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ABSTRACT 
This paper deals with a new model of an orthotropic elementary ply, which consists of two sub-

models. The first one is dedicated to treat the behavior during loading. The elastic and inelastic strains 
are computed as well as the in-ply damages. The strain-rate sensitivity can be also taken into account. 
The second sub-model involves a fractional derivate approach to describe the hysteretic behavior 
observed during unloading/reloading. Instead of using the viscoelastic strain, we express it by a 
fractional derivative. The behavior law requires few parameters. They can be easily identified through 
an optimization algorithm from the experimental data. The second sub-model calculates different 
quantities of dissipated energy during the unloading. The model is validated for thermoset and 
thermoplastic composite materials. 

1 INTRODUCTION 

The extensive use of composite materials in industrial applications requires a better understanding 
of their mechanical behavior. Composites materials are anisotropic and heterogeneous materials. A 
complex model is required to adequately describe their behaviors. There are a lot of works concerning 
the behavior of unidirectional or woven composites with thermosetting matrix under quasi-static 
loadings [1-12]. These models are able to describe damages and inelastic strains that are appearing in 
shear and transverse directions. The strain rate dependent models were developed for unidirectional 
composites [13-15], and for woven composites [16, 17].  

The previous developed models are well describing different physical phenomena such as the 
elastic and inelastic strains, the damages whatever the orthotropic directions of composite material. 
However, they cannot represent the hysteretic behavior during unloading/reloading. The work is based 
on fractional derivative approach which is a good issue for some natural structures and modern 
heterogenic materials such as elastomers and polymers.There is a significant number of works about 
the fractional viscoelastic constitutive equations for different materials under various types of loading. 
The fractional Zeiner model was applied by Caputo to represent behavior of glass and some metals 
[18]. Accordance between the results of an empirical model based on fractional derivative and the 
experimental data for some polymers and elastomers was presented by Bagley and Torvik in [19]. 
Rouse found a relation between molecular theory of polymers and viscoelastic law based on fractional 
derivatives [20]. Rabotanov presented a generalized rheological model to describe behavior of 
hereditary medium [21]. The fractional derivative approach was successfully applied to represent the 
rheological behavior of organic glass, elastomers, polyurethane, polyisobutylene, amorphous solid 
polymers in a wide temperature range [22-27]. The hysteresis cycles were represented by Caputo for 
some metals under fatigue loading [28]. The constitutive model based on the fractional derivative 
approach for composite materials under cycling quasi-static shear loading was proposed by Mateos 
[29, 30]. This model is also able to represent hysteresis composite behavior using a few material 
parameters. The elastic and irreversible strains, damage and strain rate effects are taken into account 
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but not separately. The purpose of our work is to consider a similar approach which allows us to 
compute the amount of dissipated energy caused by each of these phenomena.  

In this paper we combine an elastic-plastic damage behavior law [6] with strain-rate sensitivity [16] 
and a fractional derivative approach. A complete composite behavior model with accurate dissipations 
is needed to compute self-heating during fatigue test. A method based on self-heating tests has been 
developed [31] and provides a fast identification of the endurance limit of the composite material in 
comparison with conventional methods (S-N curves). It requires an analysis and an understanding of 
all the thermo-mechanical phenomena appearing in the material during the test, especially in the 
hysteresis loops. To simplify the analysis and to increase the potential of this method, numerical 
simulations of the fatigue tests could lead to a better estimation of the different amounts of dissipated 
energy. Therefore, the thermo-mechanical finite element simulations using the proposed constitutive 
model with accurate dissipations can be applied to fatigue problems. 

2 THEORETICAL MODEL FOR COMPOSITE PLY 
The constitutive model is based within the framework of thermodynamics isothermal irreversible 

processes. The orthotropic mechanical behavior of a ply of a composite laminate is described at the 
mesoscopic scale. We consider a plane-stress state. Subscripts 1 and 2 represent the fiber and the 
transverse directions, respectively. The continuum damage mechanics theory describes damages such 
as matrix micro-cracking and fiber/matrix debonding. An isotropic hardening model is used for 
plasticity. The viscoelastic effects are expressed by fractional derivatives.  

The material parameters of the law are obtained from an experimental campaign based on cyclic 
tensile tests. The fiber orientation at 0° allows characterizing the longitudinal behavior of elementary 
ply and the ± 45°, the plane shear behavior. To characterize the transverse behavior, we can choose 
90° orientation. However, the material in this direction has a brittle behavior and parameters cannot be 
determined precisely. Therefore, it is suitable to use a test with a ±67.5° laminate to provide a coupling 
between the transverse direction and shear. 

Analyzing the experimental campaign results, the biggest non-linear effects appear during quasi-
static shear test. So our work is focused on the simulation of [±45]  tensile test. The experimental 
data of a unidirectional carbon/epoxy composite (Fig. 1) and woven carbon/PA66 material were used 
to study thermoset and thermoplastic material behavior, respectively. 

Figure 1: Shear stress-strain curve for carbon/epoxy composite. 

The developed constitutive model is composed of two sub-models. The first one deals with damage 
of the elementary ply with isotropic hardening. And the second one describes the hysteresis behavior 
based on a fractional derivative approach. 

Within the framework of thermodynamic irreversible theory, we choose Helmholtz potential 
depending on the internal variables: 

휌휓 = 	휌휓(휀 ,푑 ,푝) (1) 
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where 휌휓 is a volumetric density of free-energy, 휀  is the elastic shear strain, 푑  is a damage 
internal variable and 푝 is a cumulative plasticity.  

To formulate constitutive equations in terms of strain, the Helmholtz potential has been chosen [8, 
32]. On the contrary, the potential of Gibbs provides a problem formulation in stress.  

2.1 Damage model 

Under the quasi-static shear loading, the damage mainly appears in the form of fiber-matrix 
debonding. Following the second law of thermodynamic, the expression for elastic strain energy of the 
damaged material in shear case can be written as: 

푊 =
1
2
휎: 휀 =

1
2
퐺 (1 − 푑 )(2휀 ) (2) 

where 퐺  is an initial shear modulus. 
The damage variable 푑  represents a loss of material stiffness which can be determined by the 

diminution of the shear modulus during experiment: 

푑 = 1−
퐺
퐺

 (3) 

where 퐺  is the current shear modulus of the loop. 
We introduce the following notation for effective stress: 

휎 =
휎

1− 푑 (4) 

Therefore, the constitutive law can be deduced: 

휀 =
휎

2퐺 (1 − 푑 )
=

휎
2퐺

 (5) 

The conjugate quantity of the thermodynamical force 푌  is given by (6). As Helmholtz potential is 
used, the associated thermodynamical force depends on strain 훾 = 2휀  and is independent of the 
damage variable 푑 . 

푌 =
휕휌휓
휕푑

= −
휕푊
휕푑

=
1
2
퐺 (2휀 ) =

1
2
퐺 (훾 ) (6) 

The threshold of undamaged zone is defined like the maximal thermodynamical force in shear for 
all previous time τ up to the current time t:  

푌 = 	max 푌  (7) 

Generally, the damage evolution is approximated by a linear function of the thermodynamical 
force. In order to describe more composite materials behaviors, the evolution damage law can be fitted 
by a polynomial approximation as (8) [33]: 

푑 = 푎 (푌 − 푌 ) 	

푖푓	푑 < 1	푎푛푑	푌 < 푌 ;표푡ℎ푟푤푖푠푒	푑 = 1 

(8) 

where 푌  is the initial threshold of damage and 푌  is the failure-damage threshold. The constants 
in this law are material parameters.	
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2.2 Plasticity modelling and damage-plasticity coupling 

In order to take into account inelastic strain caused by material damage, the effective stress (4) is 
introduced in a plasticity model. Assuming an isotropic strain hardening, the elastic domain is defined 
by the yield function:  

푓 = 휎 − 푅(푝) − 푅  (9) 

where 푅  is the yield stress and the function 푅(푝) is a material characteristic function, which 
depends on the cumulative plastic strain defined by 푝. Generally, the hardening function 푅(푝) is 
approximated by a power law:  

푅 = 훽푝 	푤푖푡ℎ	푝 = (1 − 푑 )푑휀 	 (10) 

where β and k are material parameters, identified from the experimental data. In order to suit to more 
composite material behaviors, a polynomial approximation of the hardening function 푅(푝)	is used in 
following form [33]: 

푅 = 푏 p  (11) 

The material parameter identification procedure is described in the next sections. The resulting 
stress-strain curve is obtained for unidirectional carbon/epoxy composite (Fig. 2). The model 
represents elasto-plastic damage behavior of composite. The simulation results are in good agreement 
with experimental data. However, hysteresis loops cannot be represented by this model. 

Figure 2: Comparison of experimental and simulated behavior. 

2.3 Fractional derivative model 

The hysteresis loops appearance is associated with energy dissipation in composite under cyclic 
quasi-static shear loading. Hysteresis is a hereditary phenomenon, i.e. the past loading history has to 
be taken into account. The idea is to introduce fractional derivatives in the constitutive equation to 
provide a material history dependence. The Riemann-Liouville definition of the fractional derivative is 
[34, 35]: 

퐷 푓(푥) =
1

Γ(1− α)
푑
푑푥

(푥 − 푡) 푓(푡)푑푡	 (12) 

where 퐷  is a fractional derivative of order α, and 훤 is the Gamma-function defined by: 
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훤(푧) = 	 푒 푥 푑푥,			푧 ∈ ℝ  (13) 

Assuming 휀( ) = 0, we obtain the stress/strain relation in terms of fractional derivative in the 
context of linear viscoelasticity: 

휎(푡) = 퐾 퐷 휀(푡), 푓표푟	0 < α < 1 (14) 

where 퐾  is a material parameter. 
This expression represents a constitutive stress/strain relation for materials with memories effects 

within the framework of small strains, and complies with Volterras’ principles of hereditary mechanics 
[36-38]. The viscoelastic state takes an intermediate form between Hook’s law for 훼 = 0 and 
Newton’s rheological law with 훼 = 1. 

In order to represent hysteretic behavior observed in experimental test (Fig. 1), we propose to 
express the strain by a fractional derivative. We assume that both damage and inelastic strain stay 
constant during the unloading. Therefore, the strain corresponding to the hysteresis loop can be 
expressed such as: 

훾 =
휎

퐺 (1 − 푑 ) (15) 

where 휎  is the experimental value of stress. 
The figure 3 represents the experimental elastic strain 훾  and the numerical elastic strain 훾  

calculated by the elasto-plastic damage model (Fig. 2). The difference between the curves corresponds 
to the magnitude of viscoelastic strain 훾  which provides the appearance of hysteresis loops. To 
represent this non-linearity, we assume that total strain within hysteresis loop is defined by:  

훾 (푡) = 훾 (푡) + 훾 (푡) = 퐴 + 퐵퐷 훾 (푡) (16) 

where 퐴, 퐺 , 훼 are parameters of fractional derivative model, 퐷  is a fraction derivative in the 
Riemann-Liouville sense (12).The constitutive relation in terms of fractional derivatives defined by: 

휎 (푡) = 퐺 (1 − 푑 )(훾 (푡) + 훾 (푡)) = 퐺 (1− 푑 )퐴 + 퐺 퐷 훾 (푡) (17) 

Figure 3: Elastic strain. 

2.3 Coupling of two sub-models 

We combine the two sub-models. The switching between the models is performed automatically, 
depending on the sign of the yield function (9) and its derivative. If 푓 = 0 and 푓̇ = 0, the elasto-plastic 
damage model is used. During unloading if 푓 < 0 or 푓 = 0 and 푓̇ < 0 and during reloading if 푓 < 0 
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or 푓 = 0 and 푓̇ > 0, we consider that damage and plastic strain stay constant, thus we switch to the 
fractional derivative model.  

3 IDENTIFICATION OF PARAMETERS 

In the following section, the identification procedure concerning in-ply damage, isotropic strain 
hardening and fractional derivative model is described. The suggested methodology of experimental 
identification is applied to unidirectional carbon/epoxy composite under shear quasi-static loading 
(Fig. 1). 

3.1 Damage and plastic strain evaluation 

The Fig. 4 corresponds to the evolution of the shear damage evaluated by (3) versus the 
thermodynamical associated force issued from (7). We choose to interpolate this experimental data by 
a 4th order polynom. The values of material parameters are presented in table 1. 

Figure 4: Damage master curve of elementary ply. 

Engineering constant Unit Identification 

푌 [√푀푃푎] 0.188 

푎  
√

-0.0921 

푎  
√

-0.0463 

푎  
√

0.1096 

푎  
√

 0.4005 

Table 1: Damage model parameters. 

The cumulative plastic strain 푝 can be obtained using identified damage parameters. The strain 
hardening function 푅(푝) is determined by fitting the measured values of the effective stress and the 
cumulative plastic strain 푝 in accordance with (18). The fitting of experimental points (Fig. 5) is 
performed by a 5th degree polynom. The corresponding coefficients are presented in table 2. 

푅(푝) =
휎

(1 − 푑 )
− 푅 ≈ 푏 p 	 (18) 
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Figure 5: Plasticity mater curve of elementary ply. 

Engineering constant Unit Identification 
푏  [푀푃푎] 292.66 
푏  [푀푃푎] -52.777 106 
푏  [푀푃푎] 4.65 109 
푏  [푀푃푎] -192.8 109 
푏  [푀푃푎] 3029.45 109 

Table 2: Model parameters associated with plastic strain. 

3.2 Identification of fractional derivative model parameters 

In order to determine fractional derivative model parameters, an optimization problem has been 
resolved. The fractional derivative is a non-local space/time operator and depends on the material 
loading history. The elastic strain fractional derivatives are calculated for each loop separately. The 
fractional model parameters are determined from the last point of each loop. The zero initial 
conditions are required to avoid a singularity in fractional calculus. To insure that, the fractional 
derivatives are calculated on a time-interval corresponded to “previous loop loading-unloading-
reloading” phase. In our case the elastic strain 훾  has a zero initial value for each cycle. Once the 
fractional derivatives are calculated using previous loading history, the optimal solution can be found 
within a time-interval corresponded to “unloading-reloading” or to the hysteresis loop (Fig. 6). The 
error function 훿 is computed by adding all the individual point errors inside considering interval: 

 훿 =
∑ ( ) (19) 

where 훾  is the experimental strain determined by equation (15), 훾  is the shear strain 
calculated by the mathematical model (16) and N is a number of time-points inside the referring 
interval. In the further calculus, the differentiable strain function 훾  is replaced by a piecewise 
approximation. 
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Figure 6: Elastic strain referring to a hysteresis loop. 

3.3 Numerical evaluation of fractional model 

The fractional derivative can be calculated numerically by the different algorithms. In general, the 
L1-algorithm (20) is used to calculate Remann-Liouville fractional derivative [35]. It has the following 
form: 

퐷 푓(푡) =
(∆푡)
훤(2 − 훼)

1− 훼
푁

푓 + 푓 − 푓 ((푗 + 1) − 푗 )  (20) 

where ∆푡 is the time-step, N the number of time-points and 훤 is the Gamma-function defined by (13). 
The alternative forms of Remann-Liouville fractional derivatives are 

퐷 푓(푡) = 	
푑
푑푡

푡
Γ(훼)

푓 푡 1− 푣 푑푣  (21) 

퐷 푓(푡) = 	
푑
푑푡

2푡
Γ(훼)

푣푓 푡 1− 푣 푑푣  (22) 

The expression (21) and (22) can be easily implemented in numerical code if an analytical form of 
the differentiable function is known. 

The Remann-Liouville fractional derivative can be calculated analytically for certain functions [34, 
39]. The fractional derivative of a polynomial function 푓(푡) = 푚푡  of order 훼 is: 

퐷 푓(푡) = 푚
Γ(휆 + 1)

Γ(휆 + 1− 훼)
푡  (23) 

The numerical accuracy of the proposed method (Fig. 7) is estimated on the example of the 
fractional derivatives of linear function 푓(푡) = 푡 of order 훼 = 0.5 within the interval [0,1] with a time-
step dt=0.05. The integrals in the M1, M2 methods are calculated by Gaussian quadrature. The interval 
[0,1] is divided in ten sub-integrals and five gauss-points are used in each sub-interval. 

The relative error function is: 

훿 =

∑ (퐷 푓(푡) −퐷 푓(푡) )

푁
퐷 푓(푡)

100 
(24) 

8



where 퐷 푓(푡)  is an analytical fractional derivative (23), 퐷 푓(푡)  corresponds to the L1, 
M1 or M2 mathematical approximations, N is a number of points inside considering interval. The 
relative error values are presented in table 3. The biggest error is observed near zero. The M1-method 
is the most accurate and is used in further calculus. 

Approximation Error value (%) 
L1-algorytm 0.94 

Method 1 0.29962 
Method 2 0.29971 

Table 3: Estimation of numerical error values 

Figure 7: Linear function	푓(푡) = 푡 and its fractional derivative of order 훼 = 0.5. 

4 RESULTS 

The initial shear modulus 퐺 = 3562	푀푃푎 and yield stress 푅 = 15.77	푀푃푎 are identified from 
experimental data (Fig. 1). The damage parameters are obtained from damage master curve (Fig. 4). 
The approximation of 4th order polynom for damage evaluation is used. The polynomial coefficients 
and material parameters are presented in table 1. The plasticity evaluation (Fig. 5) can be characterized 
by the 5th order polynom. The corresponding coefficients are presented in table 2. The fractional 
derivative parameters A, B, and α are determined by resolving an optimization problem with constrains 
for each loop. The parameter A has a quadratic dependence from damage and the fractional derivative 
order α depends linearly on the damage evaluation (Fig. 8). Parameter B= 0.85 is constant. 

Figure 8: Fractional derivative parameters A, α evaluation with damage. 
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Taking into account the previous assumptions and the identified material parameters, the 
simulation of stress-strain curves is performed. The simulation results are in good agreement with 
experimental data for thermoset composite material (Fig. 9). The simulation results for thermoplastic 
are presented in Fig. 10. The significant plastic effects in matrix and the modification of the fibers 
orientation during the loading provide the differences between experimental and simulation data. The 
asymmetric hysteresis loops cannot be treated by the proposed model. To improve the numerical 
results, additional variables should be introduced in constitutive relations. 

Figure 9: Comparison between experimental and simulated behavior of thermoset material. 

Figure 10: Comparison between experimental and simulated behavior of thermoplastic material. 

5 CONCLUSION 
The proposed elementary-ply model under shear loading takes into account damage, plastic strain 

and hysteresis mechanisms. An isotropic strain hardening is used for plasticity. The hysteresis 
behavior is modeled by a fractional derivative approach. Few parameters are required to represent 
hysteresis loops. To determine these parameters, an optimization problem has been resolved. The 
fractional derivatives can be simply programmed in Matlab or FORTRAN. The model validation has 
been demonstrated for thermoset and thermoplastic carbon fibers composite materials.  

This constitutive model is able to describe behavior of unidirectional or woven composite materials 
under cyclic quasi-static shear loading. One of the main advantages of the proposed model is that the 
elasto plastic damage model [6] and strain rate dependent model [16] are classic and are completed by 
the fractional derivative model. The numerical implementation is simple and the computational cost is 
low. This model could be easily used for a wide range of applications such as the thermo-mechanical 
finite element simulations of a fatigue test. 
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