1[[0,τj [[ +∞1{τi<τj}1[[τi,∞[[

for each i, j with i 6= j. Thus, if prices are quoted in the i:th currency then the price of the j:th currency
jumps to zero at time τj provided that the i:th currency has not devaluated yet in which case the price would
have jumped to infinity at the time τi of complete devaluation. Since we want S to be an exchange process,
we shall assume that Bi,j = −Bj,i and Bi,jBj,k = Bi,k for all i, j, k.

Let τ denote the first time that d − 1 currencies have completely devaluated; that is τ = mini ∨j 6=iτj .
Note next that S(τ + t) = S(τ) for all t, that is, S(τ) is an absorbing state. Thus, we may assume for each
i, without loss of generality, that τi = ∞ on the event {τi > τ ∧ T} as such a jump would not change the
underlying market model. In this spirit, we shall also assume that Bi,j = Bτ

i,j for all i, j.
As in the previous example we start by specifying a probability measure P. We assume that τi has an

absolutely continuous P–compensator AP
i (·) =

∫ ·
0 λ

P
i (s)ds such that 1[[τi,∞[[ − AP

i is a local P–martingale.
We also assume that AP

i (T ) is uniformly bounded and P(τi = τj) = 0 for i 6= j. Moreover, for each i, λPi is
a predictable process, strictly positive on [[0, τi∧ τ ∧T ]] and zero otherwise. Similarly as in Example 4.7 we
now introduce, for each i, the probability measure Pi by conditioning on the event that the i:th currency does
not completely devaluate; that is by conditioning on the event {τi > T}; and simultaneously conditioning
on (τj)j 6=i; that is,

dPi
dP

=
1{τi>T}

P(τi > T |(τj)j 6=i)
= 1{τi>T}e

AP
i (T ) = E(AP

i − 1[[τi,∞[[)(T ).

Note that for all i 6= j, we have [1[[τi,∞[[−AP
i ,1[[τj ,∞[[−AP

j ] = 0, thus 1[[τj ,∞[[−AP
j is a local Pi–martingale,

which again implies that AP
j is the Pi–compensator of τj .

Now, let us assume, for a moment, that there exists a numéraire-consistent family of probability mea-
sures (Qi)i such that Qi ∼ Pi for each i. Then the Qi–compensator Ai,j of the j:th currency is of the form
Ai,j(·) =

∫ ·
0 λi,j(s)ds, for all i, j, satisfies Ai,j = A

τj∧τ
i,j , and λi,j(·) > 0 on [[0, τj ∧ τ ∧ T ]] for all i 6= j.

Moreover, we have Ai,i(·) = 0 since Qi(τi = ∞) = 1. The Radon-Nikodym derivative of Qi with respect
to P then satisfies, thanks to our assumption on the sigma algebra F ,

dQi

dP
=

dPi
dP

∏
k 6=i

eA
P
k(T )−Ai,k(T )

(
λi,k(τk)

λPk(τk)

)1{τk≤T}

= 1{τi>T}
∏
k

eA
P
k(T )−Ai,k(T )

(
λi,k(τk)

λPk(τk)

)1{τk≤T}

(21)
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for each i. Then we have, for each i 6= j, t, and A ∈ F(t),

EQi [Si,j(t)1A] = EP

[
eBi,j(t)−

∑
k Ai,k(t)

∏
k

λi,k(τk)
1{τk≤t}1A∩{τi∧τj>t}Z

]
; (22)

Qj(A ∩ {Sj,i(t) > 0}) = EP

[
e−

∑
k Aj,k(t)

∏
k

λj,k(τk)
1{τk≤t}1A∩{τi∧τj>t}Z

]
, (23)

where

Z =
∏
k

eA
P
k(t)

(
1

λPk(τk)

)1{τk≤t}

> 0.

Thus, for all i 6= j and t, the numéraire-consistency yields, on {τi ∧ τj > t},

eBi,j(t)−
∑
k Ai,k(t)

∏
k

λi,k(τk)
1{τk≤t} = e−

∑
k Aj,k(t)

∏
k

λj,k(τk)
1{τk≤t} .

By arguing iteratively on the intervals [[0, τ(1) ∧ T [[, [[τ(1) ∧ T, τ(2) ∧ T [[, . . . , [[τ(d−2) ∧ T, τ ∧ T [[, where
τ(1) ≤ τ(2) ≤ . . . ≤ τ(d) is the order statistics of (τi)i we then obtain that Ai,j = Aj1i 6=j for all i, j, for
some family of nondecreasing predictable processes (Ai)i and thus, also

Bi,j = Aj −Ai. on {τi ∧ τj > t}, (24)

for all i, j.
Vice versa, let (Ai)i denote a family of predictable processes starting in zero and satisfying (24), such

thatAi is of the formAi(·) =
∫ ·

0 λi(s)ds, where λi is a predictable process, strictly positive on [[0, τi∧τ∧T ]]
and zero otherwise. We next introduce the family (Ai,j)i,j by setting Ai,j = Aj1i 6=j . We now consider the
family of probability measures (Qi)i such that under Qi the stopping time τj has compensator Ai,j for each
j. We then claim that (Qi)i is a numéraire-consistent family of probability measures with Qi ∼ Pi. Indeed,
for each i, the process

∏
k 6=i

eA
P
k(t)−Ai,k(t)

(
λi,k(τk)

λPk(τk)

)1{τk≤t}

for all t turns out to be a Pi–martingale since AP
i (T ) is uniformly bounded by assumption. Thus, as in (21),

we have Qi ∼ Pi for each i. Moreover, the same computations as in (22) and (23) yield the numéraire-
consistency of (Qi)i.

We now consider an exchange option which gives the right to buy one unit of the second currency in
exchange for K ∈ R+ units of the first currency. Thus, the contingent claim C corresponds to Ci =
(Si,2(T )−KSi,1(T ))+ for all i ∈ A(T ). Theorem 4.4(c) and (24) now yield

V0,T
2 (C) = EQ2 [C] = EQ2 [(1−KS2,1(T ))+] = Q2(τ1 ≤ T ) + EQ2 [(1−KS2,1(T ))+1{τ1>T}], (25)

where (Qi)i is the family of numéraire-consistent probability measures corresponding to V.
We shall assume from now on, furthermore, that B1,2 = 0 and that K ∈ [0, 1]. Then (25) simplifies to

V0,T
2 (C) = Q2(τ1 ≤ T ) + (1−K)Q2(τ1 > T ) = 1−KQ2(τ1 > T ). (26)
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For example, if τ1 is exponentially distributed under Q2, with intensity λ > 0, that is, in the notation from
above, A1(t) = λ(t ∧ τ1) for all t then

V0,T
2 (C) = 1−Ke−λt.

For the remainder, we moreover assume thatBi,j = 0 for all i.j. In the spirit of Jarrow and Yu (2001) we
suppose that the intensities of the defaults are given by a doubly stochastic Poisson processes. In particular,
we shall assume that the intensity of a currency’s complete devaluation changes as soon as another currency
has completely devaluated. More precisely, we shall assume that

Ai(t) =
(
λb + (λa − λb)1{t>minj τj}

)
(t ∧ τi)

for all i, with λb, λa > 0. We now illustrate that despite these interactions of the intensities, finding the
valuation of C is doable, nevertheless, as already demonstrated by Collin-Dufresne et al. (2004) with a
different but related approach.

Towards this end, note that mini τi is exponentially distributed under Q2 with parameter (d − 1)λb
because Q2(τ2 =∞) = 1. Moreover, we have Q2(τ1 6= mini τi) = (d− 2)/(d− 1). Thus, we obtain

Q2

(
τ1 > T > min

i
τi

)
=
d− 2

d− 1
EQ2

[
e−λa(T−mini τi)1{mini τi≤T}

]
=
d− 2

d− 1
e−λaT

∫ T

0
(d− 1)λbe

λat−(d−1)λbtdt

= (d− 2)
λb

λa − (d− 1)λb
e−λaT

(
eλaT−(d−1)λbT − 1

)
= (d− 2)

λb
λa − (d− 1)λb

(
e−(d−1)λbT − e−λaT

)
if λa 6= (d− 1)λb and

Q2

(
τ1 > T > min

i
τi

)
= (d− 2)λbe

−λaTT = (d− 2)λbe
−(d−1)λbTT

if λa = (d− 1)λb. We conclude that (26) simplifies to

V0,T
2 (C) = 1−K

(
Q2

(
min
i
τi > T

)
+ Q2

(
τ1 > T > min

i
τi

))
= 1−K

(
e−(d−1)λbT + (d− 2)

λb
λa − (d− 1)λb

(
e−(d−1)λbT − e−λaT

))
= 1 +

K

(λa − (d− 1)λb)

(
(λb − λa)e−(d−1)λbT + (d− 2)λbe

−λaT
)

if λa 6= (d− 1)λb and

V0,T
2 (C) = 1−Ke−(d−1)λbT (1 + (d− 2)λbT )

if λa = (d − 1)λb. Thus, systematically following Theorem 4.4 yields explicit valuations of exchange
options.

To put this example in a historic context, Duffie et al. (1996) suggested a two-step procedure for the
valuation of defaultable securities. Under a suitable no-jump condition this procedure simplifies. Unfor-
tunately, this condition is usually not satisfied and is not invariant under equivalent changes of measures,
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as demonstrated by Kusuoka (1999). Collin-Dufresne et al. (2004) thus suggested to replace the two-step
procedure by a valuation under a modified measure. This modified measure is only absolutely continuous
with respect to the physical measure P, and puts zero mass on the event where a security (in this example,
the second currency) completely devaluates. We emphasize that the measure Q2 above has exactly these
properties, but arises on its own due to its intrinsic connection to the martingale valuation operator V, on
the merit of the disaggregation result in Theorem 4.4(a). This illustrates another case where considering
defaultable numéraires yields a computational benefit.

4.3 Aggegration without numéraire-consistency

Theorem 4.4(b) yields that, given a numéraire-consistent family of probability measures (Qi)i, there exists
a martingale valuation operator, and thus, by Theorem 3.1, S satisfies (NFLVR) for (

∑
iQi/d)–allowable

strategies. In practice it might be difficult to decide whether a given family of probability measures (Qi)i is
numéraire-consistent. Thus, the question arises, under which conditions the existence of a not necessarily
numéraire-consistent family of probability measures yields the existence of a martingale valuation operator.
The next theorem provides more easily verifiable conditions such that there exists a martingale valuation
operator V ∼ (

∑
iQi/d) for an arbitrary family of probability measures (Qi)i.

Theorem 4.9 (Aggregation without numéraire-consistency). Let (Qi)i be a family of probability measures.
Then there exists a martingale valuation operator V ∼ (

∑
iQi/d) if one of the following two conditions is

satisfied.

(a) Si is a Qi–martingale for each i.

(b) The following four conditions hold:

(i) Si is a Qi–local martingale for each i.

(ii)
∑

iQi/d satisfies (NOD); see Definition 2.10.

(iii) For each k,

Qk|F∩{∑j Sk,j(T )<∞} ∼

(∑
i

Qi/d

)∣∣∣∣∣
F∩{

∑
j Sk,j(T )<∞}

.

(iv) There exist ε > 0, N ∈ N, and predictable times (Tn)n∈{1,··· ,N} such that

⋃
k

(t, ω) :
∑
j

Sk,j(t) =∞ and
∑
j

Sk,j(t−) ≤ d+ ε

 ⊂
N⋃
n=1

[[Tn]],

(
∑

iQi/d)–almost surely.

As Example 4.11 below illustrates, Theorem 4.9(b) is not sufficient for the existence of a martingale val-
uation operator, in general, without (b)(i), namely that Si is a Qi–local martingale for each i. The condition
in Theorem 4.9(b)(ii) states that

∑
iQi/d must satisfy the minimal no-arbitrage condition given by (NOD)

— the selling of an active currency does not yield a simple arbitrage strategy. Indeed, Theorem 3.1(b) in
conjunction with Proposition 2.11 yield that this condition is necessary. As Example 4.12 below illustrates,
the conclusion of Theorem 4.9 is wrong without (b)(ii). Thus, given the other conditions, it is not redundant
for the formulation of the theorem. The condition in Theorem 4.9(b)(iii) means that the support of Qk is
the event {

∑
j Sk,j(T ) <∞} for each k. The necessity of such a condition is the content of Example 4.13

below.
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Finally, Theorem 4.9(b)(iv) is a technical condition and we do not know whether it is necessary for the
statement of the theorem to hold. This condition allows the k:th currency to devaluate suddenly, as long as
it is not “strong” in the sense

∑
j Sk,j ≤ d+ ε. If, however, a “strong” currency devaluates suddenly, it only

is allowed to do so at a finite number of fixed, predictable times. In particular, any discrete-time model with
finitely many time steps satisfies this condition. This condition also holds if

∑
iQi/d satisfies (NSD), in the

sense of the following definition.

Definition 4.10 ((NSD)). We say that a probability measure P satisfies No Sudden Devaluation (NSD) if
P(Sk,j jumps to∞) = 0 for all k, j.

Under (NSD) no currency devaluates completely against any other currency suddenly. Example 4.12
below illustrates that there exists a probability measure P that satisfies (NSD) but not (NOD). It is simple to
construct an example that satisfies (NOD) but not (NSD).

Example 4.11 (On the necessity of Theorem 4.9(b)(i)). Fix T = d = 2 and Ω = {ω1, ω2} along with
F(t) = {∅,Ω} for all t < 1 and F(t) = {∅,Ω, {ω1}, {ω2}} for all t ≥ 1. Let S1,2(ω1, t) = 1 and
S1,2(ω2, t) ≡ 1t<1 for all t. That is, two states of the world are possible; up to time 1 the exchange rate
between the two currencies stays constant, and at time one either the second currency devaluates completely
or nothing happens, depending on the state of the world. We now let Q1({ω1}) = Q1({ω2}) = 1/2,
and Q2({ω1}) = 1. Then S1,2 is a strict Q1–supermartingale and S2,1 is a Q2–martingale. Moreover, all
conditions in Theorem 4.9(b), apart from (i), are satisfied. However, selling one unit of the second currency
and buying one unit of the first currency at time zero yields a nonnegative wealth process that is strictly
positive in state ω2, which has strictly positive (Q1 + Q2)/2–probability; thus a clear arbitrage. Thus, by
Theorem 3.1, no martingale valuation operator V ∼ (Q1+Q2)/2 can exist. This illustrates that Theorem 4.9
indeed needs the local martingale property, formulated in (b)(i), in its statement.

Example 4.12 (On the necessity of Theorem 4.9(b)(ii)). We slightly modify Example 4.11. Again, fix T =
d = 2 and assume that (Ω,F ,Q1) supports a Brownian motion B started in zero and stopped when hitting
−1, and an independent {0, 1}–distributed random variable X with Q1(X = 0) = Q1(X = 1) = 1/2.
Now, let

S1,2(t) = 1 + 1{X=1}B
(

tan
(π

2
(t− 1)

))
and let (F(t))t denote the smallest right-continuous filtration that makes S1,2 adapted. Then S1,2 is constant
before time one and stays constant afterwards with probability 1/2, but moves like a time-changed Brownian
motion stopped when hitting zero, otherwise. We now set Q2 = Q1(·|{X = 0}) and note that S2,1 is a
(constant) Q2–martingale. Then the conditions in Theorem 4.9(b)(i), (iii), and (iv) are all satisfied, but as in
the previous example, NFLVR for allowable strategies does not hold. Thus, Theorem 4.9(b)(ii) is necessary
to make the theorem valid. Note that (Q1 + Q2)/2 satisfies (NSD) but not (NOD) in this example.

Example 4.13 (On the necessity of Theorem 4.9(b)(iii)). With d = 2 assets again, we now provide an
example for a family of local martingale measures (Q1,Q2) such that (Q1 + Q2)/2 satisfies (NSD) and
(NOD), but no martingale valuation operator V ∼ (Q1 + Q2)/2 exists. Fix T = 2 and a filtered probability
space (Ω,F(2), (F(t))t,Q2) that supports a three-dimensional Bessel process R starting in one. Next, let
τ denote the smallest time that R hits 1/2; in particular, we have Q2(τ < T ) > 0 and Q2(τ = ∞) > 0 .
Consider now the process

S1,2 = 1 +

(
R− 1

2

)
1[[τ,∞[[ > 0.

With Q1(·) = Q2(·|{τ = ∞}) we have Q1(S1,2 = 1) = 1. Moreover, S2,1 is a Q2–local martingale and
A(T ) = {1, 2}. In particular, (Q1 + Q2)/2 satisfies (NSD) and (NOD). However, Proposition 4.2(c) yields
that no numéraire-consistent family of probability measures can exist. Thus, Theorem 4.4(a) yields that no
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martingale valuation operator V ∼ (Q1 +Q2)/2 exists either. This shows that Theorem 4.9(b) is not correct
without the support condition in (b)(iii).

5 Proofs

The proofs of the statements in Sections 3 and 4 rely on an extended version of the market, which is intro-
duced in Subsection 5.1. In Subsection 5.2, the existence of a martingale valuation operator is related to the
existence of a risk-neutral measure with the basket as numéraire. Finally, Subsections 5.3 and 5.4 use this
relationship to prove the statements in Sections 3 and 4.

5.1 Technical observations on an extended market

In this subsection, we extend the market by interpreting the basket of all currencies as a new currency and
adding it to the exchange matrix. We then study the main feature of this extended market.

Definition 5.1 (Extended exchange matrix). For an exchange matrix s, we introduce an extended matrix,
first by adding the column

si,d+1 =
∑
j

si,j

and then by adding sd+1,i in the obvious way, that is, by setting sd+1,i = (si,d+1)−1 if si,d+1 < ∞;
sd+1,i = 0 if si,d+1 =∞; and sd+1,d+1 = 1. Note that we have sd+1,i ∈ [0, 1] for all i ≤ d+ 1. We call the
matrix s̃ = (si,j)i,j≤d+1 the extended exchange matrix (corresponding to s).

Definition 5.1 also yields a canonical definition for an extended exchange process S̃. Indeed, the fol-
lowing lemma argues that the extended exchange matrix is again an exchange matrix.

Lemma 5.2 (Extending an exchange matrix). Let s denote an exchange matrix. Then so is the extended
exchange matrix s̃ = (si,j)i,j≤d+1. Moreover, we have

∑
j sd+1,j = 1 = sd+1,d+1.

Proof. We first show that
∑d

j=1 sd+1,j = 1. Towards this end, define the index i∗ implicitly by∑
j

si∗,j = min
i

∑
j

si,j ,

where possible conflicts are solved by lexicographic order. The i∗:th currency is (one of) the strongest
currencies in the exchange matrix s. In particular, by Remark 2.2, we have si∗,d+1 =

∑
j si∗,j ≤ d. Set now

A = {j : sj,i∗ <∞} 6= ∅

and note that ∑
j

sd+1,j =
∑
j∈A

1

sj,d+1
=
∑
j∈A

si∗,j
si∗,jsj,d+1

=

∑
j∈A si∗,j

si∗,d+1
= 1.

To conclude the proof we need to show the following three statements:

(a) si,jsj,d+1 = si,d+1 for all i, j ≤ d+ 1, whenever the product is defined;

(b) sd+1,jsj,k = sd+1,k for all j, k ≤ d+ 1, whenever the product is defined;

(c) si,d+1sd+1,k = si,k for all i, k ≤ d+ 1, whenever the product is defined.
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To show (a), fix i, j ≤ d + 1 and assume that si,j = 0. However, then sj,d+1 ≥ sj,i = ∞ and nothing
needs be argued. Now, assume that si,j = ∞. Then the equality holds since si,d+1 = ∞. Finally, assume
that si,j ∈ (0,∞). Then si,jsj,d+1 = si,j

∑d
l=1 sj,l = si,d+1, which completes the argument for (a). To

show (b), note that sd+1,jsj,k = 1/(sk,jsj,d+1) for each j, k ≤ d+ 1 and conclude as in (a). To show (c), fix
i, k ≤ d+1 and assume first that sd+1,k > 0. Then (a) yields si,d+1 = si,ksk,d+1 and multiplying both sides
with sd+1,k yields (c). Next, assume that si,d+1 < ∞. Then (b) yields sd+1,isi,k = sd+1,k and multiplying
both sides with si,d+1 yields (c).

We can also extend any value vector for an exchange matrix s in a canonical way.

Lemma 5.3 (Extending a value vector). The following two statements hold for any exchange matrix s.

(a) Suppose that v = (vi)i is a value vector for s. Then there exists a unique vd+1 ∈ [−∞,∞] such that
ṽ = (vi)i≤d+1 is a value vector for the extended exchange matrix s̃.

(b) Conversely, if vd+1 ∈ [−∞,∞] \ {0}, then there exists a unique value vector v for s such that
ṽ = (vi)i≤d+1 is a value vector for the extended exchange matrix s̃.

Proof. This result follows from Lemma 5.2 and Remark 2.4.

Fix now t, let Lb,t denote the space of F(t)–measurable random variables bounded from below, and
define Πt : Ct → Lb,t by

Πt(C) = Cd+1

with Cd+1 defined through Lemma 5.3(a). Similarly define Ψt : Lb,t → Ct by

Ψt(Cd+1) = C

with C defined through Lemma 5.3(b) with the convention that C = 0 when Cd+1 = 0.

Remark 5.4 (Πt and Ψt are essentially inverse functions). Fix t. Note that Πt(Ψt(Cd+1)) = Cd+1 for all
Cd+1 ∈ Lb,t. Additionally, for any C ∈ Dt we have Ci = Ψt

i(Π
t(C)) for all i ∈ A(t). Therefore, as a

consequence of Remark 2.13,
Vr,t(Ψt(Πt(C))) = Vr,t(C), (27)

for all r ≤ t and C ∈ Dt.
Remark 5.5 (Linearity of Πt and Ψt). Observe that

Ψt(αCd+1 + C̃d+1) = α1{α6=0}Ψ
t(Cd+1) + Ψt(C̃d+1);

Πt(α1{α 6=0}C + C̃) = αΠt(C) + Πt(C̃)

for allC, C̃ ∈ Dt,Cd+1, C̃d+1, α ∈ Lb,t, and t. Here, all equalities hold componentwise, for all components
where the sums are well defined.

We recall that for a probability measure Q and an Rd–valued Q–semimartingale X , L(X,Q) denotes
the space of Rd–valued predictable processes h such that the (vector) stochastic integral h ·Q X is well-
defined, Q–almost surely. The following lemma shows that the semimartingale property is preserved when
extending the exchange process S.

Lemma 5.6 (The semimartingale property extends). Assume that P satisfies (PSmg). The d–dimensional
process Sd+1 is a Pk– and a P–semimartingale for each k. Moreover, we haveL(Sd+1,P) =

⋂
i L(Sd+1,Pi),

and if h ∈ L(Sd+1,P) then h ·P Sd+1 = h ·Pi Sd+1, Pi–almost surely for each i.
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Proof. Note that Lemma 5.2 yields that

Sd+1,i =
Sk,i
Sk,d+1

=
Sk,i∑
j Sk,j

,

Pk–almost surely for all i and k. Thus, (Sd+1,i)i is a Pk–semimartingale for each k. Since
∑

k Pk ∼ P,
Theorems II.2 and II.3 in Protter (2003) yield that (Sd+1,i)i is also a P–semimartingale.

Shiryaev and Cherny (2002) prove that h ∈ L(Sd+1,P) if and only if ((h1h≤n) ·P Sd+1)n∈N converges
in the Émery topology as n tends to infinity; see their remark after Lemma 4.3. This yields L(Sd+1,P) ⊂⋂
i L(Sd+1,Pi), and in the same manner, the reverse implication. The last assertion corresponds to Theo-

rem 4.14 in Shiryaev and Cherny (2002).

Lemma 5.7 (Trading strategies extend). Assume that P satisfies (PSmg). Let h be a predictable process.
Then h is a P–trading strategy with respect to the exchange process S if and only if h is a trading strategy
with respect to Sd+1, in the sense that h ∈ L(Sd+1,P) and

V h
d+1 − V h

d+1(0) = h ·P Sd+1, P–almost surely,

with V h
d+1 = Π(V h).

Proof. The process h is a P–trading strategy with respect to S if and only if h ∈ L(Si,Pi) and

V h
i − V h

i (0) = h ·Pi Si, Pi–almost surely

for all i. Observe that for all i, the semimartingale Sd+1,i is positive under Pi and V h
d+1 = Sd+1,iV

h
i . Hence,

by the change of numéraire theorem (see Geman et al. (1995) and Lemma 4.16 in Pulido (2014)), the process
h is a P–trading strategy with respect to S if and only if h ∈ L(Sd+1,Pi) and

V h
d+1 − V h

d+1(0) = h ·Pi Sd+1, Pi–almost surely

for all i. Lemma 5.6 now implies that the process h is a P–trading strategy with respect to S if and only if h
is a trading strategy with respect to (Sd+1,j)j .

Lemma 5.8 (Allowability is equivalent to admissibility with respect to the basket). Assume that P satisfies
(PSmg). Suppose that h is a P–trading strategy with value process V h and let V h

d+1 = Π(V h). Then the
P–trading strategy h is P–allowable if and only if h is (d+1)–admissible in the sense that there exists δ > 0
such that

V h
d+1 > −δ, P–almost surely.

Proof. If the P–trading strategy h is P–allowable then clearly it is (d + 1)–admissible. We notice that the
P–trading strategy h is P–allowable if and only if there exists δ > 0 such that

inf
t

max
i∈A(t)

V h
i (t) > −δ, P–almost surely.

Remark 2.2 now yields the reverse implication.

Recall the notion of a numéraire-consistent family of probability measures of Definition 4.1. We now
show that such a family can be extended to a numéraire-consistent family corresponding to the extended
market.

Lemma 5.9 (Extending a numéraire-consistent family). The following two statements hold.
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(a) Let (Qi)i denote a numéraire-consistent family of probability measures. Then there exists a unique
probability measure Qd+1 such that (Qi)1=1,···d+1 is a numéraire-consistent family of probability
measures corresponding to the extended market. Moreover, Sd+1 is a Qd+1–martingale and we have
the relationship

Qd+1 =
∑
i

Sd+1,i(0)Qi. (28)

(b) Conversely, if Qd+1 is some probability measure such that Sd+1 is a Qd+1–martingale then there
exists a unique numéraire-consistent family of probability measures (Qi)i such that (Qi)1=1,···d+1 is
a numéraire-consistent family of probability measures corresponding to the extended market.

Proof. Let (Qi)1=1,···d+1 be a numéraire-consistent family of probability measures corresponding to the
extended market. Using i = d+ 1 and t = T , (8) then yields

EQd+1 [Sd+1,j(T )1A] = Sd+1,j(0)Qj(A) (29)

for all j and A ∈ F(T ). This shows the uniqueness assertions of the lemma: first, given Qd+1 it yields the
uniqueness of (Qi)i; second, given (Qi)i and summing up (29) yields that Qd+1 needs to satisfy (28).

Let us now fix a numéraire-consistent family of probability measures (Qi)i. To show that (28) yields a
numéraire-consistent family we need to show the following two identities:

EQd+1 [Sd+1,k(t)1A] = Sd+1,k(0)Qk(A); (30)

EQk [Sk,d+1(t)1A] = Sk,d+1(0)Qd+1(A ∩ {Sd+1,k(t) > 0}) (31)

for all A ∈ F(t), k, and t. Let us first argue (30) and fix t. From (28), (8), and monotone convergence we
obtain

EQd+1 [Sd+1,k(t)1A] =
∑
j

Sd+1,j(0)EQj [Sd+1,k(t)1A1{Sk,d+1(t)<∞}]

=
∑
j

Sd+1,j(0)EQj [Sd+1,k(t)1A1{Sk,j(t)<∞}]

=
∑
j

Sd+1,j(0)Sj,k(0)EQk [Sk,j(t)Sd+1,k(t)1A]

=
∑
j

Sd+1,k(0)EQk [Sd+1,j(t)1A] = Sd+1,k(0)Qk(A),

since Sk,j(t) is Qk–almost surely finite by (8) with A = Ω, which yields (30). Monotone convergence then
yields

EQd+1 [Sd+1,k(t)1{Sd+1,k(t)>0}X] = Sd+1,k(0)EQk [X]

for all [0,∞]–valued F(t)–measurable random variables X and t. Using X = Sk,d+1(t)1A with A ∈ F(t)
then yields (31). FixingA ∈ F(r) and r ≤ t and applying (30) twice yields that Sd+1 is a Qd+1–martingale.

Let us now fix a probability measure Qd+1 such that Sd+1 is a Qd+1–martingale. Define now the
probability measure Qi by dQi/dQ = Si,d+1(0)Sd+1,i(T ) for each i. Then the family of probability
measures (Qi)i=1,··· ,d+1 is numéraire-consistent. Indeed, observe that,

EQi [Si,j(t)1A] = Si,d+1(0)EQd+1 [Si,j(t)1ASd+1,i(t)1{Sd+1,i(t)>0}]

= Si,d+1(0)EQd+1 [Sd+1,j(t)1A1{Sd+1,i(t)>0}]

= Si,d+1(0)Sd+1,j(0)Qj(A ∩ {Sd+1,i(t) > 0}) = Si,j(0)Qj(A ∩ {Sd+1,i(t) > 0})

for all i, j = 1, · · · , d+ 1, A ∈ F(t), and t.
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The following example illustrates the construction of the extended exchange process.
Example 5.10 (Brownian motion and 3d Bessel). Set d = 2 and assume that (Ω,F(T ), (F(t))t,P) is
equipped with a P–Brownian motion S1,2 = B started in one and stopped when hitting zero. Then the
extended exchange rate process is given by

S =

 1 B 1 +B
1
B 1 1

B + 1
1

1+B
B
B+1 1

 .

Clearly, S3 is a P–semimartingale. Only the second asset can devaluate and (NOD) and (NSD) hold for P.
The martingale valuation operator V can be chosen as V0,T

1 (C) = EP[C1] for all D = (C1, C2)T ∈ DT .
We also note that S3 is a martingale under the equivalent measure Q3, given by dQ3/dP = (1 +B(T ))/2.
Moreover, a numéraire-consistent family of probability measures (Q1,Q2) as in Definition 4.1, with (Q1 +
Q2)/2 ∼ P, can be constructed by Q1 = P and dQ2/dP = B(T ).

The following lemma, which is only used to prove the Second Fundamental Theorem of Asset Pricing
(Theorem 3.6) and the superreplication duality (Theorem 3.7), assumes that Theorem 3.1 has been already
shown.

Lemma 5.11 (Superreplication and replication in terms of the basket). Suppose that V is a martingale
valuation operator and that P is a probability measure such that P ∼ V. Let h be a V-allowable trading
strategy and C ∈ CT . Define Cd+1 = ΠT (C) and V h

d+1 = Π(V h). Then h superreplicates the contingent
claimC if and only ifCd+1 ≤ V h

d+1(T ), P–almost surely. Moreover, the following statements are equivalent.

(i) h replicates the contingent claim C.

(ii) Cd+1 = V h
d+1(T ), P–almost surely, and V h

d+1 is a Q–martingale for some probability measure Q ∼ P
such that Sd+1 is a Q–martingale.

Furthermore, if C ∈ DT then any of the above statements are equivalent to the following.

(iii) Cd+1 = V h
d+1(T ), P–almost surely, and V h

d+1 is P–almost surely uniformly bounded in the sense that
there exists a constant K > 0 such that

−K ≤ V h
d+1(t) ≤ K for all t, P–almost surely

Proof. As a consequence of Theorem 3.1(b), P satisfies (PSmg) and S satisfies (NFLVR) for allowable
strategies. Moreover, by Lemma 5.8 the strategy h is (d+ 1)–admissible.

Suppose first that h superreplicatesC ∈ CT . Since the mapping ΠT is order-preserving we haveCd+1 ≤
V h
d+1(T ), V–almost surely, and hence, P–almost surely. Conversely, suppose that Cd+1 ≤ V h

d+1(T ), P–
almost surely. Since the mapping ΨT is order-preserving we have ΨT

i (Cd+1) ≤ ΨT
i (V h

d+1(T )) for all i,
V–almost surely. As discussed in Remark 5.4 we have Ci = ΨT

i (Cd+1) and V h
i (T ) = ΨT

i (V h
d+1(T )) for all

i ∈ A(T ), and thus, h superreplicates C.
To prove the equivalence between (i) and (ii), we consider the following additional statement:

(i’) Cd+1 = V h
d+1(T ), P–almost surely, and h is (d + 1)–maximal in the following sense: given any

(d + 1)–admissible strategy h̃ with V h
d+1(0) = V h̃

d+1(0) and V h
d+1(T ) ≤ V h̃

d+1(T ), P–almost surely,

we have V h
d+1(T ) = V h̃

d+1(T ), P–almost surely.

The equivalence between (i) and (i’) follows, as above, from the order-preserving property of the maps
ΠT ,Π0 and ΨT ,Ψ0, together with Remark 5.4. Theorem 13 in Delbaen and Schachermayer (1995) yields
the equivalence between (i’) and (ii). We now assume that C ∈ DT . Then the equivalence between (ii)
and (iii) holds, on the one side, because Cd+1 is bounded, and on the other side, because a uniformly
bounded local martingale is a martingale.
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5.2 Risk-neutral measure for the basket

We now establish a connection between martingale valuation operators and equivalent martingale measures
in the extended market, complementing the assertion of Theorem 4.4.

Proposition 5.12 (Existence of a risk-neutral measure for the basket). The following two statements hold.

(a) Suppose that V is a martingale valuation operator. Then there exists a unique probability measure Q
such that

Vr,tj (C) = Sj,d+1(r)EQ
r

[
Πt(C)

]
(32)

for all C ∈ Dt, j ∈ A(r), and r ≤ t. In particular, we have Q ∼ V and Sd+1 is a Q–martingale.

(b) Suppose that Q is a probability measure such that Sd+1 is a Q–martingale. Then there exists a unique
martingale valuation operator V that satisfies (32) for all C ∈ Dt, j ∈ A(r), and r ≤ t. In particular,
we have V ∼ Q.

Proof. Throughout the proof, in order to simplify notation, we will use the maps (Πt)t and (Ψt)t introduced
before Remark 5.4. We first observe that we can rewrite (32) as

Vr,tj (C) = Ψr
j(EQ

r [Πt(C)]) (33)

for all C ∈ Dt, j ∈ A(r), and r ≤ t.
(a): Suppose that V is a martingale valuation operator and define

Q(A) = Π0(V0,T (ΨT (1A))), A ∈ F(T ). (34)

This defines a probability measure on F(T ). Indeed, note that

Ψt(1) = S·,d+1(t) =
∑
i

I(i)(t) =
∑
i

I(i)(t)1{i∈A(t)}

for all t, with I(i)(t) as in Remark 2.5. This yields, by Linearity and Martingale Property of Vt,T that

Ψt(1) = Vt,T (ΨT (1)) (35)

for all t. With t = 0 we obtain Q(Ω) = 1, and, together with Positivity and Linearity of V0,T , that
Q(A) ∈ [0, 1] for all A ∈ F(T ). Linearity of V0,T then yields that Q is a finitely additive measure. The
sigma additivity of Q follows from Continuity From Below of V0,T .

We now fix t and C ∈ Dt and set X = Πt(C), which is a bounded F(t)–measurable random variable.
Linearity of Vt,T and (35) then yield

Vt,T (ΨT (X)) = Vt,T (X1{X 6=0}Ψ
T (1)) = X1{X 6=0}Vt,T (ΨT (1)) = X1{X 6=0}Ψ

t(1) = Ψt(X). (36)

We note, thanks to monotone convergence along with Continuity From Below of V0,T and (34), Time
Consistency of V, (36), and (27) that

EQ[X] = Π0(V0,T (ΨT (X))) = Π0(V0,t(Vt,T (ΨT (X)))) = Π0(V0,t(Ψt(X))) = Π0(V0,t(C))). (37)

We now fix additionally r ≤ t and B ∈ F(r). We then obtain, by (37), Time Consistency of V, and
Linearity of Vr,t that

EQ[X1B] = Π0(V0,t(Ψt(X1B))) = Π0(V0,r(1BVr,t(Ψt(X)))) = EQ[Πr(Vr,t(Ψt(X)))1B],
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which implies
EQ
r [X] = Πr(Vr,t(Ψt(X))) = Πr(Vr,t(C)),

where the last equality follows from (27) again, yielding (33).
The uniqueness of Q can be argued with (33) using r = 0 and t = T . The property Q ∼ V follows

directly from (32). Using C = I(i)(T ) for all i, yields the martingale property of Sd+1 under Q.
(b): For the converse direction we define V by

Vr,t(C) = Ψr(EQ
r [Πt(C)]),

for all C ∈ Dt and r ≤ t, which is consistent with (32). We first show that V is a martingale valuation
operator. The properties of Positivity, Linearity, Continuity From Below, and Redundancy follow from
analogous properties of the conditional expectation and the operators Ψ and Π. By Remark 5.4 and the
tower property of the conditional expectation, we have

Vr,t(Vt,T (C)) = Ψr(EQ
r [Πt(Vt,T (C))]) = Ψr(EQ

r [EQ
t [ΠT (C)]]) = Ψr(EQ

r [ΠT (C)]),

for all C ∈ DT and r ≤ t, which shows Time Consistency of V. Additionally, for all i and t ≤ T , since
ΠT (I(i)(T )) = Sd+1,i(T ), and Sd+1,i is a Q–martingale, we have

Vt,T (I(i)(T )) = Ψt(EQ
t [Sd+1,i(T )]) = Ψt(Sd+1,i(t)) = I(i)(t)1{i∈A(t)}

for all i, which proves Martingale Property.
Finally, the uniqueness of the martingale valuation operator V that satisfies (32) follows from Remark 2.4

and Redundancy of V.

Indeed, the construction of a probability measure in the previous proof can be seen as a special case (the
linear case) when representing an agent’s preferences or a risk measure in terms of expectations; see, for
instance, Föllmer and Schied (2011). Cassese (2008) is another example, where risk-neutral measures are
constructed without an a-priori given reference measure.

5.3 Proofs of Theorems 3.1, 3.6, and 3.7, and of Proposition 3.3

Proof of Theorem 3.1. We first observe that if P satisfies (PSmg) then, due to Lemmas 5.6, 5.7, and 5.8, the
condition of (NFLVR) for P–allowable strategies is equivalent to the condition that

(*) the P-semimartingale Sd+1 satisfies (NFLVR) for (d+ 1)–admissible strategies.

By Theorem 1.1 in Delbaen and Schachermayer (1994), this again is equivalent to the condition that

(**) there exists a probability measure Q ∼ P such that Sd+1 is a Q–martingale.

Thus, to see (a), note that Proposition 5.12 and Remark 2.15 imply the existence of a martingale valua-
tion operator V ∼ P if the conditions in (a) hold.

Suppose now that there exists a martingale valuation operator V. By Proposition 5.12 there exists a
probability measure Q that satisfies (**) above with P replaced by V. Thus, to conclude the proof of (b), we
only need to argue that the measure Q satisfies (PSmg) with Ai = {i ∈ A(T )} for all i. Indeed, Q(Ai) > 0
since Q(Sd+1,i(T ) > 0) > 0 and Si is a Q(·|Ai)–semimartingale since Si,j = (Sd+1,i)

−1Sd+1,j on Ai for
all i, j.
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Proof of Proposition 3.3. Suppose S satisfies (NFLVR) for P–allowable simple strategies. As it can be
checked from their proofs, Lemmas 5.7 and 5.8 hold for simple predictable strategies without the assump-
tion that P satisfies (PSmg). Therefore, Sd+1 satisfies (NFLVR) for (d + 1)–admissible simple strategies.
Theorem 7.2 in Delbaen and Schachermayer (1994) now implies that Sd+1 is a P–semimartingale. We con-
clude that P satisfies (PSmg) with Ai = {i ∈ A(T )} for each i. Indeed, the proof of Proposition 2.11 shows
that P satisfies (NOD) and in particular P(Ai) > 0 for all i. Finally, Si is a P(·|Ai)–semimartingale since
Si,j = (Sd+1,i)

−1Sd+1,j on Ai for all i, j.

Proof of Theorem 3.6. By Theorem 3.1(b) there exists a probability measure P ∼ V that satisfies (PSmg)
and the exchange process S satisfies (NFLVR) for P–allowable strategies. The equivalence between (i)
and (iii) in Lemma 5.11 implies that the market is complete if and only if the market with traded assets Sd+1

and reference probability measure P is complete in the sense of Definition 1.15 in Shiryaev and Cherny
(2002).

The classical Second Fundamental Theorem of Asset Pricing, see Theorem 1.17 in Shiryaev and Cherny
(2002), implies that the market is complete if and only if there exist a unique martingale measure Q ∼ P.
Proposition 5.12 and Remark 2.15 allow us to conclude.

Proof of Theorem 3.7. By Proposition 5.12 there exists a probability measure Q ∼ V, such that Sd+1 is a
Q–martingale. With the notation of Lemma 5.11, the classical superreplication theorem (see Theorem 5.7
in Delbaen and Schachermayer (1994) and Theorem 3.2 in Kramkov (1996)) shows that

inf{V h
d+1(0) : h is (d+ 1)–admissible and Cd+1 ≤ V h

d+1(T ), P–almost surely}

= sup{EQ̃[Cd+1] : Q̃ ∼ Q such that Sd+1 is a Q̃–martingale}.
(38)

Recall that Proposition 5.12 yields a relationship between martingale valuation operators and martingale
measures in the extended market. This together with Lemmas 5.8 and 5.11 implies (7).

By the same lemmas, Theorem 3.2 in Kramkov (1996) (see also Remark 5.9 in Delbaen and Schacher-
mayer (1994)) guarantees the infimum in (7) to be a minimum if the supremum is finite. Morever, if the
contingent claimC can be replicated by a V–allowable strategy, then the supremum in (7) is finite and equals
to a maximum, due to the equivalence between (i) and (ii) in Lemma 5.11, by virtue of Proposition 5.12.
Finally, let the supremum in (7), and thus, in (38) be finite and equal to a maximum. Then by Théorème 3.2
in Ansel and Stricker (1993), (ii) in Lemma 5.11 holds, and thus the statement follows.

5.4 Proofs of Proposition 4.2 and Theorems 4.4 and 4.9

Proof of Proposition 4.2. In the following we argue the three parts of the statement.
(a): Fix i and j and note that (8) yields that Qi(i /∈ A(t)) = 0 for all t. Monotone convergence then

yields
EQi [Si,j(t)X] = Si,j(0)EQj [X1{Sj,i(t)>0}] (39)

for all bounded F(t)–measurable random variables X and for all t. To show (9), fix a bounded F(t)–
measurable random variable X , A ∈ F(r), and r ≤ t. We then have

EQi [Si,j(t)X1A] = EQi [Si,j(t)X1A1{Sj,i(r)>0}] = Si,j(0)EQj [X1{Sj,i(t)>0}1A1{Sj,i(r)>0}]

= Si,j(0)EQj [EQj
r [X1{Sj,i(t)>0}]1A1{Sj,i(r)>0}]

= EQi [Si,j(r)E
Qj
r [X1{Sj,i(t)>0}]1A]

by applying (39) twice, which yields (9). The fact that Si is a Qi–supermartingale follows from (9) with
X = 1.
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(b): Fix i and j. As in Proposition 2.3 in Perkowski and Ruf (2014), we may replace t in (8) by a
stopping time τ . With A = Ω, we then have

EQi [Si,j(τ)] = Si,j(0)Qj(Sj,i(τ) > 0)

for all stopping times τ . Recall now that Si,j is a Qi–supermartingale and localize with a sequence of first
crossing times.

(c): The first part follows as in (b). The second statement follows directly from (9).

Proof of Theorem 4.4. First, we argue (a) and (c). Towards this end, let V be a martingale valuation operator.
Recall Proposition 5.12(a) and the unique probability measure Q satisfying (32), such that Sd+1 is a Q–
martingale. Let (Qi)i be the family of numéraire-consistent measures from Lemma 5.9(b). Assume now
that Vr,t(C) = Vr,t(C1{i∈A(t)}) for some C ∈ Dt, r ≤ t, and i. Next, note that

Vr,tj (C1{i∈A(t)}) = Sj,d+1(r)EQ
r

[
Πt(C1{i∈A(t)})

]
= Sj,d+1(r)EQ

r

[
Sd+1,i(t)1{Sd+1,i(t)>0}Ci

]
= Sj,d+1(r)Sd+1,i(r)EQi

r [Ci] = Sj,i(r)EQi
r [Ci]

for all j ∈ A(r), using Proposition 4.2(a). This yields (c). Next, fix a general C ∈ Dt and r ≤ t.
Remark 2.13 now implies

Vr,t(C) = Vr,t
(∑

i

C

|A(t)|
1{i∈A(t)}

)
.

Linearity of the martingale valuation operator V implies (10). The uniqueness of (Qi)i follows from
Lemma 5.9.

In order to see (b) argue in the same way and combine Proposition 4.2(a), Lemma 5.9(a), and Proposi-
tion 5.12(b).

Proof of Theorem 4.9. Assume there exists a probability measure Q ∼ (
∑

j Qj/d) such that Sd+1,i =
1/
∑

j Si,j is a Q–martingale. Then Proposition 5.12(b) in conjunction with Remark 2.15 yields the state-
ment. In the following, we argue the existence of such a probability measure Q if (a) or (b) or hold.

(a): Consider the probability measures Q̃i given by dQ̃i/dQi =
∑

j Sj,i(0)Si,j(T ) for each i, and

Q =
∑

i Q̃i/d. Then we have Q ∼ (
∑

j Qj/d). Moreover, Sd+1 is a Qi–martingale for each i, thus it is
also a Q–martingale.

(b): We set P =
∑

iQi/d and fix ε > 0 as in (b)(iv). To prove the statement is suffices to construct a
strictly positive P–martingale Z such that ZSd+1 is also a P–martingale. We proceed in several steps.

Step 1: For the construction of Z below, we shall iteratively pick the strongest currency until some time
when it is not the strongest anymore, at which point we switch to the new strongest one. To follow this
program, define the sequences of stopping times (τn)n∈N0 and currency identifiers (in)n∈N by τ0 = 0 and

in = arg min
i∈{1,...,d}

{Si,d+1(τn−1)}; (40)

τn = inf{t ∈ [τn−1, T ] : Sin,d+1(t) > d+ ε} (41)

for all n ∈ N, where possible conflicts in (40) are solved by lexicographic order.
Step 2: We claim that P(limn↑∞ τn > T ) = 1. To see this, assume that P(limn↑∞ τn ≤ T ) > 0. Then

there exist i and j such that Si,d+1 has infinitely many upcrossings from d to d + ε with strictly positive
Qj–probability. Next, by a simple localization argument we may assume that Sj,d+1 is a Qj–martingale and
we consider the corresponding measure Q̂, given by dQ̂/dQj = Sd+1,j(0)Sj,d+1(T ). Note that Q̂ ∼ Qj

and that the process Sd+1,i is a bounded Q̂–martingale that has infinitely many downcrossings from 1/d to
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1/(d + ε) with positive probability. This, however, contradicts the supermartingale convergence theorem,
which then yields a contradiction. Thus, the claim holds.

Step 3: Assume that we are given a nonnegative stochastic process Z such that Zτn and ZτnSτnd+1

are P–martingales for each n ∈ N, in the notation of (41). We then claim that Z and ZSd+1 are P–
martingales. To see this, note that Z and ZSd+1 are P–local martingale by Step 2. Next, define a sequence
of probability measures (Qn)n∈N via dQn/dP = Zτn(T ) and note that Sτnd+1 is a Qn–martingale satisfying
Sd+1,in(τn−1) ≥ 1/d on the event {τn−1 ≤ T}, where in is given in (40). Thus, on {τn−1 ≤ T} we have

1

d
≤ EQn [Sd+1,in(τn)|F(τn−1)] ≤ 1− qn +

qn
d+ ε

,

where qn = Qn(τn ≤ T |F(τn−1)), for each n ∈ N. We obtain that

qn ≤
d2 + εd− d− ε
d2 + εd− d

= η ∈ (0, 1),

which again yields

Qn(τn ≤ T ) ≤ EQn [Qn(τn ≤ T | F(τn−1))1{τn−1≤T}
]
≤ ηQn (τn−1 ≤ T ) ≤ ηn

for each n ∈ N, where the last inequality follows by induction. This yields limn↑∞Qn(τn ≤ T ) = 0.
Now, a simple extension of Lemma III.3.3 in Jacod and Shiryaev (2003), such as the one of Corollary 2.2
in Blanchet and Ruf (2015), yields that Z is a P–martingale. Since Sd+1 is bounded, also ZSd+1 is a
P–martingale.

Step 4: We now construct a stochastic process Z̃ that satisfies the assumptions of Step 3. Towards this
end, for each i, let Zi denote the unique P–martingale such that dQi/dP = Zi(T ). With the notation of (41),
(b)(ii) and (iii) yield that Zin(τn−1) > 0 for each n ∈ N. This allows us to define the process Z̃ inductively
by Z̃(0) = 1 and

Z̃(t) = Z̃(τn−1)×
Sin,d+1(t)1{Zin (t)>0}Zin(t)

Sin,d+1(τn−1)Zin(τn−1)

for all t ∈ (τn−1, τn ∧ T ] and n ∈ N. Here we have again used the indices (in)n∈N of (40). Since

EP[Sin,d+1(τn)1{Zin (τn)>0}Zin(τn)|F(τn)] = EQin [Sin,d+1(τn)|F(τn)]Zin(τn−1) = Sin,d+1(τn−1)Zin(τn−1)

on {τn−1 ≤ T}, the process Z̃τn is a P–martingale for each n ∈ N. We now fix j and argue that Sτnd+1,jZ̃
τn

is a P–martingale for each n ∈ N. First, note that the process Sd+1,jSin,d+1 is well-defined and satisfies
Sd+1,jSin,d+1 = Sin,j on [[τn−1, τn[[ for each n ∈ N. Thus, we have

Sd+1,j(t)Z̃(t) = Sd+1,j(τn−1)Z̃(τn−1)×
Sin,j(t)1{Zin (t)>0}Zin(t)

Sin,j(τn−1)Zin(τn−1)

for all t ∈ (τn−1, τn ∧ T ] on {Sd+1,j(τn−1) > 0} and n ∈ N. Since zero is an absorbing state for Sd+1,j

under P =
∑

iQi/d the same arguments as above yield that Sτnd+1,jZ̃
τn is a P–martingale for each n ∈ N.

Step 5: If P satisfies (NSD), then Z̃ is strictly positive since Z̃in(τn) > 0 for each n ∈ N, in the notation
of (40) and (41). In this case, the proof of (b) is finished. However, under the more general condition
in (b)(iv) it cannot be guaranteed that the P–martingale Z̃ is strictly positive as it might jump to zero on⋃
n∈N[[τn]]

⋂⋃
m∈{1,··· ,N}[[Tm]]. To address this issue, we shall modify the construction in Step 4 at the

predictable times (Tm)m∈{1,··· ,N} to obtain a strictly positive P–martingale Z such that also ZSd+1 is a
P–martingale.

Step 5A: We may assume that 0 < Tm < Tm+1 on {Tm < ∞} for all m ∈ {1, · · · , N} and, set, for
sake of notational convenience, T0 = 0 and TN+1 = ∞. In Step 5B, we shall construct a family of strictly
positive P–martingales (Ym)m∈{1,··· ,N+1} that satisfy the following two conditions:
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• Ym = Y Tm
m and Y Tm−1

m = 1; and

• YmSTmd+1 − S
Tm−1

d+1 is a P–martingale for all m ∈ {1, · · · , N + 1}.

If we have such a family then the process Z =
∏N+1
m=1 Ym is a strictly positive P–martingale and ZSd+1 a

nonnegative P–martingale. This then concludes the proof.
Step 5B: In order to construct a family of strictly positive P–martingales (Ym)m∈{1,··· ,N+1} as desired,

let us fix some m ∈ {1, · · · , N + 1}. We first define a process Ỹ by Ỹm = 1 on [[0, Tm−1]] ∩ [[0,∞[[ and
then by proceeding exactly as in Step 4, but with τ0 = 0 replaced by τ0 = Tm−1, with Sd+1 replaced by
STmd+1 and with Zi replaced by ZTmi for each i. Then Ỹm is a nonnegative P–martingale that satisfies the two
conditions of Step 5A. Let M̃ now denote the stochastic logarithm of Ỹm and Mi the stochastic logarithm of
Si,d+1Zi for each i. Note that, for each i, Mi is only defined up to the first time that Si,d+1Zi hits zero, see
also Appendix A in Larsson and Ruf (2014). Next, define the stochastic process

M = M̃ +

 1

|A(Tm−)|
∑

j∈A(Tm−)

∆Mj(Tm)−∆M̃(Tm)

1[[Tm,∞[[;

that is, M equals M̃ apart from the modification at time Tm on {Tm < ∞}, where we replace its jump
by the average jumps of the deflators corresponding to the active currencies at this point of time. Then
we have ∆M > 1, which implies that its stochastic exponential Ym = E(M) is strictly positive. Due to
the predictable stopping theorem, Ym is a P–martingale, and moreover, the two conditions in Step 5A are
satisfied.
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Herdegen, M. (2014). No-arbitrage in a numéraire-independent modelling framework. Mathematical Finance, forth-
coming.

Herdegen, M. and Schweizer, M. (2015). Economics-based financial bubbles (and why they imply strict local martin-
gales). Preprint, http://ssrn.com/abstract=2566815.

Heston, S., Loewenstein, M., and Willard, G. (2007). Options and bubbles. Review of Financial Studies, 20(2):359–
390.

Hulley, H. and Platen, E. (2012). Hedging for the long run. Mathematics and Financial Economics, 6(2):105–124.
Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes. Springer, Berlin, 2nd edition.
Jamshidian, F. (2004). Valuation of credit default swaps and swaptions. Finance and Stochastics, 8(3):343–371.
Jarrow, R. A. and Yu, F. (2001). Counterparty risk and the pricing of defaultable securities. Journal of Finance,

56(5):1765–1799.
Kardaras, C. (2015). Valuation and parities for exchange options. SIAM Journal on Financial Mathematics, 6:140–

157.
Kramkov, D. (1996). Optional decomposition of supermartingales and hedging contingent claims in incomplete secu-

rity markets. Probability Theory and Related Fields, 105:459–479.
Kusuoka, S. (1999). A remark on default risk models. In Advances in Mathematical Economics, pages 69–82.

Springer.
Larsson, M. and Ruf, J. (2014). Convergence of local supermartingales and Novikov-Kazamaki-type conditions for

processes with jumps. Preprint, arXiv:1411.6229.
Lewis, A. L. (2000). Option Valuation under Stochastic Volatility. Finance Press, Newport Beach.
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