
HAL Id: hal-01240558
https://hal.science/hal-01240558v1

Submitted on 9 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Modelling and Control in Distributed Systems
Sophie Cerf, Mihaly Berekmeri, Nicolas Marchand, Sara Bouchenak, Bogdan

Robu

To cite this version:
Sophie Cerf, Mihaly Berekmeri, Nicolas Marchand, Sara Bouchenak, Bogdan Robu. Adaptive Mod-
elling and Control in Distributed Systems. SRDS 2015 - Phd Forum 34th International Symposium
on Reliable Distributed Systems, McGill University, Sep 2015, Montreal, Canada. �hal-01240558�

https://hal.science/hal-01240558v1
https://hal.archives-ouvertes.fr

Adaptive Modelling and Control in Distributed
Systems

S. Cerf 1,2

supervised by M. Berekmeri 1,2, N. Marchand 1,2, S. Bouchenak 3 and B. Robu 1,2

1 Univ. Grenoble Alpes, GIPSA-lab, F-38402 Grenoble, France
2 CNRS, GIPSA-lab, F-38402 Grenoble, France
3 LIRIS UMR 5205, INSA de Lyon, France

email: {sophie.cerf, mihaly.berekmeri, nicolas.marchand, bogdan.robu}@gipsa-lab.fr
sara.bouchenak@insa-lyon.fr

Abstract—Companies have growing amounts of data to store
and to process. In response to these new processing challenges,
Google developed MapReduce, a parallel programming paradigm
which is becoming the major tool for BigData treatment. Even if
MapReduce is used by most IT companies, ensuring its perfor-
mances while minimising costs is a real challenge requiring a high
level of expertise. Modelling and control of MapReduce have been
developed in the last years, however there are still many problems
caused by the software’s high variability. To tackle the latter issue,
this paper proposes an on-line model estimation algorithm for
MapReduce systems. An adaptive control strategy is developed
and implemented to guarantee response time performances under
a concurrent workload while minimising resource use. Results
have been validated using a 40 nodes MapReduce cluster under
a data intensive Business Intelligence workload running on
Grid5000, a french national cloud. The experiments show that the
adaptive control algorithm manages to guarantee performances
and low costs even in a highly variable environment.

I. INTRODUCTION

Companies are producing more and more data every
day: we are facing a BigData explosion which inevitably
raises the challenges of their storage, analysis and processing.
Traditional database techniques cannot be applied to treat
this tremendous amount of data, which is generally not
structured, therefore new paradigms are being developed to
properly analyse and store BigData. Infrastructure as a Service
clouds (IaaS) combined with parallel programming stand as
a promising solution to tackle this issue. Their principle is to
allocate on-demand hardware resources for different software
applications according to requirements, thus providing almost
unlimited storage and processing capacities.

The main challenge for parallel programming is to manage
real time resources allocation. System performance, such as
response time, need to be guaranteed while resource usage
stays low in order to minimise both energetic and financial
costs. This compromise is not easy to achieve as systems are
highly variable over time: workloads are changing, shared
infrastructures may cause concurrency issues, faults may
arise, etc.

Currently, few automatic provisioning strategies have
been implemented on cloud services. The most common
method is a threshold based technique which adds or removes

resources when thresholds are crossed, while keeping an eye
on arising costs. Amazon developed this kind of strategy in
its clouds EC2 [1] and EMR [2], where it is to the client to
set the threshold used for provisioning. As users usually show
few knowledge on the system operation, they cannot found
an adequate threshold. Thus, this method cannot guarantee
performances and does not minimise costs, automatic on-line
solutions for resources provisioning that can guarantee
performances need to be developed.

Control theory is getting more attention in computer
science, as it enables to automatically deal with complex
computing systems. Continuous control has been applied
to monitor database server [3] or web service systems
[4]. Discrete-time theory is also spreading, as reviewed in
[5]. Recent publications propose linear dynamic modelling
of a MapReduce system (a parallel programming tool) to
capture its behaviour [6]. This predictive model is combined
with a linear Proportional-Integral (PI) controller to meet
performance criteria based on runtime. For simplicity reasons,
this method is based on system linearisation around an
operating point. As MapReduce behaviour is highly non-
linear, performances can only be guaranteed close to this
particular point, and the previous method shows it’s limitations
when the system is far away.

In the present paper, an adaptive control algorithm is
applied to Hadoop, an open-source implementation of MapRe-
duce. A real time estimator is used for system modelling to
deal with its non-linearities. Based on these estimations, the
correction part is also computed on-line. section 2 presents
MapReduce and the experimental set-up used for validation.
Section 3 sets out the on-line modelling and section 4 exposes
the adaptive controller implemented. Preliminary results are
developed in section 5. We conclude the paper with perspec-
tives and future work.

II. CASE STUDY : MAPREDUCE

MapReduce is a parallel and distributed programming
tool designed to handle input data partitioning, scheduling,
machine failures, task distribution and load balancing [7]. It
can capture, store and analyse requests on huge databases using
a master-slave architecture. Developed in 2008 by Google,

Grid5000
Cluster CPU Memory Storage Network

40 nodes 4 cores/CPU 15 GB 298 GB Infiniband
Grid5000 Intel 2.53GHz 20GB

MapReduce
Version & Distribution Client Interaction
Apache Hadoop v1.1.2 Apache Hive

TABLE I. HARDWARE AND SOFTWARE CONFIGURATIONS

it has become the de facto tool for parallel programming. It
is daily used by the biggest IT companies (Google, Yahoo,
Facebook, etc. [7] [8]) to make numerous queries upon their
databases. MapReduce is a popular but complex tool since
many factors such as CPU and network skews or workload
changes can influence jobs performances. Therefore, using
it in a optimal way, that is to say minimise the cost while
maximising the performance, is a real challenge. Since these
disturbances occur during the runtime, optimal and robust
resource configuration can only be found on-line.

For our test case, we use Hadoop, an open source version
of MapReduce. To simulate jobs, we choose MRBS, a
performance and dependability benchmark suite developed by
[9] which can provide various workloads and inject several
faults types. This benchmark suite has the advantage of
simulating client interaction and being able to run concurrent
jobs. We run Hadoop under a Business Intelligence workload
on Grid5000, a nation-wide French cloud [10]. More details
about the benchmark configuration can be found in Table I.

The experimental set-up has been developed according
to the following procedure. First, SSH tunnels are set-up
from local computer to remote on-line Grid5000 nodes. Then,
MRBS generates the workload and the client interactions that
will run on Hadoop. Meanwhile, actuators (which add and
remove nodes) and sensors (which measure response time
and the number of clients) are launch through Linux Bash
scripts. Eventually, the Matlab implemented control strategy
computes the number of nodes to set. Matlab is a high level
technical computing language and an interactive environment
for algorithm development, it is the standard tool in control
theory. The control algorithm could have been written in any
other programming language such as C or C++ without major
changes. The Matlab implementation has been chosen for the
experiments since it enables quick and easy development,
implementing and testing of new control algorithms.

III. MAPREDUCE MODELLING

By system modelling we mean trying to capture its
dynamic behaviour through mathematical relations between
its relevant input and output signals. The objective is to have
a mathematical model which can precisely predict the system
behaviour, given the input data.

Since MapReduce is a very complex tool finding a
detailed model is a difficult task as there is no physical
equation that governs the system. Moreover MapReduce
varies from one distribution to another, therefore we need

Time (min)

0 20 40 60 80

N
od

es
 C

ou
nt

0

10

20

30

40
(a) Increasing nodes and 10 clients

0 20 40 60 80

R
es

po
ns

e
T

im
e

(s
)

0

200

400

600

800

Time (min)

0 10 20 30 40 50

C
lie

nt
 C

ou
nt

5

10

15

20

25
(b) Increasing clients and 20 nodes

R
es

po
ns

e
T

im
e

(s
)

0

100

200

Fig. 1. MapReduce linearity analysis: response time with different input
scenario

a model that is compatible with all versions. We decided
to adopt a black box modelling approach, that is to say
we capture relations between input and output signals only
using experimental data. Control inputs and outputs have to
be carefully chosen, therefore we analysed parameters that
significantly impacted the system regardless the MapReduce
version used. Justification of this choice can be found in [6],
in the end we took our control input as the number of nodes,
the number of clients is considered as an input disturbance
and the control output is the jobs runtime.

Fig. 1 (a) presents the behaviour of MapReduce for a
fixed number of clients and an increasing number of nodes.
The non linearities of the system are highlighted by the three
stages of the curve: a exponential decrease, a linear phase
and a saturation. Even in the linear phase the model varies
according to the chosen operating point and we choose to
deal with this issue using adaptive algorithms. A linear model
developed around a initial operating point (20 nodes and 10
clients) has been developed in [6] and is recalled in Fig. 2.

ZN

ZC

+
+

u(k) y(k)

d(k)

ZMR

Nodes Model

Clients Model

MapReduce model

Response Time

#Clients

#Nodes
yN(k)

yC(k)

Fig. 2. MapReduce Model Schema

The relations between the number of nodes, the number of
clients and the response time are captured by the equation (1)
sampled at Ts = 30s, which parameters have been established

in [6] around the (20 nodes, 10 clients) point. As we want our
model to be valid over a wider range, we decided to keep the
equation (1) structure but re-compute its parameters on-line to
fit the real system. As most non linearities physically comes
from nodes changes (see Fig. 1), we decided to update only
a0, b0 and b1. We supposed the clients to response time relation
constant over time as Fig. 1 (b) shows an almost linear curve,
therefore we used the parameters values identified by [6]:
α0 = −0.7915, β0 = β1 = 1.0716. The delays in equation (1)
are also considered as fixed as they are caused by the network.

y(k) = yN (k) + yC(k)

yN (k) = −a0yN (k − 1) + b1u(k − 5) + b0u(k − 6) (1)

yC(k) = −α0yC(k − 1) + β1d(k − 8) + β0d(k − 9)

We used a recursive least square estimator (RLSE) [11]
to on-line update our model parameters. RLSE recursively
optimises the model parameters by minimising a least square
cost function between the measured response time and the
response time estimated from equation (1) with the varying
parameters a0, b0 and b1. To compute new parameters the
estimator requires input and output data (#Nodes,#Clients
and Response time), past estimations and the chosen model
structure. We choose this method, beyond being the most
widely used estimator, because it is a well known algorithm
that converges extremely fast [11]. As the system is varying
over time, we use a combination of two different RLSE vari-
ants. If the estimation error, which is the difference between the
measured output and the simulated one based on the estimated
model, is higher than a certain threshold thd, we use RLSE
with a exponential forgetting factor λ [11], as this method
converges quickly. Else, if the estimation error is lower than
the threshold thd we use the internal RLSE parameter reset
(with the reset period TR) since this method is more precise
[11].

IV. MAPREDUCE CONTROL

Control theory aims at designing an autonomous control
strategy which, based on present and past data of the system,
computes an input signal to make the system act as we
required. Though, the control algorithm is an equation between
the error e (difference between the system output y and our
desired value yr) and the system input u (the number of nodes
in our case), see Fig. 3.

ZMR

yr(k) u(k)e(k)

d(k)

y(k)+

RLSE

PI controller

Model Estimator

MapReduce System

Service time#Nodes

#Clients

y(k)

Reference
service time

ZPI
-

Model Parameters
a0, b0, b1

Fig. 3. Estimation and control loop scheme

It is very important to state that our control algorithm
does not change the software itself, it is not intrusive and runs

alongside the system. Our objective is to guarantee response
time to a certain threshold while minimising resource usage
on a wide range around the operating point (20 nodes, 10
clients), and robustness to any unexpected change in the
system behaviour. Ensuring these specifications is a real
challenge, particularly due to the large actuation delays of the
system (more than 150s) and the quantization of the control
input, which should always be a positive integer as it is the
number of nodes.

Different control algorithms are defined by control theory,
some are very complex but simple ones can prove to be
sufficient. We choose to implement a Proportional-Integral
control (see eq. (2)) as it is fast to compute, it efficiently
follows specifications and presents good properties for
disturbance rejection.

u(k) = u(k − 1) + (Kp +Ki)e(k) +Kie(k − 1) (2)

To compute the control parameters we use the model
parameters, according to Astrom Hagglund relation (3) [12]
of known PI design methods. As model parameters are
estimated on line, the control equation has new parameters
each sampling time:

Kp = 0.14
1− a0
b1 + b2

, Ki =
Kp

11.5
(3)

V. PRELIMINARY RESULTS

The model estimator presented in this article has been
implemented and tested in real time on-line experiments on
Grid5000 clusters using the values reported in Table II, results
are shown in Fig. V.

Time (min)

0 50 100 150 200 250

R
es

po
ns

e
Ti

m
e

(s
)

120

140

160

180

200

220

240

260

280

300

Measured

Estimated

Time (min)

0 50 100 150 200 250

N
od

es

5

10

15

20

25

30

35

0 50 100 150 200 250

C
lie

nt
s

5

10

15

20
Nodes

Clients

Fig. 4. Evaluating the model estimation accuracy

Forgetting factor λ = 0.6
Reset Period TR = TS

Threshold thd = 0.1y

TABLE II. HARDWARE AND SOFTWARE CONFIGURATIONS

Regardless clients or nodes variations, the estimator
manages to fit the system output, with some divergences that
our combination of different RLSE algorithms well manages
to make precisely converge again. The estimation is accurate
even when input signals vary far from the operating point, that
is to say when the system shows significant non-linearities
(see Fig. 1), therefore our modelling is highly robust. Another
interesting point is that the proposed estimation algorithm
does not need a learning phase or learning data, it can be
started at any time and it converges almost instantaneously.

The results of the implementation of our adaptive PI
control algorithm for a 50% rise in the number of clients
can be seen in Fig. 5. The response time rises for a few
minutes whereas our control manages to drag it close to its
original value, by slowly increasing the number of nodes,
which implies low energetic and financial costs. However, the
overall settling time is quite slow, as it lasts for more than
100 sampling times (50 minutes).

Time (min)

0 20 40 60 80 100

R
es

po
ns

e
tim

e
(s

)

140

150

160

170

180

190

200

Measured

Estimated

Threshold

Time (min)

0 20 40 60 80 100

In
pu

ts

10

15

20

25

30 Nodes

Clients

Fig. 5. Corrector validation by a 50% client increase

VI. CONCLUSION & PERSPECTIVES

This paper presents the conception, implementation and
validation on an on-line adaptive modelling of MapReduce and
a PI control strategy to guarantee its performances. We choose
a black box model structure and a combination of recursive
least square algorithms to estimate the model parameters in real
time. Based on these estimations, the parameters of the discrete
PI controller is also computed on line. Our experiments on

Grid5000 show that our control framework successfully fulfil
our specifications, as modelling fits the systems behaviour
and control keeps performances at a certain threshold, while
limiting resource usage.

Future work will explore the following directions:

- Validation process of the presented estimator and
control in an on-line cloud, such as Amazon EC2.

- Control theory provides other controller structures,
as feed-forward controller which cancel measured
disturbances effects before they impact the system.
Its implementation coupled with on-line estimation is
considered.

- Minimising changes in the input signal can be achieve
using event-based techniques, which computes a new
control input only when the system outputs change
significantly.

- Add new inputs and outputs to the model such as
availability, the maximum number of clients allowed
or the system throughput.

- As our system shows substantial non linearities, the
non linear field of control theory can be explored to
achieve better performances.

REFERENCES

[1] “AWS | Amazon Elastic Compute Cloud (EC2) Hbergement volutif
dans le cloud.” [Online]. Available: //aws.amazon.com/fr/ec2/

[2] “AWS | Amazon Elastic MapReduce (EMR) | Oprations Hadoop
MapReduce dans le cloud.” [Online]. Available: //aws.amazon.com/fr/
elasticmapreduce/

[3] L. Malrait, N. Marchand, and S. Bouchenak, “Modeling and control of
server systems: Application to database systems,” in Control Conference
(ECC), 2009 European, Aug. 2009, pp. 2960–2965.

[4] C. Poussot-Vassal, M. Tanelli, and M. Lovera, “Linear Parametrically
Varying MPC for combined Quality of Service and energy management
in Web service systems,” in American Control Conference (ACC), 2010,
Jun. 2010, pp. 3106–3111.

[5] E. Rutten, J. Buisson, G. D. ans F. de Lamotte, J.-F. Diguet, N. Marc-
hand, and D. Simon, “Control of autonomic computing systems,” 2013,
submitted to ACM Computing Survey.

[6] M. Berekmery, D. Serrano, S. Bouchenak, N. Marchand, and B. Robu,
“A Control Approach for Performance of Big Data Systems,” in 19th
IFAC World Congress (IFAC WC 2014), vol. 19, no. 1, Le Cap, South
Africa, Aug. 2014.

[7] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[8] Y. Shen, Enabling the New Era of Cloud Computing: Data Security,
Transfer, and Management: Data Security, Transfer, and Management.
IGI Global, 2013.

[9] A. Sangroya, D. Serrano, and S. Bouchenak, “Benchmarking depend-
ability of mapreduce systems,” in Reliable Distributed Systems (SRDS),
2012 IEEE 31st Symposium on, Oct 2012, pp. 21–30.

[10] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet,
E. Jeannot, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
B. Quetier, and O. Richard, “Grid’5000: A large scale and highly
reconfigurable grid experimental testbed,” in Proceedings of the 6th
IEEE/ACM International Workshop on Grid Computing, ser. GRID ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 99–106.

[11] K. J. Astrom and B. Wittenmark, Adaptive Control: Second Edition.
Courier Corporation, Apr. 2013.

[12] A. O’Dwyer, Handbook of PI and PID controller tuning rules. World
Scientific, 2009, vol. 57.

