
HAL Id: hal-01240721
https://hal.science/hal-01240721

Submitted on 9 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic logic of propositional assignments : a
well-behaved variant of PDL

Philippe Balbiani, Andreas Herzig, Nicolas Troquard

To cite this version:
Philippe Balbiani, Andreas Herzig, Nicolas Troquard. Dynamic logic of propositional assignments :
a well-behaved variant of PDL. 28th Annual IEEE/ACM Symposium on Logic in Computer Science
(LICS 2013), Jun 2013, New Orleans, LA, United States. pp.143-152, �10.1109/LICS.2013.20�. �hal-
01240721�

https://hal.science/hal-01240721
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12432

The contribution was presented at LICS 2013 :
http://lics.rwth-aachen.de/lics13/

Official URL: http://dx.doi.org/10.1109/LICS.2013.20

To cite this version : Balbiani, Philippe and Herzig, Andreas and Troquard, Nicolas
Dynamic logic of propositional assignments : a well-behaved variant of PDL. (2013)
In: 28th Annual IEEE/ACM Symposium on Logic in Computer Science (LICS 2013),
25 June 2013 - 28 June 2013 (New Orleans, LA, United States).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Dynamic logic of propositional assignments:

a well-behaved variant of PDL

Philippe Balbiani

Université de Toulouse and CNRS, IRIT

Toulouse, France

Email: Philippe.Balbiani@irit.fr

Andreas Herzig

Université de Toulouse and CNRS, IRIT

Toulouse, France

Email: Andreas.Herzig@irit.fr

Nicolas Troquard

LOA-ISTC-CNR

Trento, Italy

Email: troquard@loa.istc.cnr.it

Abstract—We study a version of Propositional Dynamic Logic
(PDL) that we call Dynamic Logic of Propositional Assignments
(DL-PA). The atomic programs of DL-PA are assignments of
propositional variables to true or to false. We show that DL-PA

behaves better than PDL, having e.g. compactness and eliminabil-
ity of the Kleene star. We establish tight complexity results: both
satisfiability and model checking are EXPTIME-complete.

I. Introduction

Dynamic logics are logics to reason about imperative pro-

grams. Their language extends that of propositional logic by

modalities 〈π〉, one per program π. Programs are either atomic

or complex, the latter being built by means of sequential

and nondeterministic composition, test and iteration (‘Kleene

star’). The models of PDL are transition systems: each tran-

sition is labeled with the name of an atomic program and

indicates the possible execution of an atomic program from

one state to another. The modal formula 〈π〉ϕ is true at state s if

there is an execution of π from s leading to a state satisfying ϕ.

The basic dynamic logic is Propositional Dynamic Logic

(PDL). Its atomic programs are abstract: they are just letters

a, b, . . . from some alphabet. Thus “PDL abstracts away from

the nature of the domain of computation and studies the pure

interaction between programs and propositions” [1, p. 147].

In contrast, the atomic programs of first-order dynamic logic

are concrete, viz., assignments of object variables to terms [1,

ch. 11]. They capture assignments as used in programming

languages. We are here interested in a different kind of

assignments: assignments of propositional variables to truth

values, for short: propositional assignments. We write +p and

−p for such assignments, where p is a propositional variable.

Only few authors studied such propositional assignments.

The first were Meyer and Winklmann, who considered both

assignments of object variables and assignments of propo-

sitional variables [2]. Tiomkin and Makowsky focused on

propositional assignments [3]. They augmented the language

of PDL with two kinds of propositional assignments: local

and global. Local assignments modify the truth value of a

propositional variable at the actual state of a Kripke model

and leave its value unchanged elsewhere. Global assignments

modify the value of a propositional variable everywhere in a

Kripke model. Besides these two distinct kinds of assignments,

their logic still contains abstract atomic programs a, b, . . .

They establish that the logic embeds first-order dynamic

logic [3]. It is perhaps due to the ensuing undecidability

result that dynamic logics with propositional assignments did

not gain much traction, despite their putative usefulness for

modelling concrete properties of computational systems. A

notable exception is Wilm’s decidable Propositional Program

Logic PPL [4]. PPL is a dynamic logic with deterministic

atomic programs (alias ‘Strict PDL’), plus nondeterministic

composition “∪”, plus Tiomkin and Makowsky’s global propo-

sitional assignments. (So PPL has abstract atomic programs

just as Tiomkin and Makowsky’s logic.) Wilm showed that

the Kleene star operator can be simulated in PPL.

More recently, dynamic logics with assignments but with-

out abstract programs were investigated, chiefly in logics

of agents, as variants of dynamic epistemic logics (DEL).

The basic version of DEL is Public Announcement Logic

(PAL). PAL extends multi-agent epistemic logic with dynamic

operators whose arguments are truthful public announcements

of propositions. Epistemic riddles and cryptographic protocols

were successfully modelled in PAL (see e.g. [5]). It was

extended by public assignments in [6]–[8], which model how

agents’ knowledge changes when some propositional variable

is publicly assigned to true or to false. None of these papers

explored the program operators of PDL. Again, the designated

culprit is an issue of computability: Miller and Moss showed

that the addition of the PDL program connectives to PAL yields

an undecidable logic [9].

In this paper we revisit the logic of propositional assign-

ments. Contrarily to Tiomkin and Makowsky, our language

has no abstract programs; Contrarily to the approaches in

the PAL tradition, it does not have epistemic operators. We

call our logic Dynamic Logic of Propositional Assignments,

abbreviated DL-PA. We present it in Section II. We briefly

compare it to PDL in Section III, showing that it can be viewed

as an instantiation of PDL with assignment programs.

The star-free version of DL-PA was previously studied by

van Eijck [10] and recently put to use in [11]. Van Eijck

gave an axiomatisation of star-free DL-PA and stated that the

addition of the Kleene star does not increase the expressivity

because “an arbitrary [program] π∗ only affects a finite number

of atomic propositions”. He however observes that “[f]inding

an efficient method for translating π∗ [programs] into ∗-free

form is another matter”. In Section IV we show that the Kleene

star can be constructively eliminated in DL-PA, providing thus

a procedure reducing DL-PA to its star-free fragment. From

this, decidability of the satisfiability problem follows. Our re-

sult contrasts with both Miller and Moss’s undecidability result

for the extension of PAL by the PDL program connectives and

with Tiomkin and Makowsky’s undecidability result for the

extension of PDL by local assignments.

But the decidability of DL-PA is not to be doubted given the

nature of its models: its semantics does not require a transition

system, given that there is no need for an accessibility relation

interpreting abstract actions. Models are in fact made up

of a single state, i.e., a valuation of classical propositional

logic. Propositional assignments then update these valuations

in the obvious way. Being able to do PDL-style reasoning

whilst relying on such ‘degenerate’, succinctly specified mod-

els, has an immediate practical advantage when modelling a

computational system. Indeed, it is folklore that modelling

a distributed system is typically achieved by a transition

system of size exponential in the number of variables. The

applicability of verification via model checking is then imme-

diately compromised: a system designer cannot realistically

be expected to even represent the model, let alone verify it.

Instead, the modelling of a system in view of verification with

DL-PA is confined to the initial state of affairs. Naturally,

quite some modelling effort is shifted to the query, which

needs to represent the dynamic constraints of the relevant

variables. But it happens that it often does not impact much

the size of the whole input to a model checking procedure.

We exemplify this by efficiently mapping the instances of a

variant of a decision problem concerning the game Peek [12]

into instances of the DL-PA model checking. Stockmeyer

and Chandra showed that deciding the former is provably

difficult. Thus, unfortunately, it also means that there is a

price to pay for this comparatively effortless modelling task:

the computational complexity of model checking with DL-PA

is EXPTIME-complete. In contrast, the complexity of model

checking a transition system with PDL is PTIME-complete. As

we shall show, the complexity of DL-PA satisfiability checking

remains EXPTIME-complete, which is also the complexity of

PDL.1 Under a commonly accepted conjecture in complexity

theory, this indicates that van Eijck’s problem does not have a

full solution: there is probably no efficient method to eliminate

the Kleene star from DL-PA. We introduce Peek in Section V,

and provide the lower bounds for the model checking and

satisfiability checking problems. Section VI addresses the

upper bounds.

In Section VII we discuss the extensions of DL-PA with

assignments of any formula as atomic programs (and not

just true and false) and with converse as a new program

construct. In Section VIII we investigate the tight relationship

of DL-PA with Coalition Logic of Propositional Control and

Delegation (DCL-PC) [13], correcting a mistake in [13] about

the complexity of DCL-PC.

1This corrects an error in the published version of [11] that was already
signaled by an erratum of a few lines on the IJCAI website.

II. DL-PA: dynamic logic of propositional assignments

In this section we define syntax and semantics of dynamic

logic of propositional assignments DL-PA.

A. Language

Throughout the paper, P = {p, q, . . .} denotes a (fixed)

countable set of propositional variables. The language of

DL-PA is defined by the following grammar:

π F +p | −p | π; π | π ∪ π | π∗ | ϕ?

ϕ F p | ⊤ | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ

where p ranges over P. So atomic programs are of the

form +p or −p. In a few places we will use the expression

±p to talk economically about +p and −p. The operators

of sequential composition (“;”), nondeterministic composition

(“∪”), unbounded iteration (“∗”, the Kleene star), and test (“?”)

are familiar from PDL.

The program skip abbreviates ⊤? (“nothing happens”). We

use the abbreviation πn with the obvious meaning. We also

use bounded iteration “π≤n”, i.e., iteration up to integer n, as

a macro for
⋃

k≤n π
k. A program is said to be sequential if it

is built up from atomic programs and tests by means of the

operator “;”.

We abbreviate the logical connectives ∧, → and ↔ in the

usual way. Aside the dynamic operator 〈π〉, we also use its

dual: [π]ϕ abbreviates ¬〈π〉¬ϕ.

The length of a formula ϕ, noted |ϕ|, is the number of sym-

bols used to write down ϕ in the primitive language, without

〈, 〉, and parentheses. For example, |q ∧ r| = |¬(¬q ∨ ¬r)| = 6.

The length of a program π, noted |π|, is defined in the same

way. For example, |−p; p?| = 5. Also |〈+q〉(q ∧ r)| = 2+6 = 8.

We define Pϕ to be the set of variables from P occurring in

formula ϕ, and we define Pπ to be the set of variables from P

occurring in program π. For example, P−p∪+q = {p, q} = P〈−p〉q.

B. Semantics

Models of DL-PA are nothing but models of classical

propositional logic.

Definition 1. A valuation is a subset of the set of propositional

variables P. The size of a valuation v is the cardinality of v.

DL-PA programs are interpreted by means of a (unique)

relation between valuations: atomic programs +p and −p

update valuations in the obvious way, and complex programs

are interpreted just as in PDL by mutual recursion. Table I

gives the interpretation of the DL-PA connectives.

Definition 2. A formula ϕ is DL-PA valid if ||ϕ|| = 2P, and ϕ

is DL-PA satisfiable if ||ϕ|| , ∅.

DL-PA validity and DL-PA satisfiability are defined as usual.

For example, the formulas 〈+p〉⊤ and 〈+p〉ϕ↔ ¬〈+p〉¬ϕ are

DL-PA valid. Other examples of DL-PA validities are 〈+p〉p

and 〈−p〉¬p. Observe that if p does not occur in ϕ then both

ϕ → 〈+p〉ϕ and ϕ → 〈−p〉ϕ are valid. This is due to the

following semantical property that we will use a few times in

this paper.

||+p|| =
{

(v, v′) : v′ = v ∪ {p}
}

||−p|| =
{

(v, v′) : v′ = v \ {p}
}

||π; π′ || = ||π|| ◦ ||π′ ||

||π ∪ π′ || = ||π|| ∪ ||π′ ||

||π∗ || =
⋃

k∈N0

(||π||)k

||ϕ?|| = {(v, v) : v ∈ ||ϕ||}

||p|| = {v : p ∈ v}

||⊤|| = 2P

||⊥|| = ∅

||¬ϕ|| = 2P \ ||ϕ||

||ϕ ∨ ψ|| = ||ϕ|| ∪ ||ψ||

||〈π〉ϕ|| = {v : there is v′ s.t. (v, v′) ∈ ||π|| and v′ ∈ ||ϕ||}

TABLE I
Interpretation of the DL-PA connectives

Proposition 1. Suppose p < Pϕ, i.e., p does not occur in ϕ.

Then v ∪ {p} ∈ ||ϕ|| iff v \ {p} ∈ ||ϕ||.

The next proposition shows that the model checking prob-

lem can be reduced in logarithmic space to the satisfiability

problem.

Proposition 2. For every valuation v and formula ϕ, v ∈

||ϕ|| iff the formula

ϕ ∧



















∧

p∈Pϕ∩v

p



















∧



















∧

p∈Pϕ\v

¬p



















is DL-PA satisfiable.

Definition 3. Two formulas ϕ and ϕ′ are formula-equivalent

(or logically equivalent) if ||ϕ|| = ||ϕ′||, i.e., if ϕ ↔ ϕ′ is

DL-PA valid. Two programs π and π′ are program-equivalent,

in symbols π ≡ π′, if ||π|| = ||π′||.

C. Example: the n-bit counter

Here is a DL-PA program implementing an n bit counter. We

need n propositional variables q0, . . . , qn−1. The conjunction

time(0) = ¬qn−1∧· · ·∧¬q1∧¬q0 encodes that the counter has

value zero; time(1) = ¬qn−1∧· · ·∧¬q1∧q0 encodes value one;

time(2n − 1) = qn−1 ∧ · · · ∧ q1 ∧ q0 encodes 2n−1. Let time(N)

encode that the counter has value N.

Here is a program incrn incrementing the n bit counter until

2n−1 is attained and then fails:

incrn = ¬(qn−1 ∧ · · · ∧ q0)?;
















⋃

0≤k≤n−1

(¬qk ∧ qk−1 · · · ∧ q0?;+qk;−qk−1; · · · ;−q0)

















Observe that the length of incrn is quadratic in n. Observe
moreover that the formula

time(0) → [incrn
∗]
∧

N<2n−1

(

time(N) → (〈incrn〉⊤ ∧ [incrn]time(N+1))
)

and the formula

[incrn
∗]
(

time(2n−1) → [incrn]⊥)
)

are both DL-PA valid. The reader may check that the counter

indeed runs from zero to 2n−1 and then fails: the formula

¬qn−1 · · · ∧ ¬q0 → 〈incrn
∗〉
(

qn−1 · · · ∧ q0 ∧ [incrn]⊥
)

is DL-PA valid.

III. Relation with PDL

Let us briefly recall PDL. Its grammar has exactly the

same form as that of our DL-PA, except that PDL has a

countable set Π0 of abstract atomic programs instead of the

DL-PA assignments +p and −p. The models of PDL are

triples M = (W,R,V) where W is a nonempty set of states,

R : Π0 −→ 2W×W associates with every atomic program

π0 ∈ Π0 an accessibility relation R(π0) on W, and V : W −→ 2P

associates with every state a subset of P. We write M,w
 ϕ

when the PDL formula ϕ is true at state w of model M.

For the sake of comparison, suppose the set of atomic

programs Π0 contains {+p : p ∈ P}∪ {−p : p ∈ P}. Then the

set of DL-PA validities obviously contains the set of PDL va-

lidities. To see this, build the Kripke model MDL-PA = (W,R,V)

such that W = 2P, V is the identity function, and such that if π0

is of the form +p or −p then (v1, v2) ∈ R(π0) iff (v1, v2) ∈ ||π0||;

we can prove that for every valuation v and DL-PA formula

ϕ we have v ∈ ||ϕ|| iff MDL-PA, v
 ϕ. So when ϕ ↔ ϕ′ is

PDL valid then ϕ and ϕ′ are formula-equivalent in DL-PA.

The converse does not hold: for instance, 〈+p〉⊤ ↔ ⊤ is valid

in DL-PA, but not in PDL.

As to program equivalence, let us say that programs π and

π′ are program-equivalent in PDL if for every model M =

(W,R,V) we have R(π) = R(π′). Clearly, when π and π′ are

program-equivalent in PDL then π and π′ are also program-

equivalent in DL-PA. Again, the converse does not hold; to

witness, +p;+q and +q;+p are program equivalent in DL-PA,

but not in PDL.

We are going to show in Sections V and VI that both the

model checking and the satisfiability problem of DL-PA have

the same complexity as the satisfiability problem of PDL. The

proof involves a polynomial embedding of DL-PA into PDL

(Section VI, Proposition 16).

IV. Constructive eliminability of the Kleene star

In this section we show how dynamic operators can be

eliminated from formulas. The key step is the elimination of

the star operator. This allows us to establish decidability of

satisfiability (Section IV-C) and compactness (Section IV-D).

A. Some remarkable properties

We now state some properties of DL-PA that already hold

for PDL. We say that a program is star-free if it does not

contain the Kleene star “∗”. We recall that in star-free PDL, the

program operators can be entirely eliminated from formulas.

Proposition 3. The following formula equivalences are DL-PA

valid.

〈π; π′〉ϕ↔ 〈π〉〈π′〉ϕ

〈π ∪ π′〉ϕ↔ 〈π〉ϕ ∨ 〈π′〉ϕ

〈ψ?〉ϕ↔ ψ ∧ ϕ

〈π≤0〉ϕ↔ ϕ

〈π≤n+1〉ϕ↔ ϕ ∨ 〈π〉〈π≤n〉ϕ

Program equivalence is a congruence relation w.r.t. ‘;’ and

‘∪’: if π1 ≡ π′
1

and π2 ≡ π′
2

then both π1; π2 ≡ π′
1
; π′

2
and

π1 ∪ π2 ≡ π
′
1
∪ π′

2
.

Proposition 4. The following program equivalences are

DL-PA valid.

π ; (π′; π′′) ≡ (π; π′) ; π′′ (1)

π ; (π′ ∪ π′′) ≡ (π; π′) ∪ (π; π′′) (2)

(π ∪ π′) ; π′′ ≡ (π; π′′) ∪ (π′; π′′) (3)

ϕ? ; ψ? ≡ ϕ ∧ ψ? (4)

skip; π ≡ π (5)

π ; ϕ? ≡ 〈π〉ϕ? ; π if π is sequential (6)

(ϕ?; π) ∪ π ≡ π (7)

ϕ? ∪ ¬ϕ? ≡ skip (8)

π≤0 ≡ skip (9)

π≤n+1 ≡ skip ∪ π; π≤n (10)

Proposition 5. In DL-PA, if ϕ and ϕ′ are formula-equivalent

then ϕ? and ϕ′? are program-equivalent.

Proposition 6. In DL-PA, if π and π′ are program-equivalent

then 〈π〉ϕ and 〈π′〉ϕ are formula-equivalent.

Proposition 7. Let ǫ be an expression (either a formula or

a program). Let π be a program occurring in ǫ. Let ǫ′ be

obtained from ǫ by replacing some occurrence of π by π′. If

π and π′ are program-equivalent then ǫ and ǫ′ are (program

or formula) equivalent.

Proof: The proof is a routine induction on the length of

the expression ǫ. For the case ǫ = ϕ? we use Proposition 5,

and for the case ǫ = 〈π〉ϕ we use Proposition 6.

We call a program a conditioned sequence of assignments

if it is of the form

ϕ?; π1; · · · ; πn, for n ≥ 0

where every πk is an atomic program. When n = 0 we identify

the sequence with ϕ?.

Proposition 8. In DL-PA, every star-free program π is

program-equivalent to the nondeterministic composition of

conditioned sequences of assignments.

Proof: We start by distributing “;” over ‘∪’, applying the

program equivalences (2) and (3) of Proposition 4. The result

is a nondeterministic composition of sequential programs. In

each of these sequences we shift tests to the left and then

group together test sequences into a single test, applying the

program equivalences (6) and (4) of Proposition 4. The result

is a nondeterministic composition of conditioned assignment

sequences of the form

(ϕ1?; π1) ∪ · · · ∪ (ϕn?; πn)

where each πk is a (possibly empty) sequence of atomic

programs.

The next proposition is pivotal: it states a sufficient condi-

tion for the eliminability of the Kleene star.

Proposition 9. Let π be a program of the form ϕ1?; π1 ∪ · · · ∪

ϕn?; πn such that for every k,m ≤ n we have πk; πm ≡ πm. Then

π∗ ≡ π≤n.

Proof: It suffices to prove that π≤n+1 ≡ π≤n. Consider any

sequence of length n+1; such a sequence necessarily contains

a repetition of some ϕk?; πk. Take for example the following

sequence σ of length n + 1 wherein ϕ1?; π1 occurs twice:

σ = ϕ1?; π1;ϕ2?; π2;ϕ3?; π3; · · · ;ϕn?; πn;ϕ1?; π1.

We show that σ is subsumed by π≤n, in the sense that σ∪π≤n ≡

π≤n. Our proof makes extensive use of Proposition 7.

We first use the program equivalence π1;ϕ2? ≡ 〈π1〉ϕ2? ; π1

(which is an instance of program equivalence (6) of Proposi-

tion 4) to push the second test to the left: we rewrite σ to

ϕ1?; 〈π1〉ϕ2? ; π1; π2;ϕ3?; π3; · · · ;ϕn?; πn;ϕ1?; π1.

Pushing the third test leftwards we obtain:

ϕ1?; 〈π1〉ϕ2?; 〈π1; π2〉ϕ3? ; π1; π2; π3; · · · ;ϕn?; πn;ϕ1?; π1.

Pushing all the tests leftwards in this way, we obtain a

sequence of tests that is followed by π1; · · · ; πn; π1, namely:

ϕ1?; 〈π1〉ϕ2?; · · · ; 〈π1; · · · ; πn−1〉ϕn?; 〈π1; · · · ; πn〉ϕ1? ; π1; · · · ; πn; π1.

By hypothesis, π1; · · · ; πn; π1 ≡ π1. Therefore our program σ

is equivalent to

ϕ1?; 〈π1〉ϕ2?; · · · ; 〈π1; · · · ; πn〉ϕ1? ; π1.

Proposition 4(4) allows us to group all the tests from the

second test on into a single test:

ϕ1? ; (〈π1〉ϕ2 ∧ · · · ∧ 〈π1; · · · ; πn〉ϕ1)? ; π1.

Let us abbreviate 〈π1〉ϕ2 ∧ · · · ∧ 〈π1; · · · ; πn〉ϕ1 by χ. Proposi-

tion 5 and Proposition 4(4) allow us to permute the two tests

ϕ1? and χ1?:

ϕ1?; χ?; π1

is program equivalent to

χ?;ϕ1?; π1.

Finally, the latter is subsumed by the program ϕ1? ; π1, in the

sense that

(χ?;ϕ1?; π1) ∪ (ϕ1?; π1)

is program-equivalent to ϕ1? ; π1 by Proposition 4(7) .

Proposition 10. The following program equivalences are

DL-PA valid:

p?;+p ≡ p?

¬p?;−p ≡ ¬p?

±p;+p ≡ +p

±p;−p ≡ −p

±p;+q ≡ +q;±p if p , q

±p;−q ≡ −q;±p if p , q

The next proposition contains a sufficient condition for the

applicability of Proposition 9.

Proposition 11. Suppose the assignment sequences π and π′

have exactly the same variables, i.e., Pπ = Pπ′ . Then π; π′ is

program-equivalent to π′.

Proof: This follows by iterated application of the program

equivalences for assignments of Proposition 10.

The next proposition tells us how we can add ‘dummy’

assignments in order to ensure that two assignment sequences

are about the same variables.

Proposition 12. Every program π is program-equivalent to

(p?;+p; π) ∪ (¬p?;−p; π).

Proof: By Proposition 4(5), π is equivalent to skip; π.

By Proposition 4(8), the latter is equivalent to

(p? ∪ ¬p?); π.

By distribution of “;” over “∪” (Proposition 4(3)) this is

equivalent to

(p?; π) ∪ (¬p?; π).

Finally, the above is program-equivalent to

(p?;+p; π) ∪ (¬p?;−p; π)

due to the first two program equivalences of Proposition 10.

Note that each of the above steps is correct thanks to

Proposition 7.

Proposition 13 ([10]). The following formula equivalences

are DL-PA valid.

〈±p〉⊤ ↔ ⊤

〈±p〉⊥ ↔ ⊥

〈±p〉¬ϕ↔ ¬〈±p〉ϕ

〈±p〉(ϕ1 ∨ ϕ2) ↔ 〈±p〉ϕ1 ∨ 〈±p〉ϕ2

〈+p〉q ↔















⊤ if q = p

q otherwise

〈−p〉q ↔















⊥ if q = p

q otherwise

B. Elimination of the Kleene star

We now give a procedure eliminating the Kleene star

from formulas. This contrasts with PDL where elimination is

impossible. Our procedure has three steps.

1) Take some innermost star-operator, i.e., some π∗ such

that π is star-free. Transform π into the nondeterministic

composition of conditioned sequences of assignments

π′ = (ϕ1?; π1) ∪ · · · ∪ (ϕn?; πn)

where every πk is a sequence of assignments.

2) Make all the assignment sequences πk assign exactly the

same variables: replace πk by (p?;+p; πk)∪(¬p?;−p; πk)

whenever p < Pπk
and p ∈ Pπl

for some l ≤ n, and

put the result again in the form of a nondeterministic

composition of conditioned assignment sequences. We

obtain therefore a program of the form

π′′ = (ϕ′′1 ?; π′′1) ∪ · · · ∪ (ϕ′′m?; π′′m)

with Pπ′′
1
= · · · = Pπ′′m .

3) Replace (π′′)∗ by (π′′)≤m.

The first step preserves program equivalence by Proposi-

tion 8. The second step does so because of Proposition 12

(to be applied at most n times per assignment sequence).

The third step is guaranteed by Proposition 9, which applies

because of Proposition 11: when the assignment sequences

π and π′ have exactly the same variables then π; π′ ≡ π′.

All three steps preserve formula equivalence: the formulas

resulting from replacement of the program equivalences are

formula-equivalent thanks to Proposition 7.

Summing up, in the first three steps we have succeeded in

eliminating an innermost star-operator. By iterating these three

steps we eliminate star operators entirely from formulas.

Theorem 1. For every DL-PA formula ϕ there exists a formula

ϕ′ without the Kleene star such that ϕ and ϕ′ are formula

equivalent in DL-PA.

C. Deciding satisfiability

Definition 4. The problem of satisfiability checking SAT has

the following input and output.

• Input: a formula ϕ;

• Output:

– true, when ||ϕ|| , ∅;

– false, otherwise.

The decision procedure is as follows:

1) Eliminate the Kleene star from ϕ.

2) Eliminate the sequential and the nondeterministic com-

position operators as well as the test operators.

3) Eliminate all the dynamic operators with assignments.

The first step uses Theorem 1. The second step uses the stan-

dard PDL equivalences of Proposition 3 that we have recalled

in the beginning of Section IV-A. We therefore end up with

formulas having only atomic programs, i.e., assignments. We

can then distribute these dynamic operators over the boolean

operators (using in particular the equivalence for negation

of Proposition 13) and finally eliminate them by the DL-PA

equivalences for assignments of Proposition 13. The resulting

formula has no more dynamic operators, it is equivalent to

the original formula, and its validity or satisfiability may

be checked by means of any theorem prover for classical

propositional logic.

Theorem 2. For every DL-PA formula ϕ there is a proposi-

tional formula ϕ′ such that ϕ↔ ϕ′ is DL-PA valid.

Corollary 1. The problem of satisfiability of a DL-PA formula

is decidable.

Observe that the only principles beyond those of star-free

PDL that we have used in our decision procedure are propo-

sitions 5 and 6 (that allow us to prove Proposition 7 and that

can be viewed as inference rules), the formula equivalences

of Proposition 13 (though the one for disjunctions is already

provable in star-free PDL), and the program equivalences of

Proposition 4. The latter axiom schemes are a bit unusual:

they do not have the form of formulas but that of program

equivalences. Together, these principles provide a complete

but somewhat non-standard axiomatisation of DL-PA.

D. Compactness and interpolation

In PDL, there are two ways to define the consequence

relation |= between a set of formulas Γ and a formula ϕ. In

contrast, in DL-PA there is only one way to do so: ϕ is a

consequence of Γ iff
⋂

ψ∈Γ ||ψ|| ⊆ ||ϕ||. In other words, for

every valuation v, if v ∈ ||ψ|| for every ψ ∈ Γ then v ∈ ||ϕ||.

Compactness of the DL-PA consequence relation immediately

follows from Theorem 2.

Theorem 2 also helps us to prove the interpolation property

for DL-PA. We actually need a slightly stronger version

guaranteeing that the propositional formula that is equivalent

to ϕ has the same propositional variables as ϕ.

Theorem 3. For every DL-PA formula ϕ there is a proposi-

tional formula ϕ′ such that Pϕ′ = Pϕ, and ϕ ↔ ϕ′ is DL-PA

valid.

Proof: All the rewriting rules of the procedure underlying

Theorem 2 preserve the variables, except those for subformulas

of the form 〈±p〉⊤, 〈±p〉⊥, 〈+p〉q, and 〈−p〉q. The equivalences

for the latter eliminate propositional variables. Fortunately they

have variants that preserve variables and that are also valid:

〈±p〉⊤ ↔ p ∨ ¬p

〈±p〉⊥ ↔ p ∧ ¬p

〈+p〉q ↔















p ∨ ¬p if q = p

q ∧ (p ∨ ¬p) otherwise

〈−p〉q ↔















p ∧ ¬p if q = p

q ∧ (p ∨ ¬p) otherwise

Now an interpolant of ψ |= ϕ can be obtained by rewriting

ϕ and ψ to propositional ϕ′ and ψ′ in a way such that

their respective languages are preserved. By the interpolation

property for propositional logic, there exists an interpolant χ

of ψ′ |= ϕ′. As the new equivalences are language-preserving,

χ is also an interpolant of ψ |= ϕ.

V. Complexity of decision problems: lower bounds

We now give complexity results for our logic DL-PA. We

have already defined the problem SAT in Section IV-C; it

remains to define model checking.

Definition 5. The problem of model checking MC has the

following input and output.

• Input: a model v and a formula ϕ such that v ⊆ Pϕ;

• Output:

– true, when v ∈ ||ϕ||;

– false, otherwise.

Note that the constraint v ⊆ Pϕ implies that v is finite. We

are now going to provide lower bounds for both problems.

Theorem 4. The problems of DL-PA model checking and

DL-PA satisfiability are both EXPTIME-hard.

Proof: The result is established for model checking in

Section V-A, and for satisfiability checking in Section V-B.

A. Lower bound for model checking: encoding PEEK

We prove that model checking with DL-PA is EXPTIME-

hard by means of a logarithmic-space reduction of the problem

PEEK-G5 [12] into the problem MC.

PEEK-G5 is in terms of two players E (‘Eloise’, the

existential player) and A (‘Abelard’, the universal player).

Definition 6. An instance of Peek is a tuple PE =

(XE , XA,Φ, v0, τ) where

• XE and XA are finite sets of propositional variables such

that XE∩XA = ∅, where the idea is that Player E controls

the variables in XE and Player A controls the variables

in XA;

• Φ is a propositional formula over XE ∪ XA;

• v0 ⊆ XE∪XA indicates which variables are currently true;

• τ is either A or E, indicating which player makes the next

move.

Informally, each instance PE = (XE , XA,Φ, v0, τ) of Peek

is played as follows. Agents’ turns strictly alternate. At their

respective turn, Player E (resp. A) moves by changing the truth

value of at most one variable of XE (resp. XA) in the current

valuation, either adding or withdrawing it from the valuation.

The game ends when Φ first becomes true. We are considering

PEEK-G5, where Player A cannot move from a situation where

Φ is true, and Player E wins the game if Φ ever becomes

true. We say that Player E has a winning strategy in PE if

she can make a sequence of moves at her turns and ensure to

win whatever the moves made by Player A at his turn. Let us

make this more precise.

The game tree associated with PE is a tree labeled by

valuations such that the root is labeled v0, starting with the

agent τ at the root, all nodes are obtained by E and A

alternatively performing all possible moves. A node is an E

node if it is Eloise’s turn to move, and it is an A node if it is

Abelard’s turn.

A (memoryless) strategy of Eloise is a function from

valuations to actions of E. A branch (n0, n1, n2, . . .) of the game

tree is compatible with Eloise’s strategy sE if and only if for

every E-node nk, the valuation vk+1 labeling nk+1 is obtained

by applying E’s action sE(nk) to the valuation vk.

Eloise has a winning strategy if and only if there is a

strategy sE such that every branch (n0, n1, n2, . . .) of the game

tree that is compatible with sE has a node nk such that

vk ∈ ||Φ||.

Definition 7. The decision problem PEEK-G5 is the following:

• Input: an instance PE = (XE , XA,Φ, v0, τ) of Peek;

• Output:

– true, when Player E has a winning strategy in PE;

– false, otherwise.

Theorem 5 ([12]). PEEK-G5 is EXPTIME-complete.

We prove that deciding the model checking problem MC for

DL-PA is EXPTIME-hard by reducing PEEK-G5 to it. Beyond

the variables of XE∪XA, we use the propositional variables elo

and nowin. The intended meaning of elo is that it is Player E’s

turn to play, whereas the intended meaning of nowin is that

Player E has no winning strategy. Let PE = (XE , XA,Φ, v0, τ)

be an instance of the Peek problem. We associate with it

an instance (v, ϕ) of the MC problem as follows. First, the

valuation v is defined by: if τ = A then v = v0 ∪ {nowin} else

v = v0 ∪ {nowin, elo}. Second, in order to define the formula

ϕ, we need to introduce the following abbreviations:

moveE
def
= elo?;

⋃

x∈XE

(−x ∪ +x);−elo

moveA
def
= ¬elo?;∪y∈XA

(−y ∪ +y);+elo

move
def
= (moveE ∪moveA) ; ((Φ?;−nowin) ∪ ¬Φ?)

Now, we define

ϕ
def
= [move

∗]
(

nowin → (¬Φ∧(elo → [move]nowin)∧

(¬elo → 〈move〉nowin))
)

Obviously, given PE, the computation of (v, ϕ) can be done

in logarithmic space. Moreover,

Lemma 1. PEEK-G5(PE) returns false iff MC(v, ϕ) returns

true.

Informally, the idea is that PEEK-G5(PE) returns false iff

when we assume that Eloise does not have a winning strategy

(by putting nowin in v along with the the initial situation of

PE described by v0), then we can verify that the following is

an invariant in the game-tree starting at v:

“if Eloise has no winning strategy, then (1) at

Eloise’s turn, she has no winning strategy after any

move, (2) at Abelard’s turn, there is a successor node

where Eloise has no winning strategy.”

Proof: Suppose PEEK-G5(PE) returns false: Eloise does

not have a winning strategy in PE. Therefore the nodes of the

game tree associated with PE can be further labeled by nowin

in the following way:

• The root is labeled nowin;

• For E-nodes labeled nowin, each of E’s moves leads to

a node that it labeled nowin;

• For A-nodes labeled nowin, some move of A’s moves

leads to a node that it labeled nowin;

• A node whose valuation satisfies Φ cannot be labeled

nowin.

The root is therefore now labeled by v0∪{nowin} if τ = A and

by v0 ∪ {nowin, elo} if τ = E. Then

[move
∗]
(

nowin → (¬Φ∧(elo → [move]nowin)∧

(¬elo → 〈move〉nowin)))
)

is true at v because move correctly encodes the moves.

Therefore

MC
(

v, [move
∗](nowin → (¬Φ∧(elo → [move]nowin)∧

(¬elo → 〈move〉nowin)))
)

returns true.

The other way round, suppose

MC
(

v, [move
∗](nowin → (¬Φ∧(elo → [move]nowin)∧

(¬elo → 〈move〉nowin)))
)

returns true. Consider the PDL model MDL-PA that we have

built in Section III and focus on the relation R(move). The

alternating application of the actions of E and A that it gives us

directly provides a winning strategy for Abelard at v. Therefore

Eloise cannot have a winning strategy.

Proposition 14. The DL-PA model checking problem is

EXPTIME-hard.

Proof: This follows directly from Lemma 1.

B. Lower bound for satisfiability checking: encoding MC

We finally establish that the problem of satisfiability check-

ing is EXPTIME-hard. Since we have proved in Section

V-A that the model checking problem MC is EXPTIME-hard

(Proposition 14), it suffices to reduce MC to the problem of

satisfiability checking.

Proposition 15. The problem of DL-PA satisfiability checking

is EXPTIME-hard.

Proof: This follows directly from propositions 2 and 14.

We already know that star-free DL-PA is PSPACE-

complete [11]. We can then state the following:

Corollary 2. A logarithmic-space reduction from the DL-PA

satisfiability problem to the satisfiability problem of its star-

free fragment exists iff PSPACE = EXPTIME.

So van Eijck’s problem of finding an efficient method for

translating DL-PA programs into star-free programs has a

positive answer if and only if PSPACE = EXPTIME.

VI. Complexity of decision problems: upper bounds

We are now going to provide upper bounds for the problems

MC and SAT. This establishes that the lower-bounds of Sec-

tion V are tight. While our rewriting procedure of Section IV-C

could be turned into decision procedures for both problems, it

would however lead to upper bounds far beyond those we are

going to establish now.

Theorem 6. The problems of DL-PA model checking and

DL-PA satisfiability are both in EXPTIME.

The proof uses a satisfiability preserving polynomial trans-

formation trPDL(.) from the formulas and programs of DL-PA

to the formulas and programs of PDL. Our translation replaces

each assignment ±p by an abstract program a±p. Precisely it

is defined by recursion as follows:

trPDL(p)
def
= p if p ∈ P

trPDL(+p)
def
= a+p

trPDL(−p)
def
= a−p

and homomorphic for the other formula and program con-

nectives. Observe that the length of every translated formula

trPDL(ϕ) is linear in the length of ϕ.

The abstract programs a±p that occur in a formula ϕ should

behave in the same way as the original assignment ±p. We

achieve this by means of the following set of formulas.

Γϕ = {[a+p]p : p ∈ Pϕ} ∪

{[a−p]¬p : p ∈ Pϕ} ∪

{〈a±p〉⊤ : p ∈ Pϕ} ∪

{q → [a±p]q : p, q ∈ Pϕ, p , q} ∪

{¬q → [a±p]¬q : p, q ∈ Pϕ, p , q}

Observe that for every ϕ, the set Γϕ is finite; its cardinality

is quadratic in the length of ϕ. Each element of Γϕ having

constant length, the length of
∧

Γϕ is quadratic in the length

of ϕ.

Let Uϕ be the program
(

⋃

p∈Pϕ
(a+p ∪ a−p)

)∗
. The modal

operator [Uϕ] plays the role of a master modality in our proof:

given a valuation v, the program Uϕ relates v to every valuation

that is examined during the evaluation of ϕ at v.

Proposition 16. For every DL-PA formula ϕ, ϕ is DL-PA

satisfiable if and only if

trPDL(ϕ) ∧ [Uϕ]
(
∧

Γϕ

)

is PDL satisfiable.

Proof: From the left to the right, let v0 be a DL-PA

valuation such that v0 ∈ ||ϕ||. Define Mϕ = (W,Rϕ,V) where

W = 2P is the set of all valuations, V is the identity function

(i.e., V(v) = v for every v ∈ W), and where the accessibility

relation is as follows for the relevant atomic programs a±p such

that p ∈ Pϕ:

Rϕ(a+p) =
{

(v, v′) : v′ = v ∪ {p}
}

Rϕ(a−p) =
{

(v, v′) : v′ = v \ {p}
}

Furthermore, we set Rϕ(π0) = ∅ for all atomic programs π0 for

which there is no p ∈ Pϕ with π0 = a+p or π0 = a−p. Observe

that Mϕ is indeed a model of PDL as defined in Section III.

We are going to prove that

Mϕ, v0
 trPDL(ϕ) ∧ [Uϕ]
(
∧

Γϕ

)

First, by construction of Mϕ we have Mϕ, v

∧

Γϕ for

every v ∈ W. (In particular, each of the accessibility relations

Rϕ(a±p) is serial.) Therefore Mϕ, v0
 [Uϕ]
(

∧

Γϕ

)

.

It remains to establish that Mϕ, v0
 trPDL(ϕ). We prove

by simultaneous induction on the form of subformula ψ and

program π occurring in ϕ that

1) v ∈ ||ψ|| iff Mϕ, v
 trPDL(ψ) and

2) (v, v′) ∈ ||π|| iff (v, v′) ∈ Rϕ(trPDL(π)).

for all valuations v and v′. When the subformula ψ of ϕ is

atomic then

v ∈ ||p|| iff p ∈ v

iff Mϕ, v
 p.

When the program π occurring in ϕ is of the form +p then

(v, v′) ∈ ||+p|| iff v′ = v ∪ {p}

iff (v, v′) ∈ Rϕ(a+p);

and similarly for −p. For the induction step, the only interest-

ing case is that of the modal operator. We have:

v ∈ ||〈π〉ψ|| iff there is v′ such that (v, v′) ∈ ||π||

and v′ ∈ ||ψ||

iff there is v′ such that (v, v′) ∈ Rϕ(trPDL(π))

and Mϕ, v′
 trPDL(ψ)

(by I.H., twice)

iff Mϕ, v
 〈trPDL(π)〉trPDL(ψ)

iff Mϕ, v
 trPDL(〈π〉ψ)

From the right to the left, let M = (W,R,V) be a PDL model

and let w0 be a state in M such that

M,w0
 trPDL(ϕ) ∧ [Uϕ]
(

∧

Γϕ

)

.

First, observe that M,w
 [Uϕ]
(

∧

Γϕ

)

for every w such that

(w0,w) ∈ R(Uϕ). We therefore have:

• if (w,w′) ∈ R(a+p) then V(w′) ∩ Pϕ =
(

V(w) ∪ {p}
)

∩ Pϕ
• if (w,w′) ∈ R(a−p) then V(w′) ∩ Pϕ =

(

V(w) \ {p}
)

∩ Pϕ.

for every p ∈ Pϕ and every w such that (w0,w) ∈ R(Uϕ). This

allows us to prove by induction on the form of subformula ψ

and program π occurring in ϕ that

1) M,w
 trPDL(ψ) iff V(w) ∈ ||ψ|| and

2) (w,w′) ∈ R(trPDL(π)) iff (V(w),V(w′)) ∈ ||π||

for every w such that (w0,w) ∈ R(Uϕ) and for every w′. For

the three base cases: when the subformula ψ of ϕ is atomic

then

M,w
 trPDL(p) iff p ∈ V(w)

iff V(w) ∈ ||p||;

when the program π occurring in ϕ is of the form +p then

(w,w′) ∈ R(a+p) iff V(w′) = V(w) ∪ {p}

iff (V(w),V(w′)) ∈ ||+p||;

and similarly for −p. For the induction step the only interesting

case is that of the modal operator. We have:

M,w
 trPDL(〈π〉ψ) iff M,w
 〈trPDL(π)〉trPDL(ψ)

iff there is w′ s.t. (w,w′) ∈ R(trPDL(π))

and M,w′

 trPDL(ψ)

iff there is w′ s.t. (V(w),V(w′)) ∈ ||π||

and V(w′) ∈ ||ψ|| (by I.H.)

iff V(w′) ∈ ||〈π〉ψ||

This ends the proof of Proposition 16.

To conclude, Theorem 6 follows from Proposition 16, the

fact that trPDL(.) is a satisfiability preserving polynomial

transformation, and Proposition 2.

VII. Extensions

We now discuss some extensions of our basic logic DL-PA.

A. More general assignments

Our assignments are more restricted than those of [6]–[8].

There, assignments take the form p←ϕ: to p the truth value

of ϕ is assigned, where ϕ is any formula (and not just ⊤ or

⊥ as in our DL-PA).

Programs p←ϕ can be simulated in our language by

(ϕ?;+p)∪(¬ϕ?;−p). This may result in an exponential increase

of formula size. However, an inspection of our proofs shows

that all our complexity results also hold for the richer language

with assignments p←ϕ. It remains to find out whether the

language with general assignments is more succinct.

B. Other program connectives

Our logic can be extended as well by other program

connectives that are familiar from PDL. We briefly discuss

the properties of DL-PA extended with the converse operator

“−”. Its interpretation is ||π−|| = (||π||)−1, where (||π||)−1 is the

inverse of the relation ||π||.

Consider an innermost occurrence π−. Thanks to the pro-

gram equivalences of Section IV, we may suppose that π is

star-free. The converse operator distributes over sequential and

nondeterministic composition in the usual way:

(π1; π2)− ≡ π−2 ; π−1

(π1 ∪ π2)− ≡ π−1 ∪ π
−
2

and when it meets a test or an atomic program it can be

eliminated by means of the following equivalences:

(ψ?)− ≡ ψ?

(+p)− ≡ p? ∪ (p?;−p)

(−p)− ≡ ¬p? ∪ (¬p?;+p)

Converse DL-PA can therefore still be reduced to propositional

logic.

As to complexity, the extension of DL-PA by the converse

operator can be mapped into PDL with converse by extending

the polynomial transformation of Section III in a straightfor-

ward way. Converse PDL being still in EXPTIME [14], it

follows that the satisfiability problem of converse DL-PA is

EXPTIME-complete, too.

VIII. Relationship with the logics of propositional control

It was shown in [11] that star-free DL-PA embeds the logics

based on the idea of propositional control that were recently

studied in the multi-agent literature ([15], [16]). We give their

embedding in Section VIII-A (adapting the presentation to our

notation) and extend it in Section VIII-B in order to show how

full DL-PA relates to Coalition Logic of Propositional Control

and Delegation [13].

A. Coalition logic of propositional control

Models of Coalition Logic of Propositional Control

(CL-PC) have a twofold interpretation of propositional vari-

ables: besides the valuation function v mapping propositional

variables to truth values, there is a control function ξ mapping

each propositional variable to some agent in a finite set of

agents A. Saying that the agent ξ(p) controls p, we mean

that i can set p to true and can set p to false. As ξ is a

function, control is exclusive: for every p there is at most one i

controlling p. As the function ξ is total, control is also assumed

exhaustive: for every p there is at least one i controlling p.

With CL-PC one can model the capabilities of agents and

groups of agents to achieve a state of affairs: in the model

(v, ξ), agent i is capable to achieve ϕ if there exists a valuation

v′ that differs from v only in the interpretation of the variables

that are under i’s control, and is such that ϕ is true in (v′, ξ).

Formally:

||^iϕ|| = { (v, ξ) : there is v′ such that (v′, ξ) ∈ ||ϕ|| and

for every p, if ξ(p) , i then v(p) = v′(p) }

The interpretation of the coalition operator ^J straightfor-

wardly generalises this truth condition.

In star-free DL-PA we can encode agent i’s control over p by

means of a special propositional variable ci,p. Then exclusivity

and exhaustivity of control over a set of variables P ⊆ P are

expressed by:

Exc(P)
def
=
∧

p∈P

∧

i, j∈A,i, j

¬(ci,p ∧ c j,p)

Exh(P)
def
=
∧

p∈P

∨

i∈A

ci,p

Finally, we set a translation tr such that:

tr(p)
def
= p if p ∈ P

tr(^iϕ)
def
= 〈skip ∪ (ci,p1

?;+p1) ∪ (ci,p1
?;−p1)〉 · · ·

〈skip ∪ (ci,pn
?;+pn) ∪ (ci,pn

?;−pn)〉 tr(ϕ)

if Pϕ = {p1, . . . , pn}

and homomorphic for the boolean operators.

The following result corresponds to Theorem 4 in [11].

Proposition 17. A CL-PC formula ϕ is CL-PC satisfiable iff

Exc(Pϕ) ∧ Exh(Pϕ) ∧ tr(ϕ) is (star-free) DL-PA satisfiable.

It is also clear that the lengths of Exc(Pϕ), Exh(Pϕ), and

tr(ϕ) are all polynomial in the length of ϕ. Our translation

therefore provides a polynomial embedding of CL-PC into

DL-PA.

B. Coalition logic of propositional control and delegation

Coalition logic of propositional control and delegation

(DCL-PC) extends CL-PC by dynamic operators of transfer

of control over a propositional variable. They were called

delegation programs in [13], [17], but the term control transfer

program appears to be more appropriate. Atomic control

transfer programs are of the form i{p j and are read “i

transfers his control over p to j”. The intuition is that i{p j

is applicable when i controls p and that it changes the control

function ξ such that j gets control over p (and i looses it,

control being exclusive). Complex delegation programs are

defined by means of the standard PDL operators.

The interpretation of a delegation program is a binary

relation on the set of models of propositional control. For

atomic programs we have:

||i{p j|| =
{

((v, ξ), (v, ξ′)) : ξ(p) = i, ξ′(p) = j, and

ξ(q) = ξ′(q) for q , p
}

The interpretation of complex programs and of formulas is as

usual. The interpretation of 〈π〉ϕ is:

||〈π〉ϕ|| =
{

(v, ξ) : there is (v′, ξ′) such that

((v, ξ), (v′, ξ′)) ∈ ||π|| and (v′, ξ′) ∈ ||ϕ||
}

We extend tr to provide a translation from the richer

language of DCL-PC into the one of DL-PA. The key clauses

are:

tr(〈π〉ϕ)
def
= 〈tr(π)〉tr(ϕ)

tr(ϕ?)
def
= tr(ϕ)?

tr(i{q j)
def
= ci,p? ; −ci,p ; +c j,p

Theorem 7. A DCL-PC formula ϕ is DCL-PC satisfiable iff

Exc(Pϕ) ∧ Exh(Pϕ) ∧ tr(ϕ) is DL-PA satisfiable.

The other way round, DL-PA can also be translated into

DCL-PC if the set of agents contains at least two agents. Let

us call these agents t and f . We then encode truth of p as t con-

trolling p and falsity of p as f controlling p. Then the atomic

assignment +p corresponds to the control transfer program

t{pt ∪ f {pt and −p corresponds to f {p f ∪ t{p f . The

other program connectives and boolean operators of DL-PA

are mapped homomorphically. It is then routine to prove that a

DL-PA formula is DL-PA satisfiable if and only if its translation

into the language of DCL-PC is DCL-PC satisfiable.

It follows that both the model checking problem and the sat-

isfiability problem of DCL-PC are EXPTIME-hard. Provided

that PSPACE , EXPTIME, this contradicts the claim in [13]

that both are PSPACE-complete.2

IX. Conclusion

Our logic DL-PA is an interesting alternative to PDL. On

the one hand, we can basically reason about the same kind of

phenomena as in PDL: programs changing the truths of the

world. This is demonstrated by the example of the counter

of Section II-C and also by our encoding of the PEEK

problem in Section V-A; this is also demonstrated by the

2The model checking algorithm in [13] is claimed to work in nondeter-
ministic space (NPSPACE, which is the same complexity class as PSPACE).
The algorithm consists in two mutually recursive procedures calling each
other that decompose formulas according to the truth conditions: a procedure
deciding whether (v, ξ) ∈ ||ϕ|| [13, Fig. 8] and a procedure deciding whether
(ξ, ξ′) ∈ ||π|| [13, Fig. 7]. However, that algorithm in fact requires alternating
space (APSPACE).

embeddings of Coalition Logic of Propositional Control that

we have mentioned in Section VIII. On the other hand, the

mathematical properties of DL-PA are better than those of

PDL: DL-PA is compact, has the interpolation property, and

the Kleene star can be eliminated.

Acknowledgment

We are grateful to a reviewer whose detailed comments

helped improve the presentation. First and second authors

acknowledge the support of the ANR 11 BS02 011 03 grant

(project DynRes), while the third author acknowledges the

support of the program Marie Curie People Action Trentino

(project LASTS).

References

[1] D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic. MIT Press, 2000.
[2] A. R. Meyer and K. Winklmann, “On the expressive power of dynamic

logic (preliminary report),” in STOC, M. J. Fischer, R. A. DeMillo, N. A.
Lynch, W. A. Burkhard, and A. V. Aho, Eds. ACM, 1979, pp. 167–175.

[3] M. L. Tiomkin and J. A. Makowsky, “Propositional dynamic logic with
local assignments,” Theor. Comput. Sci., vol. 36, pp. 71–87, 1985.

[4] A. Wilm, “Determinism and non-determinism in PDL,” Theor. Comput.

Sci., vol. 87, no. 1, pp. 189–202, 1991.
[5] H. v. Ditmarsch, “The Russian cards problem,” Studia Logica, vol. 75,

no. 1, pp. 31–62, 2004.
[6] H. P. v. Ditmarsch, W. v. d. Hoek, and B. Kooi, “Dynamic epistemic

logic with assignment,” in Proc. AAMAS’05, 2005, pp. 141–148.
[7] B. Kooi, “Expressivity and completeness for public update logic via

reduction axioms,” Journal of Applied Non-Classical Logics, vol. 17,
no. 2, pp. 231–253, 2007.

[8] H. P. v. Ditmarsch, A. Herzig, and T. d. Lima, “From Situation Calculus
to Dynamic Logic,” Journal of Logic and Computation, vol. 21, no. 2,
pp. 179–204, 2011.

[9] J. S. Miller and L. S. Moss, “The undecidability of iterated modal
relativization,” Studia Logica, vol. 79, no. 3, pp. 373–407, 2005.

[10] J. v. Eijck, “Making things happen,” Studia Logica, vol. 66, no. 1, pp.
41–58, 2000.

[11] A. Herzig, E. Lorini, F. Moisan, and N. Troquard, “A dynamic logic
of normative systems,” in International Joint Conference on Artificial

Intelligence (IJCAI), T. Walsh, Ed. Barcelona: IJCAI/AAAI, 2011, pp.
228–233, erratum at http://www.irit.fr/∼Andreas.Herzig/P/Ijcai11.html.

[12] L. J. Stockmeyer and A. K. Chandra, “Provably difficult combinatorial
games,” SIAM J. Comput., vol. 8, no. 2, pp. 151–174, 1979.

[13] W. v. d. Hoek, D. Walther, and M. Wooldridge, “On the logic of
cooperation and the transfer of control,” J. of AI Research (JAIR), vol. 37,
pp. 437–477, 2010.

[14] G. De Giacomo and F. Massacci, “Combining deduction and model
checking into tableaux and algorithms for converse-PDL,” Information

and Computation, vol. 162, no. 1–2, pp. 117–137, 2000.
[15] W. v. d. Hoek and M. Wooldridge, “On the logic of cooperation and

propositional control,” Artif. Intell., vol. 164, no. 1-2, pp. 81–119, 2005.
[16] J. Gerbrandy, “Logics of propositional control,” in 5th International

Joint Conference on Autonomous Agents and Multiagent Systems (AA-

MAS 2006), H. Nakashima, M. P. Wellman, G. Weiss, and P. Stone, Eds.
ACM, 2006, pp. 193–200.

[17] W. v. d. Hoek and M. Wooldridge, “On the dynamics of delegation,
cooperation and control: a logical account,” in Proc. AAMAS’05, 2005.

