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Céline Massera, ..., Corinne Mercier,

Marie-France Cesbron-Delauw,

Nicolas Blanchard

Correspondence
nicolas.blanchard@inserm.fr

In Brief

The host-T. gondii parasite interface

comprises tubular membrane

deformations. Lopez et al. clarify the

function of parasite GRA2 and GRA6

effectors in tubule biogenesis and report

that membrane-binding properties of

parasite antigens influence their MHC I

presentation by infected cells, suggesting

that tubules may play an immune

modulatory role.

mailto:nicolas.blanchard@inserm.fr
http://dx.doi.org/10.1016/j.celrep.2015.11.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2015.11.001&domain=pdf


Cell Reports

Article
Intravacuolar Membranes Regulate CD8
T Cell Recognition of Membrane-Bound
Toxoplasma gondii Protective Antigen
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6Institut de Biologie Structurale (IBS), Université Grenoble Alpes, Grenoble 38044, France
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SUMMARY

Apicomplexa parasites such as Toxoplasma gondii
target effectors to and across the boundary of their
parasitophorous vacuole (PV), resulting in host cell
subversion and potential presentation by MHC class
Imolecules for CD8 T cell recognition. The host-para-
site interface comprises the PV limiting membrane
and a highly curved, membranous intravacuolar
network (IVN) of uncertain function. Here, using a
cell-free minimal system, we dissect how membrane
tubules are shaped by the parasite effectors GRA2
and GRA6. We show that membrane association
regulates access of the GRA6 protective antigen to
the MHC I pathway in infected cells. Although inser-
tion of GRA6 in the PV membrane is key for immuno-
genicity, association of GRA6 with the IVN limits
presentation and curtails GRA6-specific CD8 re-
sponses in mice. Thus, membrane deformations of
the PV regulate access of antigens to the MHC class
I pathway, and the IVN may play a role in immune
modulation.

INTRODUCTION

The interplay between membrane proteins and their lipid envi-

ronment is increasingly recognized as regulating many cellular

processes (reviewed in Schmick and Bastiaens, 2014).

By providing the energy required for membrane deformation,

the physical action of specialized proteins, such as those con-
Cell Rep
taining amphipathic alpha-helices (AAH), shapesmembrane cur-

vature (reviewed in Kozlov et al., 2014). Proteins containing AAH,

in which the hydrophobic amino acids (aa) are located on one

side of the helix while the polar, charged residues are located

on the opposite side, typically insert into one monolayer leaflet.

By virtue of interaction between the AAH positive charges and

the lipid bilayer negative charges, membranes may be deformed

into tubules (reviewed in Drin and Antonny, 2010).

Conversely, membrane curvature—and more extensively, the

lipid environment (thickness, composition)—often dictate trans-

membrane protein structure and function. The lipid environment

may influence translocation of molecules across membranes

(Phillips et al., 2009). For example, membrane curvature affects

the radius and permeability of pores made by the Staphylo-

coccus aureus a-hemolysin toxin (Tonnesen et al., 2014). How-

ever, whether membrane deformations regulate molecular ex-

changes between an intracellular parasite and its host, thereby

affecting host immune recognition of the parasite, remains

unexplored.

Toxoplasma gondii (T. gondii) is an obligate intracellular para-

site able to infect anywarm-blooded animal. In humans, T. gondii

is responsible for severe fetal abnormalities and for encephalitis

in immunocompromised individuals. Following host cell inva-

sion, T. gondii multiplies within a parasitophorous vacuole (PV)

segregated from the cytosol by a limiting membrane. This mem-

brane represents themajor interface with the host cell. PV forma-

tion results from the sequential secretion of parasite secretory

organelles called micronemes, rhoptries, and dense granules

(Sibley, 2011). Although some of the rhoptry content is injected

directly into the host cytosol upon initial contact, dense granule

material is thought to be massively secreted at the time of vacu-

ole formation and to be further exocytosed throughout the
orts 13, 2273–2286, December 15, 2015 ª2015 The Authors 2273
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Figure 1. Association of the T. gondii Dominant Antigen GRA6 to Lipid Membranes of the PV Is Required for Efficient MHC I Presentation by

Infected Macrophages

(A) Schematic representation of the two HF10-containing antigenic constructs transfected in TgCEP GFP LUC. GRA6-HF10 comprises the Nter GRA6I-TM

GRA6I-Cter GRA6I (minus the last ten residues)-HF10 domains. SAG1-GRA6-HF10 comprises the SAG1 (minus glycosylphosphatidylinositol GPI)-TM GRA6I-

Cter GRA6I (minus the last ten residues)-HF10 domains. Numbers represent the size of each domain in aa.

(B) Solubility profile of GRA6-HF10 and SAG1-GRA6-HF10 in overnight-infected HFF after mechanical disruption and fractionation by low-speed and high-speed

centrifugations. After elimination of the intact parasites and larger debris, the indicated antigenic (Ag) constructs present in the LSS, HSP (insoluble, membrane

bound), or HSS (soluble) fractions were analyzed by western blot (WB) using anti-HF10 rabbit antiserum or anti-GRA1 mAb. Histograms show the mean ± SD of

the HSP:HSS ratio, computed from three independent experiments.

(C) Subcellular localization of the GRA6-HF10 and SAG1-GRA6-HF10 antigenic constructs in 24-hr-infected HFF co-stained with anti-HF10 and anti-GRA1

(vacuolar lumen) or anti-GRA3 (PV membrane). Examples are representative of 20 PVs analyzed. Scale bar, 5 mm.

(legend continued on next page)
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intracellular life of the parasite within its PV (Carruthers and Sib-

ley, 1997; Leriche and Dubremetz, 1990). A prominent feature of

the PV is the presence of an intravacuolar network (IVN), also

referred to as the membranous nanotubular network, made of

highly curved membrane tubules that connect the parasites

together and to the PV membrane (Cesbron-Delauw et al.,

2008; Sibley et al., 1995). We previously reported that two pro-

teins secreted from the dense granules, GRA2 (Mercier et al.,

2002; Travier et al., 2008) and GRA6 (Lecordier et al., 1995;

Mercier et al., 2002), are implicated in IVN biogenesis. Shortly

following their release into the vacuolar space, GRA2 and

GRA6 localize to the posterior end of the parasite, where they

associate with membrane whorls and vesicles that give rise to

the IVN (Labruyere et al., 1999; Sibley et al., 1995). Deletion of

the GRA2 gene and complementation with truncated versions

of GRA2 indicated that both its N-terminal domain and its three

central AAH are necessary for IVN formation (Mercier et al.,

2002; Travier et al., 2008). The N-terminal domain of GRA6 is

crucial for association with the IVN (Gendrin et al., 2010), and,

importantly, disruption of the GRA6 gene led to replacement of

the IVN by smaller tubules and vesicles (Mercier et al., 2002).

These data suggested a model where GRA6 may help stabilize

the membrane tubules initiated by GRA2 (Mercier et al., 2002).

The IVN was initially proposed as a structural basis for ordered

arrangement and synchronous division of the dividing parasites

(Magno et al., 2005; Travier et al., 2008). The IVN may also be

involved in virulence (Mercier et al., 1998) by helping to route

parasite rhoptry effectors released in the host cytosol back to

the PV membrane, thereby preventing PV destruction by immu-

nity-related GTPases (Niedelman et al., 2012). More recently, the

IVN has been implicated in the ingestion of host cytosolic mate-

rial by the parasite (Dou et al., 2014). However, the exact molec-

ular bases underlying IVN biogenesis as well as its function(s)

remain ill defined.

Detection of T. gondii intrusion by CD8 T cells relies on the

recognition of short antigenic peptides (8–10 aa) presented by

major histocompatibility complex (MHC) class I (MHC I) mole-

cules at the surface of infected cells. The generation of antigenic

peptides from endogenous sources typically requires process-

ing by cytosolic proteases, transport into the ER, trimming by

ER-resident aminopeptidases, and loading onto peptide-recep-

tive MHC I molecules (Blum et al., 2013). In the case of T. gondii,

resistance to infection requires CD8 T cells (Parker et al., 1991;

Suzuki and Remington, 1990), and MHC I processing is depen-

dent on proteasome and TAP activity (Bertholet et al., 2006;

Blanchard et al., 2008; Grover et al., 2014; Gubbels et al.,

2005), suggesting that parasite antigenic precursors have

to transit through the cytosol. Passage of T. gondii antigens to

the cytosol may be facilitated by the recruitment of the host

ER-associated degradation (ERAD) machinery onto the PV
(D) Upper panel: secretion level of GRA6-HF10 (black line) and SAG1-GRA6-HF

indicated time and dose, detected with AF647-coupled anti-HF10. Lower panel: s

parasite line, detected with AF647-coupled anti-HY10. Controls show labelings

tachyzoites (tinted histogram).

(E) Dot plots showing the proportion of GFP+ BMM (i.e., infected cells) measured

(F) HF10 presentation by BMM infected in the same conditions as in (D) and (E),

(D)–(F) are representative of two independent experiments with similar results.
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membrane (Cebrian et al., 2011; Goldszmid et al., 2009). How-

ever, the details of this export pathway remain elusive, and its

mode of regulation has not been elucidated.

Here, we examined how membranes at the host-parasite

interface that represent potential exit gates beyond the vacuolar

space may regulate immunogenicity of T. gondii proteins. Using

in vitro tubulation assays in a cell-free system, reverse genetics

in T. gondii, and antigen presentation measurements, we report

that insertion of a T. gondii dominant antigen (GRA6) at the PV

membrane is key for immunogenicity. However, association of

this antigen with the IVN limits its presentation and curtails the

development of specific CD8 responses in mice.

RESULTS

Membrane Association of the T. gondii Antigen GRA6 Is
Beneficial for MHC I Presentation
To determine the impact of protein binding to membranes on

MHC I processing in parasite-infected cells, we set out to

disturb the trafficking of a membrane-bound T. gondii antigen.

We focused on the GRA6 antigen. In mice infected by type II

T. gondii, GRA6 gives rise to a naturally processed decamer

epitope (HPGSVNEFDF; namely, HF10), which is presented by

MHC I Ld and elicits dominant and protective CD8 responses

(Blanchard et al., 2008; Feliu et al., 2013). We chose to work

with GRA6 because it is known to coexist as both a soluble

form and a transmembrane form (Gendrin et al., 2010), inserted

in membranes of the PV with a preferential IVN localization (Lab-

ruyere et al., 1999). Based on our previous observation that the

N-terminal domain of GRA6 is responsible for its selective mem-

brane association (Gendrin et al., 2010), we designed an anti-

genic construct bearing the HF10 epitope but comprising the

SAG1 N-terminal domain instead of the natural GRA6 N-terminal

domain (Figure 1A). This mutant was expected to behave mostly

as a soluble protein within the vacuolar space. We stably trans-

fected the control and mutant constructs into type III parasites

(TgCEPGFP LUC, shortened here as TgCEP (see Table S1) (Feliu

et al., 2013), which are naturally ‘‘HF10 null’’ due to poly-

morphisms in the GRA6 C-terminal domain. As expected, and

despite the putative 19-residue transmembrane (TM) domain,

biochemical fractionation of infected fibroblasts established

that the antigenic construct bearing the SAG1N-terminal domain

was preferentially soluble, while the GRA6-HF10 control was

equally distributed between the soluble and membrane fractions

(Figure 1B). As a control, the purely soluble GRA1 protein (Sibley

et al., 1995) was found exclusively in the high-speed supernatant

(Figure 1B). These data were consistent with immunofluores-

cence analyses of the two antigenic constructs in combination

with prototypical markers of the PV membrane (GRA3) and the

PV lumen (GRA1). GRA6-HF10 was present both at the PV
10 (gray line) in BMM infected (GFP+) with the indicated parasite line, for the

ecretion level of endogenous GRA6III in BMM infected (GFP+) with the indicated

of GFP� cells from infected cultures (dotted lines) and BMM not mixed with

at the time of the antigen presentation assay.

assessed with the CTgEZ.4 T cell hybridoma.

orts 13, 2273–2286, December 15, 2015 ª2015 The Authors 2275



membrane and in the PV lumen, most likely bound to the

IVN, which cannot be resolved by light microscopy (Figure 1C,

left panels). In contrast, the SAG1-GRA6-HF10 construct was

mostly luminal and displayed limited overlap with the GRA3 PV

membrane marker (Figure 1C, right panels).

When used to infect bone-marrow-derived macrophages

(BMM), these two T. gondii lines revealed that HF10 presenta-

tion from the mostly soluble antigen (SAG1-GRA6-HF10) was

dramatically reduced (Figure S1A). This difference could be

attributed neither to impaired infectivity (FigureS1B) nor to defec-

tive expression of SAG1-GRA6-HF10 by tachyzoites, since it was

actually �3-fold more abundant than GRA6-HF10 (Figure S1C).

As MHC I presentation of T. gondii antigens strongly relies on

active secretion into the PV (Gregg et al., 2011), we sought to

quantify the amount of GRA6 released into the PV by both para-

site lines. To this aim, we designed a flow-cytometry-based

assay that takes advantage of the fact that the saponin detergent

permeabilizes both the host cell plasma membrane and the

PV membrane, but not the intra-tachyzoite dense granules (Fig-

ures S1D–S1F). Thus, dense-granule-secreted material present

within the host cell, but outside of the parasite, could be selec-

tively quantified by flow cytometry. Using an anti-HF10 antibody,

we consistently noticed a �3-fold lower level of secretion of

SAG1-GRA6-HF10 in infected macrophages (Figure S1G, upper

panel). To explore the possibility that lower secretion of the

mostly soluble antigen may explain its impaired presentation,

we adjusted the infection conditions in order to obtain compara-

ble levels of secretion of membrane-bound and soluble antigens

(Figure 1D, top). To this aim, we reduced the dose and duration of

infection with TgCEPGRA6-HF10 tachyzoites (MOI, 1:1, 7 hr), as

compared to TgCEP SAG1-GRA6-HF10 tachyzoites (MOI, 2.5:1,

24 hr). Consequently, as expected, BMM incubated with TgCEP

GRA6-HF10were infected at a lower rate (Figure 1E), and endog-

enousGRA6III was less abundant in the host cells (Figure 1D, bot-

tom). However, MHC I presentation of the membrane-bound

GRA6-HF10 antigen was still enhanced (Figure 1F). In conclu-

sion, disrupting the association of a T. gondii dense granule anti-

gen with vacuolar membranes impairs MHC I presentation by

T. gondii-infected cells independently of the efficiency of dense

granule secretion into the PV.

GRA2Amphipathic aHelices, in Cooperationwith GRA6,
Deform Lipid Vesicles into Elongated Tubules, akin to
Those of the IVN
Vacuolar membranes include the PV membrane and the IVN. To

gain more insight into how these two membranous structures,

that display different curvatures, could influence MHC I presen-

tation, we sought to dissect how the tubules of the IVN are

shaped. We had previously shown indirectly that IVN biogenesis

requires GRA2 to initiate themembranous tubules of the IVN and

GRA6 to stabilize them (Mercier et al., 2002). To establish the

respective implications of each effector, we developed aminimal

cell-free system to study the deformations of extruded large uni-

lamellar vesicles (LUV) by recombinant GRA2 and/or GRA6. After

characterizing the biophysical properties of the two recombinant

proteins (Bittame et al., 2015), we analyzed the ability of rGRA2

or of a truncated rGRA2 mutant, from which the three AAH

(rGRA2 DAAH) were deleted (Figure 2A), to bind to and deform
2276 Cell Reports 13, 2273–2286, December 15, 2015 ª2015 The Au
LUV formed of lipids extracted from HeLa cells. Comparisons

of LUV extruded at various diameters revealed that rGRA2

boundmost efficiently to vesicles extruded at a 100-nmdiameter

(data not shown). The incubation products were then fraction-

ated on a step gradient of sucrose. Iodine labeling revealed

that the majority of the glycerophospholipid pool was present

within the 0%–10% sucrose fractions (Figure 2B, upper panel).

Even though a substantial amount of rGRA2 remained in the

30% and 40% sucrose fractions, indicative of protein aggrega-

tion, �20% of the rGRA2 pool floated up to the 10% sucrose

fraction, and some rGRA2 was detected in the 0% and 5% su-

crose fractions (Figure 2B, middle panel). In contrast, rGRA2

DAAH was confined in the bottom 30%–40% sucrose fractions

(Figure 2B, lower panel). These results were not the conse-

quence of inherent rGRA2 DAAH instability, given that this

protein folds in random coil (Bittame et al., 2015). Therefore,

our data show that rGRA2 association with LUV depends

on the domains of its AAH. Next, we evaluated the ability of

rGRA2 to deformmembranes by analyzing the LUV-protein incu-

bation products by transmission electron microscopy (TEM). Tu-

bules were detected at a lipid:protein ratio of 50:1, only when

LUV were incubated with rGRA2 and not with rGRA2 DAAH (Fig-

ures 2C and 2D and S2A). In these conditions, the tubules were,

on average, 178 ± 69 nm long, with a diameter of 25–33 nm (Ta-

ble 1). As HeLa-extruded LUV have a complex lipid composition,

we investigated whether the AAH of rGRA2 would exhibit selec-

tive affinity for particular membrane lipids. We incubated rGRA2

or rGRA2 DAAH with nitrocellulose membranes spotted with

defined synthetic lipids (‘‘fat blots’’). Both proteins displayed

similar intense reactivity with phosphatidylinositol (4)-mono-

phosphate (PI(4)P), phosphatidylinositol (3,4,5)-trisphosphate

(PI(3,4,5)P3), and cardiolipin (CL), as well as similar weak reac-

tivity with phosphatidylserine (PS). Only rGRA2 showed specific

reactivity with phosphatidylinositol (4,5)-bisphosphate (PI(4,5)

P2) (Figure 2E). Accordingly, when rGRA2 was mixed with LUV

of different (known or undetermined) lipid compositions; i.e.,

phosphatidylcholine (PC) + phosphatidylethanolamine (PE),

PC + PE + PI(4,5)P2 or total lipids extracted from HeLa cells,

rGRA2 preferentially bound to HeLa LUV and LUV containing

PI(4,5)P2 (Figure S2B). These results indicate that (1) rGRA2 as-

sociates with 100-nm-diameter membrane vesicles through

specific interactions between its AAH and PI(4,5)P2 lipids, and

(2) rGRA2 has the ability to deform these vesicles into membrane

tubules, although the requirement for PI(4,5)P2 in the tubulation

process has not been investigated.

To explore the role of GRA6 in the tubulation process, we

mixed recombinant GRA6 (rGRA6; Figure 3A) with HeLa LUV.

We verified that rGRA6 could directly associate with the LUV

(Figure 3B) and examined the incubation products by TEM.

LUV incubated with rGRA6 appeared aggregated, but no tubule

was observed (Figure 3C; Table 1). As a control, LUV incubated

without rGRA6 were homogenously distributed on the grids (Fig-

ure 3C, right panel). These results suggest that rGRA6 may act

by tethering membrane vesicles.

To examine the potential synergistic role of rGRA2 and rGRA6,

we co-incubated 100-nm-diameter LUV with a mixture of rGRA2

and rGRA6at a lipid:protein ratio of 50:1. Since the relativepropor-

tions of rGRA2 and rGRA6 in the PV are not known, we empirically
thors



Figure 2. rGRA2 Induces Tubulation of

Large Unilamellar Vesicles through Its

Amphipathic a Helices, which Bind to

PI(4,5)P2 Lipids

(A) Schematic representation of the wild-type and

AAH-deleted GRA2 recombinant proteins. The

white boxes at both extremities indicate linkers (L),

and numbers represent the size of each domain in

aa. The recombinant proteins were tagged with

polyhistidine residues at their N andC termini (Nter

and Cter, respectively) (HisX6).

(B) Analysis of the incubation product of rGRA2 or

rGRA2 DAAH with HeLa LUV extruded at 100 nm.

Each protein was incubated with HeLa LUV at a

lipid:protein ratio of 25:1. The binding mixture was

mixed with 80% sucrose, loaded at the bottom of

a tube, overlaid with a step sucrose gradient 40%–

0% (bottom to top), and ultracentrifuged. Five

microliters of each fraction was spotted onto

nitrocellulose, and unsaturated phospholipids

were revealed by fumigation with iodine (upper

panel). An equal volume of each fraction was

analyzed by western blot (WB) probed with anti-

GRA2 mAb (middle and lower panels).

(C and D) TEM analysis of incubation products of

rGRA2 (C) or rGRA2 DAAH (D) incubated with

HeLa LUV extruded at 100 nm (lipid:protein, 50:1).

A representative image is shown for each condi-

tion. The right image represents a magnified view

of the area contained in the white box.

(E) Lipid-binding analysis of rGRA2 or rGRA2

DAAH by lipid-protein overlay. Recombinant

proteins were incubated on lipid strips and

probed with anti-GRA2 mAb. TG, triglyceride;

DAG, diacylglycerol; PA, phosphatidic acid; PC,

phosphatidylcholine; PG, phosphatidylglycerol;

PI, phosphatidylinositol; Chol, cholesterol; SM,

sphingomyelin; SGC, 3-sulfogalactosylceramide.
tested three different rGRA2:rGRA6 ratios. Both the 1:1 and the

25:1 ratios resulted in aggregated or coalescent LUV but not tu-

bule (Figure S2C). By contrast, the 10:1 ratio led to ten times

more abundant tubules than with rGRA2 alone, and tubules had

a mean length of 150 ± 44 nm and a mean diameter of 20.7 ±

2.0nm(Figure3D;Table1).Consistently, amoreabundant fraction

of rGRA2 floated up to the lightest sucrose fractions (0% and 5%)

at the 10:1 ratio than at the 25:1 ratio (Figure S2D).

Taken together, these data suggest that there is a window

of optimal rGRA2:rGRA6 proportions for tubule formation, and

they support the notion that, by a process of vesicle tethering

and tubulation, GRA6 and GRA2 are necessary and sufficient

to deform vacuolar lipid vesicles into the elongatedmembranous

tubules that constitute the IVN.

GRA2-Dependent IVN Biogenesis in Dendritic Cells and
Macrophages
Knowing that membrane association positively regulates MHC I

presentation of a membrane-bound antigen, we investigated

how highly curved IVN membranes specifically impact this pro-

cess. First, we selected the genetically amenable type I TgRH to
Cell Rep
assess the consequences of GRA2 deletion on presentation of

the GRA6-derived epitope. Since TgRH is naturally devoid of the

HF10 epitope, we engineered this strain to express the GRA6-

HF10 antigen using an existing GRA6(I)-deficient line (Mercier

et al., 2002). The resulting parasites are referred to as TgRH

GRA6-HF10 for simplicity (Figure S3; Table S1). Then, we deleted

GRA2 by double-homologous recombination to obtain TgRH

GRA6-HF10 Dgra2 and generated the control complemented

parasite TgRH GRA6-HF10 Dgra2/GRA2. Given that the IVN had

been reported in fibroblasts but never in immune cells, we first

examined the presence and shape of the IVN in parasite-infected,

bone-marrow-derived dendritic cells (BMDC) by TEM. In BMDC

infected with TgRH GRA6-HF10 or the complemented TgRH

GRA6-HF10 Dgra2/GRA2, membranous tubulovesicular material

forming a network was observed within the PV lumen around the

parasites (Figures S4A and S4C). In contrast, IVN tubular struc-

tures were absent from PVs containing GRA2-deficient parasites.

In these PVs, only proteinaceous granular material was detected

(Figure S4B). Similar observations were made using infected

BMM (data not shown). Therefore, the IVN is also generated in a

GRA2-dependentmanner inprofessional antigen-presentingcells
orts 13, 2273–2286, December 15, 2015 ª2015 The Authors 2277



Table 1. Influence of rGRA2 and rGRA6 on Tubule Number, Length, and Diameter

Conditions

of LUV

Incubation

No. of Fields

Observed

(1.8 mm2/field)

Total

Surface

Counted (mm2)

Total

No. of

Tubules

No. of

Tubules/mm2

Tubule Length

(mean ± SD, in nm)

Range of Tubule

Length (in nm)

Tubule Diameter

(mean ± SD, in nm)

LUV only 13 42.1 0 0.0 NA NA NA

LUV + rGRA2 14 45.4 328 7.2 178 ± 69 90–350 28.8 ± 4.0

LUV + rGRA2 DAAH 14 45.4 16 0.4 ND ND ND

LUV + rGRA6 11 35.6 0 0.0 NA NA NA

LUV + rGRA2 + rGRA6 7 22.7 1,736 76.5 150 ± 44 (NS) 80–260 20.7 ± 2.0***

Quantifications were performed on HeLa LUV extruded at 100 nm and incubated at a lipid:protein ratio of 50:1. For rGRA2 + rGRA6 co-incubation, the

rGRA2:rGRA6 ratio was 10:1. To compute the total number of tubules, tubules were enumerated from the indicated number of 1.8 mm2 fields of view.

Measurements of length and diameter were done on a sampling of 26 (rGRA2) and 28 (rGRA2 + rGRA6) straight tubules, selected from at least five

different fields. p values were calculated with two-tailed non-parametric Mann-Whitney tests between the rGRA2 alone and the rGRA2 + rGRA6 con-

dition. ***p < 0.001; NS, p > 0.05; ND, not determined; NA, not applicable.
(APC). These results establish a model to study the role of the IVN

in MHC I presentation by infected APC.

The IVN Inhibits MHC I Presentation of the Membrane-
Bound T. gondii Antigen GRA6
To interrogate the role of the IVN in MHC I presentation of the

membrane-bound GRA6 antigen, we infected BMM in vitro with

one of three parasite strains: TgRH GRA6-HF10, TgRH GRA6-

HF10 Dgra2, or TgRH GRA6-HF10 Dgra2/GRA2. Despite similar

infection rates (Figure 4A), HF10 presentation was enhanced by

more than 8-fold when GRA2 was deleted (Figure 4B). This was

related neither to a difference in GRA6 expression by the trans-

genic parasites (Figure 4C) nor to a global increase in MHC I pre-

sentation capacity induced by TgRH GRA6-HF10 Dgra2, since

presentation of an exogenously pulsed peptide, the SM9 peptide

derived from theGRA4antigen,was similar in all cases (Figure4D).

AsGRA2andGRA6may (directly or indirectly) interact, absenceof

GRA2 could enhance secretion of GRA6 into the vacuolar space.

Using the aforementioned ‘‘secretion assay,’’ we found a slight

(�20%) increase in the amount of vacuolar GRA6 inBMM infected

with GRA2-deficient tachyzoites (Figure S5A). Adjustment of the

infection conditions to equalize secretion (i.e., shorter infection

time with TgRHGRA6-HF10 Dgra2) did not abolish the difference

in HF10 presentation (Figure S5B), indicating that the IVN de-

creases presentation of the membrane-bound GRA6 indepen-

dently from a potential effect on its secretion.

The availability of type II parasites deficient in non-homolo-

gous end joining, in which gene disruption is facilitated (Fox

et al., 2011), then allowed us to address the role of GRA2 in

the presentation of HF10 in its natural GRA6II context. Disruption

of GRA2 in TgPru Dku80 increased presentation of the HF10

peptide by infected BMM (Figure 4E), while both the infection

rate (Figure 4F) and the level of GRA6II protein expression (Fig-

ure 4G) were similar. Again, themodestly increasedGRA6 secre-

tion observed for TgPru Dgra2was not responsible for enhanced

HF10 presentation (Figure S5D).

Importantly, similar findings were made with BMDC, which

constitute the most potent cell subset for priming parasite-spe-

cific CD8 T cells (Figures S5E–S5J).

Next, we questioned whether the increased MHC I presenta-

tion in the absence of GRA2 applies to all T. gondii-derived anti-

gens, regardless of their membrane association properties. To
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this aim, we deletedGRA2 in a parasite strain expressing the sol-

uble SAG1-OVAmodel antigen (TgRHYFPSAG1-OVA) (Gubbels

et al., 2005). Neither the amount of SAG1-OVA expressed by ta-

chyzoites (Figure 4H) nor the infectivity of the parasites (Figure 4I)

were affected by GRA2 deletion. OVA-derived SL8 presentation

by MHC I Kb was modestly increased (�2-fold) with GRA2-defi-

cient parasites (Figure 4J), suggesting that the GRA2-mediated

negative regulation of MHC I presentation by IVN membranes

is selective, with a more pronounced effect for IVN membrane-

associated antigens.

To strengthen the relevance of these findings, we next investi-

gated the influence of the IVN on the expansion of CD8 T cell

responses in vivo using a protocol of prime/boost immunization

with irradiated tachyzoites, which can still generate the IVN

(Figure 5A and S6A–S6D). Four days following the second immu-

nization (i.e., at day 25), we assessed the magnitude of CD8 T cell

responses to the dominant GRA6-derived HF10 peptide and the

subdominant Tgd057-derived SVL8 peptide (Wilson et al., 2010)

in the spleen (Figure 5B) and the peritoneum (Figure 5C). In com-

parison to GRA2-expressing parasites, TgRH GRA6-HF10 Dgra2

elicited a significantly higher proportion of HF10-reactive CD8

T cells in both tissues examined, whereas no statistically signifi-

cant difference was observed for the Tgd057-specific response.

Subcellular fractionation showed that most of the Tgd057 protein

waspresent in the soluble fraction (Figure5D). Accordingly, immu-

nofluorescence analyses revealed the presence of Tgd057 within

the PV lumen, with limited overlap with GRA5, a marker of the

PV membrane (Figure 5E). At last, enhanced HF10-specific CD8

responses were also detected when mice were injected with live

TgPru tachyzoites deficient for GRA2, although interpretations

are complicated by the dramatically reduced virulence of the

TgPru Dgra2 (Figures S6E–S6G). In summary, our in vitro and

in vivodatastrongly suggest thatmembranesof the IVNnegatively

regulate MHC I presentation and CD8 T cell responses to mem-

brane-bound T. gondii antigens.

Disruption of the IVN Increases GRA6 Targeting to the
PV Membrane
Intriguingly, although membrane binding of the T. gondii antigen

GRA6 was beneficial to its MHC I presentation, targeting to the

IVN was detrimental. To understand this seemingly paradoxical

result, we analyzed the subcellular localization and solubility
thors



Figure 3. By Tethering Vesicles, rGRA6 Co-

operateswith rGRA2 toDeform Large Unila-

mellar Vesicles into Elongated Tubules akin

to the Tubular IVN

(A) Schematic representation of the wild-type

GRA6 recombinant protein. The white boxes at

both extremities indicate linkers (L), and numbers

represent the size of each domain in aa. The re-

combinant protein was tagged with polyhistidine

residues at its N and C termini (Nter and Cter,

respectively) (HisX6).

(B) Analysis of the incubation product of rGRA6

with HeLa LUV extruded at a 100-nm diameter, at

a lipid:protein ratio of 50:1. Following fractiona-

tion on a step sucrose gradient 40%–0% (bottom

to top), an equal volume of each fraction was

analyzed by western blot (WB) probed with rabbit

anti-GRA6 antiserum.

(C) TEM analysis of HeLa LUV extruded at a

100-nm diameter and incubated (left panel) or not

(right panel) with rGRA6 at a lipid:protein ratio

of 50:1.

(D) TEM analysis of the co-incubation of rGRA2

and rGRA6 with HeLa LUV extruded at 100 nm

(lipid:protein, 50:1; rGRA2:rGRA6, 10:1). The right

image represents a magnified view of the area

contained in thewhite box. Representative images

are shown.
profile of GRA6 in the presence or absence of the IVN. Biochem-

ical fractionation revealed that the proportion of soluble GRA6

was not altered by the deletion of GRA2 (Figure 6A). This largely

unchanged solubility profile indicated that, in the absence of the

IVN, GRA6 was likely targeted to other membranes of the PV,

such as its limiting membrane. To test this hypothesis, we

used confocal microscopy sections to quantify the fluorescence

signal of GRA6-HF10 present in the vicinity of the PV membrane

versus that contained in the entire PV (Figure 6B). Deletion of

GRA2 led to a preferential localization of GRA6 at the PV mem-

brane (Figure 6C). Thus, enhanced access of the membrane-

bound GRA6 antigen to the MHC I pathway correlates with its

redistribution at the PV membrane.

DISCUSSION

As a means of subverting, persisting, and propagating to new

hosts, intracellular protozoan parasites introduce many compo-
Cell Reports 13, 2273–2286, De
nents into their host cells. A potential

‘‘side effect’’ is the processing of this ma-

terial for presentation by MHC class I

molecules, potentially resulting in im-

mune detection by CD8 T cells. The

T. gondii-secreted components can be

soluble or membrane bound and have

peculiar targeting locations including the

highly curved membranes of the IVN;

yet, how these membranes impact CD8

T cell responses was unexplored. Using

a cell-free system to study IVN biogen-

esis, we showed that, by cooperatively
binding to negatively charged lipids, GRA2 and GRA6 promote

the formation of membrane tubules by a process of vesicle teth-

ering (GRA6) and tubule formation (GRA2) (see the working

model in Figure S7). In PV containing GRA2-deficient parasites

(i.e., lacking the IVN to which GRA6 can bind), the membrane-

bound GRA6 was ‘‘freed up’’ to relocate in larger proportion to

the PV limiting membrane. We hypothesize that one conse-

quence of this relocation is the enhancement of MHC class I pre-

sentation of GRA6. In summary, we demonstrate that the binding

mode of a T. gondii antigen to membranes largely determines

MHC class I presentation by infected cells and the development

of CD8 T cell responses.

The significance of this work is at least 3-fold. First, our data

suggest that the IVN may play an immune modulatory role by

interfering with MHC class I processing of membrane-bound

vacuolar antigens. This adds a new potential function to the

already described roles for the IVN, such as host material uptake

(Dou et al., 2014) or intra-PV tachyzoite organization (Travier
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Figure 4. In Infected BMM, the IVN Decreases MHC Class I Presentation of the Membrane-Bound GRA6 Antigen

(A) Proportion of CMTMR+ BMM (i.e., infected cells) out of live BMM measured 6 hr post-infection.

(B) Ld-HF10 presentation by BMM infected for 24 hr with the indicated parasites, assessed with the CTgEZ.4 hybridoma.

(C) Western blot (WB) analysis showing the expression level of GRA6 and GRA2 in the indicated parasite lines, with SAG1 as a loading control.

(D) Exogenous presentation of synthetic GRA4-derived SM9 peptide pulsed on BMM previously infected with the indicated parasites for 24 hr, assessed with the

BDSM9Z hybridoma.

(E) Ld-HF10 presentation by BMM infected for 24 hr with TgPru or TgPru Dgra2, assessed with the CTgEZ.4 hybridoma.

(F) Proportion of CMTMR+ BMM (i.e., infected cells) out of live BMM measured 6 hr post-infection.

(legend continued on next page)
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et al., 2008). Second, beyond antigen processing, our results

suggest that membrane deformations (such as those forming

the IVN) could be key determinants for controlling the passage

of parasite proteins beyond the vacuolar boundary. Third, our

work identifies additional parameters regulating immunogenicity

of T. gondii antigens in the MHC class I pathway, an endeavor

that will be crucial in improving the design of T. gondii as a vac-

cine vector.

Why does membrane binding enhance MHC class I presenta-

tion in the context of T. gondii infection? One could envisage two

main hypotheses.

If anchored at the PV membrane with its C terminus exposed

to the host cell cytosol, then the GRA6 C-terminal domain (which

contains the HF10 epitope) could be cleaved and released into

the cytosol by an endopeptidase before its final processing by

the proteasome (Blanchard et al., 2008). Intriguingly, given the

recently reported NFAT4 stimulatory activity of the GRA6 C ter-

minus in type I T. gondii (Ma et al., 2014), such endopeptidase

could also modulate the innate signals triggered by the GRA6

C-terminal domain. In both scenarios, the nature of the involved

peptidase(s) is uncertain. Candidate enzymes include those

known to generate MHC class I peptides in the cytosol; e.g., in-

sulin-degrading enzyme (Parmentier et al., 2010), thimet oligo-

peptidase, or nardilysin (Kessler et al., 2011). Alternatively, given

the transmembrane nature of GRA6, the C-terminal fragment

may be released via intra-membrane proteolysis by enzymes

of the rhomboid class. Testing the involvement of these prote-

ases will first require us to determine the topology of GRA6 in

the PV membrane and to assess the impact of its topology on

presentation.

A second hypothesis to explain the higher immunogenicity of

membrane-bound versus soluble antigens could be their closer

proximity to a translocation machinery embedded within the

PV membrane. Such a machinery could involve the Sec61-

based translocon, a protein complex normally mediating ER-

to-cytosol retrotranslocation during the ERAD pathway. Sec61

has, indeed, been reported to be recruited from the host ER

onto the PV membrane and to facilitate vacuole-to-cytosol

export of the soluble SAG1-OVA antigen (Goldszmid et al.,

2009). The ERADmachinery recruitment to the PV seems depen-

dent on the Sec22b SNARE protein (Cebrian et al., 2011), but the

role of Sec22b on presentation of the membrane-bound GRA6

will have to be investigated. Characterization of the post-vacu-

olar export pathway(s) for this category of antigens represents

an exciting challenge for the coming years.

Why is presentation impaired by the IVN? The IVNmay trap the

antigen away from aC terminus-cleaving enzyme and act by ste-

ric hindrance. Alternatively, the high membrane curvature and/or

lipid composition of the IVNmay alter the translocation activity of

a membrane-embedded ‘‘translocon.’’ Rather than being inert
(G) Western blot analysis showing the expression level of GRA6 in the parental an

SAG1 as a loading control.

(H) Western blot analysis showing the expression level of SAG1-OVA and GRA2 in

with the anti-OVA and anti-GRA2 antibodies.

(I) Proportion of YFP+ BMM (i.e., infected cells) out of live BMM measured 6 hr p

(J) Kb-SL8 presentation by BMM infected for 8 hr with the indicated parasites, a

Data indicate mean ± SD. Data depicted on all panels are representative of three

Cell Rep
bystander components, membranes can regulate protein func-

tion, especially the activity of translocases (Van Voorst and De

Kruijff, 2000). This tuning may be driven by altered lateral pres-

sure leading to structural rearrangements (Cantor, 2002). For

instance, the lipid composition of the surrounding membranes

affects lateral pressure on membrane-anchored helices of the

TAP transporter and modulates its peptide transport activity

(Schölz et al., 2011). Even though the T. gondii translocon(s) re-

main(s) to be identified, our data are consistent with the notion

that membrane deformations of the PV are key regulators of

this machinery. It will be useful to test the impact of IVN deletion

on the trafficking of exported T. gondii effectors (Bougdour et al.,

2014), especially those known to be membrane bound.

To date, the parameters known to favor immunogenicity of

T. gondii antigens are active secretion in cells infected by live

parasites (Dupont et al., 2014; Gregg et al., 2011; Kwok et al.,

2003), C-terminal position within the source antigen (Feliu

et al., 2013), and dense-granule-mediated (as opposed to rhop-

try-mediated) release (Grover et al., 2014). Additionally, some

secreted effectors associated with the IVN or the PV membrane

can regulate the MHC class I pathway (L.M.R., B.A.F., V. Cantil-

lana, G.A. Taylor, and D.J.B., unpublished data). Our work iden-

tifies two parameters promoting immunogenicity: association

with vacuolar membranes and absence of IVN. These findings

could help harness more effectively the potential of T. gondii

as a vaccine vector, especially in the anti-tumor vaccination

context. In pioneering studies, an attenuated strain of T. gondii

was shown to promote anti-tumor immunity largely due to

its strong adjuvant effect (Baird et al., 2013a, 2013b). It will

be important to test whether expressing tumor antigen(s) in

T. gondii, in the most immunogenic context defined here, could

boost specific anti-tumor T cell responses and potentiate

rejection.

Remarkably, the IVN of T. gondii is not the only example of

membranous tubular structures present at the interface between

an intracellular pathogen and its host. During both their intra-he-

patic and intra-erythrocytic cycles,Plasmodium parasites trigger

the formation of an exomembranous network of tubules (called

the tubovesicular network; TVN) irradiating from the PV in the in-

fected cell. In contrast to T. gondii, the effectors controlling TVN

biogenesis remain elusive, but its dynamical and morphological

properties, both at the blood (Hanssen et al., 2010) and liver

stages (Gr€utzke et al., 2014), have been studied. The Plasmo-

dium TVN is typically viewed as an exchange platform that could

either promote export of parasite components to the host and/or

facilitate lipid acquisition. Its potential role in MHC I presentation

by infected hepatocytes remains to be investigated. Another

example is the Salmonella bacteria, which induce the formation

of long membranous tubules (called SIT for Salmonella-induced

tubules) extending from the Salmonella-containing vacuole into
d GRA2-deficient TgPru parasites, revealed with the anti-HF10 antiserum and

the parental and GRA2-deficient TgRH YFP SAG1-OVA tachyzoites, revealed

ost-infection.

ssessed with the B3Z hybridoma.

to five independent experiments.
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Figure 5. Immunization with T. gondiiDevoid of IVN Enhances the T Cell Response toMembrane-Bound GRA6 but Does Not Affect the T Cell
Response to Tgd057

(A) Description of the prime/boost immunization protocol and the ex vivo T cell response measurements. B6D2 F1 mice were immunized twice with irradiated

TgRH GRA6-HF10, TgRH GRA6-HF10 Dgra2, or TgRH GRA6-HF10 Dgra2/GRA2 parasites and analyzed 4 days after the second immunization. D, day.

(B and C) Ex vivo IFNg intracellular staining of splenocytes (B) or peritoneal exudate cells (C) restimulated with the GRA6-derived HF10 or the Tgd057-derived

SVL8 peptide. Bars represent the mean ± SEM. *p < 0.05; **p < 0.005. Data are pooled from two independent experiments.

(D) Solubility profile of endogenous Tgd057 in TgRH GRA6-HF10 after mechanical disruption of overnight-infected HFF. Western blot (WB) analysis of Tgd057

present in LSS, HSP (insoluble, membrane bound), and HSS (soluble) fractions. Data are representative of three separate experiments.

(E) Subcellular localization of the endogenous Tgd057 protein in parallel with GRA1 (vacuolar lumen) and GRA5 (PV membrane) markers. Scale bars, 5 mm.
the host cell (Schroeder et al., 2011). SIT include at least three

categories of tubules characterized by distinct morphologies

and marker proteins (Krieger et al., 2014). Several effectors
2282 Cell Reports 13, 2273–2286, December 15, 2015 ª2015 The Au
contributing to tubule biogenesis have been identified (Brumell

et al., 2002), and the use of advanced imaging approaches has

brought unprecedented insight on the ultrastructuralmorphology
thors



Figure 6. Disruption of the IVN Does Not Increase Solubility of the T. gondii Dominant Antigen GRA6 but Enhances Its Presence at the PV

Membrane

(A) Solubility profile of GRA6-HF10, with or without GRA2. Western blot (WB) analysis of GRA6-HF10 present in LSS, HSP (insoluble, membrane bound), or HSS

(soluble) fractions using the anti-HF10 antiserum. Histograms show the HSP over HSS ratio for one out of three experiments with similar results.

(B) Subcellular localization of GRA6-HF10 in HFF infected for 15 hr with TgRHGRA6-HF10 or TgRHGRA6-HF10 Dgra2 tachyzoites, visualized with the anti-HF10

antiserum. One confocal z section of a representative z stack is shown for each genotype. Gray indicates region of interest (ROI) 1, encompassing the entire PV;

blue indicates ROI2, internal content.

(C) Proportion of HF10 fluorescence in the vicinity of the PVmembrane (i.e., ROI1minus ROI2) over the total HF10 fluorescence within the PV (i.e., ROI1). Each dot

represents the median value of three ratio measurements, performed on three middle sections of a single PV. **p < 0.005. mb, membrane.
of SIT (Krieger et al., 2014). Formation of SIT correlates with

bacteria intracellular fitness, but the precise benefit of these

structures for the bacteria is uncertain, and whether they are

involved in MHC class I presentation is unknown.

Several features distinguish the Salmonella, T. gondii, and

Plasmodium membranous networks in terms of morphology,

protein content, and dynamics. A major difference is that

both the Salmonella SIT and the Plasmodium TVN are external

with respect to the compartment in which the pathogen de-

velops, while the T. gondii IVN is made of intravacuolar mem-

branes. However, it is likely that findings in one system could

inspire research on another pathogen and advance our under-

standing of these mysterious structures. Our present work sug-

gests that the T. gondii IVN plays a role in immune modulation

by interfering with the MHC class I pathway. These data pave

the way for investigating how such membrane networks may

influence antigen presentation in other intracellular pathogen

infections.
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EXPERIMENTAL PROCEDURES

Ethics Statement

Animal studies were carried out under the control of the National Veterinary

Services and in accordance with the European Economic Community regula-

tions (EEC directive 86/609, dated November 24, 1986). The protocol was

approved by the Regional Ethics Committee of the Midi-Pyrénées Region

(Approval MP/01/29/09/10).
Mice, Parasites, and Antibodies

C57BL/6JxDBA/2 F1 (B6D2) mice were purchased from Janvier and housed

under specific pathogen-free conditions. Sex- and age-matched (8- to

12-week-old) mice were used. All parental and transgenic T. gondii strains

used in this studyweremaintained by serial passages on confluentmonolayers

of human foreskin fibroblasts (HFF; ATCC SCRC-1041) and are listed in Table

S1. Antibodies for flow cytometry were rat anti-CD8 (53-6.7) and mouse anti-

IFN-g (XMG1.2) (eBioscience). Primary antibodies for western blot and immu-

nofluorescence were rabbit anti-Tgd057 serum and purified rabbit anti-HF10

serum (custom made, Biotem); rabbit anti-OVA (Sigma); and mouse mono-

clonal antibodies (mAbs) anti-SAG1 (TP3, Santa Cruz Biotechnology),
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anti-GRA2 (TG17.179), anti-GRA1 (TG17.43), anti-GRA3 (T62H11), and anti-

GRA5 (TG17.113)—the latter four produced by Biotem.

Plasmid Constructs and Parasite Transfection

Parasite transfections were performed as previously described (Feliu et al.,

2013). The protocols used for the generation of each plasmid and parasite

mutant are available in the Supplemental Experimental Procedures.

Western Blot and Subcellular Fractionation

Tachyzoites were released from infected HFFwith a 23G needle and lysedwith

1% Nonidet P-40 and protease inhibitors (cOmplete EDTA-free, Roche) for

30 min on ice. Lysates were centrifuged for 15 min at 15,000 3 g. Proteins

were reduced, separated by electrophoresis, and transferred to nitrocellulose

membranes. Immunologic detection was performed using horseradish-perox-

idase-conjugated antibodies (Promega) and quantified using a ChemiDoc sys-

tem (Bio-Rad).

The solubility profile of GRA proteins within the PV was examined by cell

fractionation of overnight-infected cells. Both the host cell and the PV mem-

branes were mechanically disrupted by passing infected HFF through 25G

needles, and released parasites were eliminated by a 2,0003 g centrifugation.

The soluble fraction (high-speed supernatant; HSS) was separated from the

membrane-associated fraction (high-speed pellet; HSP) by further centrifuga-

tion at 100,0003 g for 1 hr of the low-speed supernatant (LSS). Equal fractions

of HSP and HSS were analyzed by immunoblot.

BMM and BMDC Differentiation and Antigen Presentation Assays

These experiments were performed as previously described (Feliu et al., 2013).

Details can be found in the Supplemental Experimental Procedures.

Ex Vivo Analysis of T Cell Response

Mice were immunized twice 3 weeks apart with 2 3 106 tachyzoites that were

previously g-irradiated (120 Gy) and filtered through a 3-mm filter (Millipore).

Mice were euthanized 4 days after the second immunization. Peritoneal

exudate cells (PEC) were recovered by lavage with 10 ml cold PBS. Spleens

were dissociated into single-cell suspensions in complete RPMI medium.

Samples were depleted of erythrocytes, and production of IFN-g was

measured as described previously (Feliu et al., 2013). Samples were run on

an FC500 (Beckman-Coulter) or a Fortessa (Becton Dickinson) flow cytometer

and analyzed using the FlowJo software.

Immunofluorescence

Monolayers of HFF grown on Lab-Tek II chamber slides CC2 (Thermo Scien-

tific Nunc) were infected with T. gondii for 16 to 24 hr. After infection, cells were

washed with PBS, fixed for 20 min in 3% paraformaldehyde (Electron Micro-

scopy Sciences) at room temperature (RT), and quenched for 5 min with

PBS plus 0.1 M glycine. Primary antibodies were diluted in permeabilization

buffer (PBS, 0.2% BSA, 0.05% saponin) and incubated for 1 hr at RT followed

by three 5-min washes. Cells were incubated with AF555-coupled anti-rabbit

immunoglobulin G (IgG) and AF633-coupled anti-mouse IgG (Invitrogen) for

20 min at RT. z stacks were acquired on a Zeiss LSM710 confocal microscope

and analyzed using ImageJ software (NIH). For more details on the quantifica-

tion of the GRA6 signal, see the Supplemental Experimental Procedures.

Lipid Extraction, Lipid Binding, and Tubulation Assays

Lipids were extracted from 103 150 cm2 confluent flasks of HeLa cells (ATCC,

CCL-2); glycerolipids were quantified after methanolysis, as previously

described (Botté et al., 2008) and prepared as unilamellar vesicles, as detailed

in the Supplemental Experimental Procedures. The protocols for detergent-

free purification of rGRA2, rGRA2 DAAH, and rGRA6 proteins and their valida-

tion are described elsewhere (Bittame et al., 2015). For the protein-lipid overlay

assays (fat blots), nitrocellulose membranes spotted with different lipids (100

pmol per spot) (Lipid Membrane Strips, Echelon Biosciences) were blocked

for 1 hr with 3% fatty-acid-free BSA (FAF-BSA, Sigma-Aldrich) in TBS-T

(Tris-buffered saline with 0.1% Tween 20) and incubated overnight at 4�C
with 0.1 mg/ml of rGRA2 or rGRA2 DAAH diluted in TBS-T, 3% FAF-BSA.

Following six washes in TBS-T, the proteins bound to lipids were revealed

by immunoblot with specific antibodies against GRA2.
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LUV-recombinant proteins incubation products were analyzed by flotation

on a discontinuous sucrose gradient. Six micrograms of each recombinant

protein were incubated for 30 min at RT with LUV formed from 160 mg of lipids,

in 10 mM HEPES ( pH 7.4), 150 mM NaCl. Sixty-five microliters of the binding

mixture was mixed with 65 ml of 80% sucrose, loaded at the bottom of a

0.65-ml opened tube (Beckmann) and overlaid with five concentrations of su-

crose (30% to 0%). Following a 100,000 3 g centrifugation for 13 hr at 4�C,
fractions were collected from the top of the gradient and analyzed by immuno-

blot. The phospholipids’ unsaturated fatty acids were revealed by fumigation

with iodine (Sigma-Aldrich).

For in vitro tubulation assays, 2–3 ml of each sample were adsorbed on

the clean side of a carbon film that had been pre-evaporated on a mica

sheet. The carbon film was detached from the mica by floating it in a well

containing the negative stain solution. The carbon film was picked up

onto a 400-mesh copper grid and air dried before observation with a

JEOL 1200 EX II operating at 100 kV. All samples were stained with 2%

(w/v) uranyl acetate. Images were recorded at the nominal magnifications

of 10,0003 or 40,0003.

Statistical Analyses

The Prism software (GraphPad) was used for statistical analyses. All p values

were calculated with the two-tailed non-parametric Mann-Whitney test.
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Bittame, A., Effantin, G., Pètre, G., Ruffiot, P., Travier, L., Schoehn, G., Weis-

senhorn,W., Cesbron-Delauw,M.F., Gagnon, J., andMercier, C. (2015). Toxo-

plasma gondii: biochemical and biophysical characterization of recombinant

soluble dense granule proteins GRA2 and GRA6. Biochem. Biophys. Res.

Commun. 459, 107–112.

Blanchard, N., Gonzalez, F., Schaeffer, M., Joncker, N.T., Cheng, T., Shastri,

A.J., Robey, E.A., and Shastri, N. (2008). Immunodominant, protective

response to the parasite Toxoplasma gondii requires antigen processing in

the endoplasmic reticulum. Nat. Immunol. 9, 937–944.

Blum, J.S., Wearsch, P.A., and Cresswell, P. (2013). Pathways of antigen pro-

cessing. Annu. Rev. Immunol. 31, 443–473.
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