
HAL Id: hal-01240714
https://hal.science/hal-01240714

Submitted on 9 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Independence of Failures in BFT
Ali Shoker, Jean-Paul Bahsoun, Maysam Yabandeh

To cite this version:
Ali Shoker, Jean-Paul Bahsoun, Maysam Yabandeh. Improving Independence of Failures in BFT.
12th IEEE International Symposium on Network Computing and Applications (NCA 2013), Aug
2013, Cambridge, MA, United States. pp.227-234. �hal-01240714�

https://hal.science/hal-01240714
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12525

The contribution was presented at NCA 2013 :
http://www.ieee-nca.org/

Official URL: http://dx.doi.org/10.1109/NCA.2013.22

To cite this version : Shoker, Ali and Bahsoun, Jean-Paul and Yabandeh, Maysam
Improving Independence of Failures in BFT. (2013) In: 12th IEEE International
Symposium on Network Computing and Applications (NCA 2013), 22 August
2013 - 24 August 2013 (Cambridge, MA, United States).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Improving Independence of Failures in BFT
Ali Shoker∗ , Jean-Paul Bahsoun∗ and Maysam Yabandeh†

∗IRIT, Toulouse, France, Email: firstName.lastName@irit.fr
† QCRI, Qatar, Email: myabandeh@qf.org.qa

Abstract—Independence of failures is a basic assumption for
the correctness of BFT protocols. In literature, this subject
was addressed by providing N-version like abstractions. Though
this can provide a good level of obfuscation against semantic-
based attacks, if the replicas know each others identities then
non-semantic attacks like DoS can still compromise all replicas
together. In this paper, we address the obfuscation problem
in a different way by keeping replicas unaware of each other.
This makes it harder for attackers to sneak from one replica
to another and reduces the impact of simultaneous attacks on
all replicas. For this sake, we present a new obfuscated BFT
protocol, called OBFT, where the replicas remain unaware of
each other by exchanging their messages through the clients.
Thus, OBFT assumes honest, but possibly crash-prone clients.
We show that obfuscation in our context could not be achieved
without this assumption, and we give possible applications where
this assumption can be accepted. We evaluated our protocol on an
Emulab cluster with a wide area topology. Our experiments show
that the scalability and throughput of OBFT remain comparable
to existing BFT protocols despite the obfuscation overhead.

Keywords—Byzantine fault tolerance, obfuscated BFT, indepen-
dence of failures.

I. INTRODUCTION

Byzantine fault tolerance [1] (simply BFT) is a replication
technique with the aim of tolerating arbitrary failures. State-
machine based services [2] are deployed on replicas in par-
tially synchronous systems [3]. At most a fraction, often one
third, of the replicas are assumed to be faulty [4], [5].

Independence of failures is a major assumption for the
correctness of BFT protocols. Existing protocols [5], [6], [7],
[8], [9], [10] take this assumption for granted. In fact, if
system replicas are identical then failures are likely to occur
on all of them. This compromises the correctness of the
system since any assumption about the maximum fraction
of Byzantine replicas, e.g., one third, cannot be guaranteed.
Many solutions were proposed to improve independence of
failures of BFT protocols using N-version like obfuscation
abstractions as in [11] and [12]. Indeed, these solutions can
provide a good level of obfuscation through running different
implementation versions on different replicas; however, non-
semantic attacks like DoS could not be completely handled by
these solutions. We argue that if system replicas are known
to each other, then one replica can leak information about the
others and, consequently, compromising one replica will likely
compromise the others.

In this work, we address the obfuscation problem in a
different way. We try to make replicas completely independent
from each other through removing inter-replica interaction
from the communication logic. Using obfuscation abstractions

like [11] and [12] together with our work can lead higher
independence of failures. Thus, we do not claim to replace
existing solutions, but we do complete their work. In [13], the
authors came to a conclusion that client-based BFT protocols
ensure higher level of independence. On the contrary, most
classical BFT protocols [5], [7], [8], [9], [10] rely on inter-
replica communication to reach agreement. Even existing pro-
tocols known as client-based, like Q/U [6] and Quorum [9], are
not completely client-based since under failures they require
replicas to interact directly to resolve the conflict.

In this paper, we propose a new BFT protocol, called OBFT
(Obfuscated BFT), that avoids any direct inter-replica com-
munication. Instead, replicas interact with each other through
a trusted third party which is the client in our case. Since
clients play a crucial role in OBFT, we do assume they can
not be malicious, though they can fail by crashing. In fact, to
maintain obfuscation in our context, i.e., avoiding inter-replica
communication, the client must not be malicious; otherwise, a
malicious client can violate consistency. The proof is simple:
the client can send two different requests to two distinct subsets
of the replicas and behaves against each subset as if there
was a single request, thus causing different object versions on
different replicas to deviate.

We argue that this assumption makes sense for applications
where the customers are trusted members of the same orga-
nization; e.g., airline ticketing services that provide access to
different agencies. In airline ticketing system, the company
hosts its service on independent replicas. It allows access
for the ticketing agencies. The ticketing agencies access the
airline service via their secured and trusted servers, which
are viewed as trusted clients by the BFT airline service.
Another problem arises when a trusted client gets attacked,
since access information about the replicas will be exposed.
We propose a possible solution to this issue using anonymous
communication in Section V where replica IPs remain hidden.

OBFT requires 3f+1 replicas in order to tolerate f Byzan-
tine faults. A client in OBFT communicate with 2f+1 Active
replicas in its Speculative phase. The client sends a request
to a primary replica that executes it, assigns it a sequence
number, and sends it back to the client. The client forwards
the request to the other replicas that reply again to the client
after executing the request command. Then, the client accepts
the operation if all responses match. Otherwise it launches a
Recovery phase on the 3f+1 replicas to exclude the Suspicious
replicas (either faulty or slow); and then resumes to the
Speculative phase acting on the new 2f+1 Active replicas in
the current view.

Despite the fact that clients are trusted, many challenges
make OBFT non-trivial. First, clients can still crash. To ensure

obfuscation, OBFT must tolerate a crashed client (without
inter-replica communication) otherwise unique request order-
ing among replicas can be compromised by the other clients.
Second, upon failure detection, recovery is needed. In OBFT,
faulty replicas will be replaced by correct ones (this might
change the primary replica also). Thus, correct replicas should
preserve a unique configuration; and the clients should be
kept updated with these information too. Third, OBFT handles
contending clients that can force versions of an object on
different replicas to skew.

We experimented OBFT on Emulab [14] on Xeon machines
using WAN settings where each machine deploys a Debian OS.
On such system, OBFT scaled to hundreds of clients, and its
peak throughput significantly exceeded that of state of the art
client-based protocols Q/U, and Quorum 1. Also, we conducted
some experiments to compare OBFT with other primary-based
protocols to convey the obfuscation cost by using OBFT; our
results show that the obfuscation overhead is tolerable.

The rest of the paper is organized as follows.Some related
works are recalled in Section II. Section III presents OBFT.
After discussing the evaluation results in Section IV, we
propose a possible improvement in V, and then we conclude
the paper in Section VI.

II. RELATED WORKS

Independence of failures is an essential assumption for the
correctness of the BFT protocols [5]. Most BFT protocols take
this assumption for granted. Practical experience shows that
faults are likely to occur on all replicas if they are identical.
Several works addressed this subject through providing dif-
ferent running versions on different replicas. Castro et al., in
BASE [11], proposed running different existing implementa-
tions on different replicas; and they introduced an abstraction
layer to unify the differences among them. Roeder et al.,
in [12], proposed an obfuscation abstraction method to develop
different versions of implementations that are semantically
identical. This approach is more effective than BASE since
new implementations are proposed during recovery, i.e., at
run-time. Both approaches deal mostly with semantic failures,
whereas, non-semantic ones like DoS could not be effectively
resolved since replicas can expose information about each
other. Our approach adds to these solutions the possibility to
keep replicas unaware of each other.

In [15], the authors discussed how to make intrusion fault
systems by using BFT technology; and tried to maintain
some diversity in system components to leverage the levels
of independence. The authors defined two concepts:

• Axis of diversity: a component of a system that may be
diversified (e.g., OS, Storge, etc.).

• Degree of diversity: the number of choices available for
a specific axis of diversity (e.g., Linux, Windows, etc).

Therefore, the authors propose to use different hardware,
platforms, operating systems, libraries, etc. for different repli-
cas, and they suggest using multiple physical facilities to
avoid natural disasters and other localized physical threats. Our

1We do not count other BFT protocols here since they are not client-based.

approach is different from [15] since we address the subject
theoretically by avoiding inter-replica communication. In fact,
our work and the above existing works are complementary.

Another study in [13], categorizes the different levels of
failure independence on different setups in the cloud or
WAN. The study shows that the protocols that are sensitive
to the replica-client delay, and loss, do not perform well
since the clients are typically connected via a WAN. If the
latency between the replicas is higher, PBFT [5] offers the
best performance. However, Q/U [6] performs the best when
replicas are geographically distributed, because of the absence
of communication between the replicas. The authors conclude
that: in order to achieve the highest failure independence in
WAN setting, inter-replica interaction should be avoided, and
thus, they claim that the only available options are client-based
protocols like: Q/U [6] and Quorum [9].

In fact, though client-based protocols like Q/U [6] and
Quorum [9] have no primary replica, these protocols use
inter-replica interaction to recover under failures. In essence,
Q/U requires 5f + 1 replicas to tolerate f Byzantine faults.
Nevertheless, clients can only contact a preferred quorum (of
size 4f+1) for optimum performance. This could result in
outdated histories in some replicas, which induce the cost
of a synchronization phase to the protocol. In this phase, the
outdated replica requests the up-to-date history from f+1 other
replicas (to ensure that the history is not manipulated by some
faulty replicas). Thus, although Q/U avoids direct inter-replica
communication, it relies on replica interactions to repair from
failures whenever the same copies on different replicas skew.
Quorum [16] is another client-based BFT protocol built using
the abortability approach [16]. Similar to Q/U, Quorum has
the minimum latency among different protocols in contention-
free networks. In the case of contention or Byzantine replicas,
Quorum aborts and recovers to a Backup [16] similar to PBFT,
thus using inter-replica communication again. Our proposed
protocol is completely deprived from any inter-replica com-
munication.

III. DESIGN OF OBFT

A. Model

Our system and fault models often comply with the tradi-
tional models (e.g., PBFT [5]). We assume a message-passing
distributed system using a fully connected network of nodes,
mainly a WAN, where nodes are: clients and servers. The
network may (not infinitely) fail to deliver, corrupt, delay, or
reorder messages. Faulty replicas may either behave arbitrarily,
i.e., in a different way to their designed purposes, or they just
crash (benign faults). A strong adversary coordinates faulty
replicas to compromise the replicated service. However, we
assume the adversary cannot break cryptographic techniques
like: collision-resistant hashes, encryption keys, and signatures.
Liveness, however, is guaranteed only whenever the system is
partially synchronous [4], [5]; i.e., during intervals in which
messages reach their correct destinations within some fixed
worst case delay. Our fault model differs from existing ones
by requiring that clients might fail by crashing but they do
not behave maliciously (they are typically part of the same
organization).

B. The Protocol

OBFT is a BFT protocol that avoids fault dependency among
replicas and exhibits high performance in WANs. OBFT uses
Abortability approach [16] to recover upon failures. OBFT
requires 3f+1 replicas to tolerate Byzantine replicas, where no
more than f replicas can be Byzantine. However, using 2f+1
replicas only at a time, it can sustain faults, but cannot ensure
progress. Thus, OBFT launches the speculative phase on 2f+1
Active replicas. Upon failure detection, it recovers by replacing
the Suspicious replicas (i.e., either faulty or slow) with correct
replicas from the f Passive ones; and then, resumes to the
speculative phase on a new Active set (in a new view). The
2f + 1 replicas are enough to collect a correct abort history.

The algorithm of OBFT consists of two main phases: a
speculative phase and a recovery phase. The messaging pattern
of the speculative phase is depicted in Figure 1. In this section,
we present the phases briefly (details are in later sections).

Speculative phase. The communication pattern of OBFT in
a failure-free scenario is simple, and it is concerned with the
Active set only (2f + 1 replicas):

1) A client first sends its request to the primary.
2) The primary assigns a sequence number to the request,

executes it, and sends a reply back to the client along
with the assigned sequence number.

3) The client then sends the request together with the
assigned order (previously done by the primary) to the
remaining 2f replicas in the Active set.

4) Each non-primary replica executes the received requests
by order, and returns the replies to the client.

5) The client commits the request only if all the responses
of the Active replicas match; otherwise, it launches a
recovery phase.

Recovery phase. This phase uses Passive and Active sets
(3f+1 replicas).

1) Once the timer of a client expires waiting for 2f + 1
matching replies, the client sends a Panic message to
the Active replicas.

2) Replicas, upon receiving the Panic messages, stop ex-
ecuting new requests and send an Abort message back
to client with their signed local histories.

3) The client constructs an Abort history AH collected
from the f + 1 matching replies (more details later),
and sends an INIT request to all replicas (3f + 1)
along with AH.

4) The replicas execute the INIT request (they append
it to their local histories), and reply to the client with
ACKinit.

5) As the client receives 2f+1 matching ACKinit replies,
it considers their corresponding replicas as Active,
and the remaining f replicas as Passive (those are
Suspicious replicas). The updated Active set becomes
correct again (in the next view), and the speculative
phase is resumed.

C. Algorithm Details

We describe here the protocol details. For simplicity, we
assume no contention on replicas, i.e., a single client is

Fig. 1. Message exchange pattern of OBFT running on three Active replicas
and one Passive.

accessing the service. Contention is addressed in later sections.
Client role. To mitigate fault dependencies; OBFT clients

enroll important tasks. First, the client issues the request to-
wards the primary that assigns a unique sequence number. This
is crucial to maintain consistency among different replicas.
When the client receives the assigned reply from the primary, it
validates its contents by verifying the Message Authentication
Code (MAC). The client takes the grip again to resend the
signed request to the other 2f Active replicas, however this
time, accompanied with the sequence number. At that instant
the client starts a timer, waiting for the replies.

The final decision is also taken by the client. Upon receiving
2f + 1 replies from the replicas before the timer expires;
the client verifies their MACs and makes sure the replies
are matching. If so, the client considers the request complete.
Otherwise, the client launches a recovery phase by collecting
an abort history, cleaning the Active set from Suspicious
replicas, and switching to a new Active set in another view.

Ordering. Excluding the primary, all replicas validate the
order of clients requests upon their receipt. They must verify
requests with MACs and sequence numbers, and then execute
them. The primary verifies the MACs only. Replicas discard
a request rnew in case o(rlast) > o(rnew); where rnew and
rlast are the assigned orders of the current request and that
of the last executed request in the local history of the replica,
respectively. Each replica executes the request rnew if it has
already executed all requests rj where o(rj) < o(rnew).
Otherwise, request rnew is en-queued in a buffer, waiting
for the missing requests that fill the gap. Final replies are
authenticated via MACs and are sent by all replicas directly
to the client.

D. Recovery Phase

The Recovery phase is composed of three major steps:
aborting, collecting abort history, and cleaning Active set from
any Suspicious replicas.

Aborting. The client in OBFT considers a request as com-
plete if the received 2f+1 responses of the Active replicas are
matching, before the expiry of the timer. Otherwise, the client
stops sending requests and sends a Panic message to all Active
replicas. Each replica, upon receiving the Panic message,
stops receiving/executing requests, appends its local history
of committed requests to an Abort message, and sends it to
the client. The latter waits until it receives a sufficient number
of signed Abort messages, i.e., the first f + 1 non-conflicting
ones. The intuition is that it is necessary and sufficient for
the number of received correct commit histories to exceed
the number of faulty ones (since no more f replicas can be

Fig. 2. An example of OBFT while aborting, where f = 1.

Byzantine); knowing that faulty replicas might not respond at
all. Aborting is achieved as follows: the client waits for the
first f+1 local commit histories to be received. If no conflicting
entries among the f+1 received local histories are found by the
client, it stops receiving new histories, and collects the f + 1
messages in a ProofAH set, that is used to form the abort
history AH later; otherwise, the client has to wait for further
matching replies. Figure 2 presents an example where the first
two histories returned from replicas R1 and R2 are conflicting,
consequently the client has to wait for the history from replica
R3. Thus, the phase continues till f+1 non-conflicting local
commit histories are received by the client.

Building abort history. A correct abort history is crucial
for safety. It preserves total ordering and consistency across
different switching phases (i.e., views). The abort history is
collected from the current Active set, to initialize the local
histories of the replicas on a new correct Active set. Building
the abort history AH is done by the client after the receipt of
f + 1 non-conflicting signed abort messages from different
replicas, collected in the ProofAH structure (as revealed
before). The steps can be summarized as follows: the client
generates a history h such that: h[j] equals the value that
appears at position j ≥ 1 of f + 1 different local histories
(LHj), that appear in ProofAH . If such a value does not exist
for some position x, then x is the last index of h. Finally, AH
is the longest prefix of h in which no request appears twice
(i.e., exclude duplicate entries). The resulting abort history AH
thus includes all the globally committed client requests as well
as some partially committed ones in the previous view; for
example, if the request is received by at least f+1 replicas but
not all of them (however this does not harm correctness). AH
is used then to initialize the local histories of the new Active
replicas (see more details in later sections).

Eliminating faulty replicas. The client in OBFT attempts
to replace the faulty replicas in the Active set with correct ones
from the Passive set; this is done by detecting the Suspicious
replicas (i.e., faulty and slow ones) among the 3f+1 replicas.
This occurs as follows: after collecting the abort history AH,
the client sends an INIT request (with AH appended) to
the 3f + 1 replicas. The replicas execute the INIT request,
and append AH to their local history (if it is not already
done through a previous view). Then, they reply to the client
with ACKinit. Then, the client verifies the received ACKinit

messages, and waits until it receives 2f+1 matching ones. The
corresponding replicas to the first 2f + 1 matching messages

constitute the new Active set, and the remaining f form the
Passive set. This process ensures eliminating the Suspicious
replicas from the Active set, and having a correct one in the
next view.

E. Switching

Switching requires 3f + 1 physical replicas where only
2f + 1 of them are used at once as Active replicas. The
other Passive replicas, however, are used to replace the Active
replicas whenever failures occur. This requires, sometimes,
changing the primary replica also.

Initializing control information on clients. Upon launch-
ing the system, default Active set and primary replica are
chosen. And since these are changing among the same physical
replicas across different views, it is crucial for the client to
know this control information before issuing its requests. The
control information is collected on replicas and clients in the
CONTROL structure, that is composed of: (1) The Active
set ACTIV E, (2) the primary P , and (3) the current view
number V IEWcurr. Hence, some control messages are needed
to deliver this information to any new coming client. The client
gets informed as follows: it sends a GETinfo message to all
(3f +1) replicas. Active replicas send an INFO message to
the client containing the control information: (1) The Active
set ACTIV E, (2) the primary P , and (3) the current view
number V IEWcurr. Then, the client waits until it receives
f+1 matching INFO messages from the replicas. Once done,
it saves the information of the INFO messages, updates its
CONTROL, and starts sending its requests according to the
protocol. Otherwise, it starts again the process.

Control information after recovery. However, when re-
covery occurs, and some client c succeeds in aborting, sending
the INIT request, and identifying the Suspicious replicas, the
control structure CONTROL should change to exclude faulty
replicas. Thus, the replicas refuse to execute any request until:
a SETinfo control message (see later) is received from c, or
the timer expires. Instead, the replicas respond on any request
type with an INFO message (possibly with some empty
fields). In the case where the timer of a replica expires, it
releases the lock, and accepts PANIC messages in the current
view to allow other clients to perform a successful recovery 2.
SETinfo is important after recovery by which replicas get
assigned a new CONTROL. To fill the SETinfo message, the

2Recall that clients in OBFT can not be Byzantine, but they may crash.

client determines the Active set, selects the first replica to be
the primary, and increments the view number.

If CONTROL on the replicas is already updated by the
SETinfo message, the INFO reply message will be complete
and informative enough for the clients (upon receiving f + 1
matching such messages). Otherwise, if the replicas are still
waiting the SETinfo message from c, the ACTIVE and the
primary replica P fields in the INFO message will be empty,
in contrast to the V IEWcurr field that allows the clients to
retry sending Panic messages in the current view successfully;
since replicas do not accept any requests from other views.
OBFT handles SETinfo messages according to the usual
communication pattern in Figure 1 (the receiving replica knows
from the SETinfo message itself, whether it is included in the
Active set, it is a new primary, or it is a Passive replica).

F. Handling Contention

Views perspective. Requests of any type are required to
comprise the current view number V IEWcurr. In addition,
any request received by the replicas is validated by verifying
its MACs and the V IEWcurr field, before being executed.
Any request that belongs to a different view, gets rejected.

Panicking. The speculative phase in OBFT is deprived from
contention problems as long as all requests that belong to
the current view are ordered by the primary. However, upon
failure, the clients launch the recovery phase. The recovery
phase allows any client to panic, and to collect the abort
history. Clients keep retransmitting PANIC messages until
they receive an enough number (i.e., f +1) of matching local
histories, or a filled INFO messages from the replicas.

Initializing. When any client (one or more) creates the abort
history, it sends INIT message to all the replicas (3f +1) to
initialize their local histories and to update their view number
V IEWcurr. Under contention, different replicas might receive
different INIT requests from different clients, and hence none
will be completed since no client will be able to collect enough
ACKinit from 2f + 1 replicas. Thus the clients follow an
exponential back-off scheme that offers more chance that all
replicas execute the same INIT requests sent by some client
c. This ends up by replicas, having consistent local histories
in the new view.

Control information. Afterwards, the replicas will be
waiting for the SETinfo request from the same client c.
During this period, and to maintain non-conflicting messages
from contending clients, any request will be discarded by the
replicas, that reply instead, by an INFO message (where its
Active set and primary replica fields are still empty) containing
the V IEWcurr that is needed by the clients while retrying
their future request attempts. The step ends with a unique
Active set and a primary replica across different views once
the replicas receive the SETinfo message from the client c.
After this stage, any request from the clients will be handled as
designed if it belongs to this view, otherwise, replicas respond
with an INFO message (where no fields are empty this time)
to update those clients with the new control information. Then,
the clients can send requests as usual in the new view.

IV. EVALUATION

In this section, we evaluate OBFT experimentally, and
we provide some analytical evaluation. Our strategy is to
compare our protocol with existing protocols showing that their
scalability are comparable in WANs. Then we compare OBFT
with client-based protocols that provide obfuscation in failure-
free cases, being the main objective of the paper. In addition,
we discuss the switching overhead upon failures.

Our experiments are performed on 43 64-bit Xeon machines
with 2 GB of memory employed on Emulab [14] cluster. No
virtualization is used, thus simulating WAN environment on
real machines. Each replica runs on a separate machine, and
the clients are scattered over 40 machines (at least 3 client
processes per machine). All machines are connected via a star
topology. The end-to-end (E2E) delay is set to 20 ms which is
a typical WAN speed. For each setting, we have run four a/b
benchmark3 (same benchmark used in PBFT [5]) experiments
using different payload sizes: 0/0, 0/1, 1/0, and 1/1. Without
a payload, the size of the request and the reply messages are
less than 100 bytes. The fault factor, f , is equal to one. Multi-
cast in PBFT, Zyzzyva, and Quorum is disabled (since they
are deployed on WAN). Q/U experiments include a single
difference where we needed six replicas (5f+1; for f = 1)
instead of 3f + 1, as this is the number required by Q/U [6]
to operate.

A. Analytical Evaluation

Before proceeding with the experimental evaluation, we
provide an analytical comparison for OBFT with well known
state of the art BFT protocols. The comparison is summarized
in Table I. The results convey the interesting characteristics
of OBFT as it achieves the lowest cost among BFT protocols
in most cases (the bold entries in Table I). In the table, we
consider most protocols optimizations (as in [8]), however,
we exclude batching. Row A in Table I shows that the number
of replicas needed by OBFT to tolerate f Byzantine faults is
minimal among the protocols. Similarly, the cost is minimal
for OBFT in the speculative phase, since it communicates with
only 2f+1 replicas out of 3f+1 (row B in Table I). Moreover,
Row C shows the number of MAC operations performed by the
CPU of the bottleneck replica. The table points out that OBFT
again has the minimal value 2, since any replica verifies the
request only once, and authenticates the reply once. Latency in
OBFT (row D in Table I) is not optimal as compared to other
protocols; in fact, OBFT sacrifices this latency to maintain
obfuscation. Finally, the number of send (or sendto) calls
to the system kernel is minimal on the bottleneck replica in
OBFT. This is clear since every replica in the protocol sends
the reply only once (see Figure 1).

B. Obfuscation Cost

To leverage the fault tolerance of BFT protocols by main-
lining obfuscation, it is worthy to pay some additional costs.
The above analysis shows that the latency of OBFT is higher

3In a/b benchmarks, a and b correspond to request size, and response size
in KB, respectively.

PBFT Zyzzyva Q/U Quorum OBFT

A 3f+1 3f+1 5f+1 3f+1 3f+1

B 2f+1 2f+1 5f+1 3f+1 2f+1

C 2+8f 2+3f 2+4f 2 2

D 4 3 2 2 4

E 3 2 1 1 1

TABLE I
Analytic evaluation for the state of the art BFT protocols tolerating f faults,

using MACs for authentication, and assuming preferred optimization
(without batching): A represents the number of replicas needed to tolerate f

Byzantine replicas; B is similar to A but excluding witness and backup
replicas. C represents the number of MAC operations on the bottleneck

replica. D is the number of one-way latencies needed for each request. E
represents the number of send/to kernel calls on the bottleneck replica. Bold

entries denote protocols with the lowest known cost.

 50

 100

 150

 200

 250

 300

 10 100 1000 10000

L
at

en
cy

 (
m

s)

Throughput (op/s)

OBFT
PBFT

Zyzzyva
Quorum

Q/U

Fig. 3. Scalability of BFT protocols for 1/0 benchmark in WAN.

(Zyzzyva, Q/U, and Quorum) or equal (PBFT) to state of the
art BFT protocols. Consequently, this impacts the throughput
of OBFT also. Despite this, OBFT maintains a good scalability.

Figure 3 shows the scalability using the 1/0 benchmark
where end-to-end latency (E2E) is 20ms (we do not mention
other payloads as they are very similar). We use logarithmic
scale so that PBFT and Q/U can be observed. As the figure
shows, Zyzzyva achieves the best scalability. It scales up to
320 clients reaching a peak throughput of 3332 op/s, whereas,
OBFT scales to 280 clients with a peak throughput equals to
2193 op/s. This is reasonable because of the simple three-delay
message pattern of Zyzzyva. PBFT also, scales to 120 clients,
however, its throughput is almost half that of OBFT (980 op/s);
perhaps this refers to the extensive load of messaging on the
replicas that PBFT messaging pattern imposes. Q/U scales
only to 30 clients, scoring a throughput of 537 op/s. Beyond
this point, the protocol suffers from the recovery phases due
to contention. Quorum scales to 60 clients only since it is
designed to work on LANs using multi-cast, which we disable
in our WAN setting.

C. Comparison of Client-based Protocols

Since this paper is concerned mainly with obfuscation, we
exclude PBFT and Zyzzyva in later sections, and we stick
with Q/U and Quorum being client-based and can maintain

Protocol Q/U Quorum OBFT

Message delays 2 2 4

Switching Message delays - 4 4

Latency for E2E=20ms 41ms 40ms 80ms

TABLE II
Micro-benchmark latencies on WANs when E2E=20ms.

obfuscation in failure-free cases. OBFT acquires a good perfor-
mance through various characteristics: (1) it needs only 3f+1
replicas to tolerate f arbitrary faults (though speculative case
communication is done on 2f + 1 Active replicas only at a
time). (2) It relies on the clients to multi-cast request and not
on replicas. (3) It pushes the cryptographic operations towards
the client.

On the other hand, Q/U [6] requires at least 5f+1 replicas to
tolerate f Byzantine faults. Additional fees shall be paid with
larger f . Despite the use of preferred quorums (of size 4f+1),
Q/U achieves lower throughput than OBFT. This becomes
lucid when the number of clients increases; partly because
Q/U does not use a primary to order requests as OBFT
does. Quorum [9] also shares some aspects with Q/U; mostly
since it is client-based and involves only two communication
phases. However, Quorum also suffers from interference under
contention; this makes it hard to deploy on reliable contended
services. In addition, Quorum is designed to multi-cast requests
to the replicas. Multi-cast in not yet supported on WANs,
that is why we disable this feature (in fact, this causes some
drop in performance). Quorum operates only in free-failure
environment, and needs a recovery phase upon failure that
might violate obfuscation.

1) Recovery Cost: Similar to Quorum, OBFT is inherently
speculative and perform well only in best cases, i.e., when
there are no faults. Under failures the protocol should abort
to another Active set, and this imposes additional costs repre-
sented by switching delays. Switching delays are proportional
to the end-to-end latency (E2E) of the WAN (assuming the
execution time of the operation on the CPU is negligible
as compared to E2E). Table II (second row) conveys the
number of message latencies needed to switch. The table shows
that Quorum and OBFT need, in best case, four message
delays to switch (i.e., the sum of PANIC, ABORT , INIT ,
and ACKinit latencies). The cost of switching can then be
approximated by 4∗E2E. We do not measure recovery cost for
Q/U, since we assume using no preferred quorums (to ensure
obfuscation).

2) Micro-benchmark: We present here the results on a/b
benchmark when only one client is accessing the replicated
service. Table II displays the latency results (using 0/0 bench-
mark) for OBFT, Quorum, and Q/U by setting the E2E to
20 ms. Since in WANs the operation execution time and
MAC handling time are almost negligible as compared to the
E2E latency, when the E2E latency is set to 20 ms, OBFT
achieves a latency of 80 ms. Q/U on the other hand reaches
half this latency as depicted in Table II. We roughly relate
this difference to the number of communication round-trips
needed to complete an operation (as shown in the same table).
In fact, OBFT needs a couple of round-trip messages; one

 0

 500

 1000

 1500

 2000

 2500

0/0 0/1 1/0 1/1

T
h

ro
u

g
h

p
u

t
(o

p
/s

)

Benchmark

OBFT
Quorum

Q/U

Fig. 4. Peak throughput for WAN setting with E2E=20ms.

 0

 50

 100

 150

 200

 250

 300

0/0 0/1 1/0 1/1

N
u

m
b

er
 o

f
C

li
en

ts

Benchmark

OBFT
Quorum

Q/U

Fig. 5. Scalability for WAN setting where E2E=20ms.

message is sent to the primary to establish request ordering,
and another is sent to communicate with other replicas. Q/U,
however, achieves this latency since it completes the operation
in a single round-trip instead of two. Again, since Quorum
(like Q/U) needs only two one-way communication phases
to commit a request in a speculative way, they share same
performance in a contention-free environment, the results are
shown clearly in Table II.

3) Peak Throughput: To experiment the peak throughput,
we ran up to 300 concurrent clients on WAN setting with
E2E=20ms. As depicted in Figure 4, our protocol achieves
a peak throughput of 2230 op/s for the 0/0 benchmark. The
peak throughput of the other benchmarks (0/1, 1/0, and 1/1) are
close as shown on the figure. On the other hand, Q/U could not
exceed 828 op/s throughput on the 0/0 benchmark (Figure 4).
This peak throughput drops further as the request size gets
larger. The benchmarks 1/0 and 1/1 of Q/U score no more
176 op/s and 127 op/s, respectively. These results are expected
since Q/U is not resilient to a high number of clients, and this
forces the protocol to load excessive Repair and Sync phases,
and the client backoff scheme. On the contrary to OBFT, that
relies on the primary to order requests, and thus, avoids request
collisions while accessing replicas, and pushes multi-cast and
encryption overhead towards clients. Quorum also gets affected

 0

 400

 800

 1200

 1600

 2000

 10 100

T
h

ro
u

g
h

p
u

t
(o

p
/s

)

Number of Clients

OBFT
Q/U

Quorum

Fig. 6. Throughput of BFT protocols using 1/0 benchmark in WAN.

by the request size more than OBFT. Figure 4 shows that the
peak throughput of Quorum drops to a ratio of 1/2 whenever
requests of 1KB are used (1/0 and 1/1 benchmarks). We refer
this to the load imposed on clients due to use of uni-cast
instead of multi-cast. Despite this, in 0/0 benchmark, Quorum
achieves a peak throughput close to that of OBFT; i.e., 1970
op/s. This refers to the simple message pattern of Quorum,
since it avoids the recovery phases needed by Q/U.

4) Scalability: As for scalability, OBFT dominates Q/U and
Quorum (Figure 5). In the experiments, the results of Q/U
started to fluctuate for more than 30 clients. The protocol
ceased to work for a number of clients greater than 30 or
80, depending on the experiment. Again, larger request sizes
have a significant impact on the scalability of Q/U as the
benchmarks 1/0 and 1/1 in Figure 5 convey. By observing
Figure 5, we notice that Quorum also could not scale for
more than 80 clients for the 0/0 benchmark, and 60 clients
whenever larger requests are used. In fact, we do not expect
more from Quorum, since it is designed to work on LAN
and uses multi-cast that we disable in our WAN setting.
However, OBFT experiments finished successfully up to 240
simultaneous clients in all benchmarks (Figure 5). OBFT can
handle this high number of clients since it avoids collisions
among requests by having a primary replica to assign sequence
numbers, and to distribute the load of multi-cast among the
clients to avoid replica bottlenecks.

5) Throughput: Figure 6 conveys the results of 1/0 bench-
mark when E2E=20ms (we use a logarithmic scale to better
observe Q/U results). We remove the 0/0 benchmark since
results are similar to 1/0. The x and y axes represent the
number of clients and the throughput, respectively. The number
of clients vary between 0 and 300 (starting with 3 client
threads per machine). As depicted in the figure, the increase
in the number of clients raises up the throughput of OBFT
to 2230 op/s (for 240 clients). Then, as the number of clients
increases the throughput starts to degrade gradually. However
the throughput of Quorum and Q/U almost drops by a ratio
of 1/2. A possible explanation to this behavior is that the load
on the clients in Q/U and Quorum is large as compared to
OBFT. In fact, a client should send/receive 4f+1 messages in

the case of Quorum and 5f+1 messages in Q/U, which makes
the client a network bottleneck.

V. IMPROVEMENTS

Though avoiding inter-replica communication can keep
replicas unaware of each others, pushing this towards the
clients can still leak information about the replicas. To resolve
this issue, we propose that the identities of replicas remain
anonymous even for the clients. This is possible if we required
the trusted clients (that usually belong to the same organiza-
tion) to contact the servers using anonymous communication
techniques like [17], [18], [19]. Notice that we can require
from these trusted clients to use anonymous communication
since they are finite (e.g., few thousands) as they belong to the
same organization, however, without using our protocol it is
not possible to require from unknown clients to use anonymous
communication. Using this method, neither clients nor replicas
can expose any information about the identities of the set of
replicas used. This method can be used only if sacrificing some
performance is acceptable since anonymous communication
usually impose significant overhead.

VI. CONCLUSION

This paper improves the independence of failures in BFT
protocols. We introduced a new obfuscated BFT protocol,
called OBFT, where replicas remain completely unaware of
each other. This improves tolerance to non-semantic attacks
like DoS since a compromised replica could not leak informa-
tion about other replicas. The design of OBFT allows to deploy
BFT services on WANs, and especially clouds, to benefit from
the versatility of the hardware, software, platforms, etc. In
addition, OBFT can exploit the geographical distribution of
the clouds around the globe to avoid natural disasters, and
regional power failures, etc. Furthermore, our protocol can be
used along with obfuscation abstractions introduced in [11]
and [12] to improve independence if failures.

Moreover, OBFT achieves a good performance as compared
to state of the art client-based protocols (that can maintain
obfuscation). Our experimental results show that OBFT scales
to hundreds of clients in a WAN, while the throughput of state
of the art BFT protocols quickly drops as the number of clients
increases. One limitation of our work is that it should not be
used unless if clients can be trusted. Possible applications are
when customers are trusted members of the same organization;
like airline systems with many agencies. This is needed since
clients in OBFT are assumed not to be malicious, but they can
crash.

REFERENCES

[1] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, pp. 382–401, 1982.

[2] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[3] C. Dwork and N. Lynch, “Stockmeyer l: Consensus in the presence of
partial synchrony,” Journal of The ACM, 1988.

[4] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast
protocols,” Journal of the ACM (JACM), vol. 32, no. 4, pp. 824–840,
1985.

[5] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–
461, 2002.

[6] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and
J. J. Wylie, “Fault-scalable byzantine fault-tolerant services,” SIGOPS

Oper. Syst. Rev., vol. 39, no. 5, pp. 59–74, 2005.

[7] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “Hq
replication: a hybrid quorum protocol for byzantine fault tolerance,”
in OSDI ’06: Proceedings of the 7th symposium on Operating systems

design and implementation. Berkeley, CA, USA: USENIX Association,
2006, pp. 177–190.

[8] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
speculative byzantine fault tolerance,” SIGOPS Oper. Syst. Rev., vol. 41,
no. 6, pp. 45–58, 2007.

[9] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next
700 bft protocols,” in EuroSys ’10: Proceedings of the 5th European

conference on Computer systems. New York, NY, USA: ACM, 2010,
pp. 363–376.

[10] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making
byzantine fault tolerant systems tolerate byzantine faults,” in NSDI’09:

Proceedings of the 6th USENIX symposium on Networked systems

design and implementation. Berkeley, CA, USA: USENIX Association,
2009, pp. 153–168.

[11] M. Castro, R. Rodrigues, and B. Liskov, “Base: Using
abstraction to improve fault tolerance,” ACM Trans. Comput.

Syst., vol. 21, no. 3, pp. 236–269, Aug. 2003. [Online]. Available:
http://doi.acm.org/10.1145/859716.859718

[12] T. Roeder and F. B. Schneider, “Proactive obfuscation,” ACM Trans.

Comput. Syst., vol. 28, no. 2, pp. 4:1–4:54, Jul. 2010. [Online].
Available: http://doi.acm.org/10.1145/1813654.1813655

[13] R. Guerraoui and M. Yabandeh, “Independent faults in the cloud,” in
LADIS ’10: Proceedings of the 4th International Workshop on Large

Scale Distributed Systems and Middleware. New York, NY, USA:
ACM, 2010, pp. 12–17.

[14] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” SIGOPS Oper. Syst.

Rev., vol. 36, no. SI, pp. 255–270, 2002.

[15] Obelheiro Rafael R., Bessani Alysson Neves, Lung Lau Cheuk,
Correia Miguel, “How practical are intrusion-tolerant distributed
systems?” Department of Informatics, University of Lisbon,
Tech. Rep. LPD-REPORT-2010-10, 2006. [Online]. Available:
http://hdl.handle.net/10455/2992

[16] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next 700
bft protocol,” EPFL, Tech. Rep. LPD-REPORT-2008-008, 2008.

[17] N. M. Roger Dingledine and P. Syverson, “Tor: The second-generation
onion router,” in In Proceedings of the 13th USENIX Security Sympo-

sium, 2004, pp. 303–320.

[18] S. Goel, M. Robson, M. Polte, and E. G. Sirer, “Herbivore: A Scal-
able and Efficient Protocol for Anonymous Communication,” Cornell
University, Ithaca, NY, Tech. Rep., 2003.

[19] H. Corrigan-Gibbs and B. Ford, “Dissent: accountable anonymous
group messaging,” in Proceedings of the 17th ACM conference on

Computer and communications security, ser. CCS ’10. New York,
NY, USA: ACM, 2010, pp. 340–350.

