
HAL Id: hal-01240440
https://hal.science/hal-01240440v1

Submitted on 9 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polychronous Automata
Paul Le Guernic, Thierry Gautier, Jean-Pierre Talpin, Loïc Besnard

To cite this version:
Paul Le Guernic, Thierry Gautier, Jean-Pierre Talpin, Loïc Besnard. Polychronous Automata. TASE
2015, 9th International Symposium on Theoretical Aspects of Software Engineering, Sep 2015, Nanjing,
China. pp.95-102, �10.1109/TASE.2015.21�. �hal-01240440�

https://hal.science/hal-01240440v1
https://hal.archives-ouvertes.fr

Polychronous Automata

Paul Le Guernic Thierry Gautier Jean-Pierre Talpin
INRIA, Rennes-Bretagne-Atlantique Research Centre, France

Loı̈c Besnard
CNRS, IRISA, Rennes, France

Abstract—This paper investigates the way state diagrams can
be best represented in the polychronous model of computation.
In this relational model, the basic objects are signals, which are
related through data-flow equations. Signals are associated with
logical clocks, which provide the capability to describe systems
in which components obey to multiple clock rates. We propose
a model of finite-state automata, called polychronous automata,
which is based on clock relations. A specificity of this model is that
an automaton is submitted to clock constraints. This allows one
to specify a wide range of control-related configurations, either
reactive, or restrictive with respect to their control environment.
A semantic model is defined for these polychronous automata,
that relies on a Boolean algebra of clocks.

I. INTRODUCTION
The design of embedded systems, and more specifically

critical systems, requires the satisfaction of strong, various
and heterogeneous constraints such as safety, determinism of
embedded programs, threaded or distributed implementation,
scheduling in a specific or non specific OS, etc. One way to
help designers is to provide them with friendly usable tools
supported by strong mathematical semantics. These formal
models and methods allow to ensure correctness of com-
ponents used or defined at each level of the design. The
polychronous model of computation [1] is such a formal
model. Historically related to the synchronous programming
paradigm [2] (Esterel [3], Lustre [4]), the polychronous model
of computation, implemented in the data-flow language Signal
[5], [6] and its environment Polychrony1, stands apart by the
capability to model multi-clocked systems. The synchronous
paradigm consists of abstracting the non-functional imple-
mentation details of a system and lets one benefit from a
focused reasoning on the logics behind the instants at which
the system functionalities should be secured. The fundamental
notion of polychrony consists in the capability to describe
systems in which components obey to multiple clock rates.
In particular, the Signal language gives the opportunity to
seamlessly model embedded systems at multiple levels of
abstraction while reasoning within a simple and formally
defined mathematical model. A design approach that may
be advocated is to allow for a seamless inter-operation of
heterogeneous programming viewpoints within the same host
model of computation which is the polychronous model. A
typical case study from Airbus, for instance, was based on a co-
modeling of the doors management system of the A350 [7]. In
this case study, functionalities were modeled with synchronous
Simulink2 and a system-level model of the hardware equipment
was specified in AADL [8]. The Polychrony toolbox was then
used to interpret computations and communications specified
in both models in order to synthesize schedulers for sequential
and distributed simulation. The experiment was successful,

1http://www.irisa.fr/Polychrony
2http://www.mathworks.com/products/simulink

since it has demonstrated that the polychronous model, through
its supportive language Signal, may be used as an effec-
tive common semantic model for representing or interfacing
heterogeneous models. However, Signal is based on a data-
flow oriented notation, thus there is sometimes some distance
between an actual specification, which may use, for instance,
state oriented description, and its semantic encoding as systems
of equations. This may cause some practical difficulties, in
particular when traceability is a requirement, as is the case in
most systems.

In this paper, we investigate the way state diagrams can
be best represented in the polychronous model of compu-
tation, maintaining the multi-clock characteristic property of
the representation. We propose a model of automata, called
polychronous automata, which is based on clock (or event)
relations, and allows one to specify a wide range of control-
related configurations, more or less permissive (or, dually,
more or less restrictive). A semantic model is defined for these
polychronous automata, that relies on the Boolean algebra
of clocks, and permits to manipulate these automata, without
having necessarily to translate them into data-flow equations.

Related work. Usual automata have been introduced several
years ago in data-flow synchronous languages and are used
every day in production tools like SCADE [9]. More generally,
there have been many attempts to combine heterogeneous
programming models. A major problem addressed in Ptolemy
is the use of heterogeneous mixtures of models of computation
[10]. So-called Modal Models in particular are hierarchical
models where the top level model consists of a finite-state
machine, the states of which are refined into other models, pos-
sibly from different domains [11]. In our approach, heteroge-
neous designs are expressed in terms of a common semantics,
which is that of the polychronous model of computation. In the
software system Matlab/Simulink, which is largely accepted
in the industry, the Stateflow notation [12] is used to describe
modes in event-driven and continuous systems.

Mode-automata [13] were originally proposed to gather
advantages of declarative and imperative approaches to syn-
chronous programming and extend the functional data-flow
paradigm of Lustre with the capability to model transition
systems. Mode-automata have been combined with stream
functions in Lucid Synchrone [14]. Related forms of hierarchi-
cal state machines include Statecharts [15] and their variants,
including UML state machines [16], and SyncCharts [17],
associated in particular with Esterel and, more recently, SC-
Charts [18], based on an improved definition of (sequential)
constructivity [19]. DDFCharts [20], which compose finite-
state machines and synchronous data-flow graphs, have multi-
ple clocks; transitions can be driven by different clocks and the
instants at which clocks synchronize are seen as a rendez-vous
communication.

http://www.irisa.fr/Polychrony
http://www.mathworks.com/products/simulink

Our approach may be distinguished from the others by its
capability to model multi-clocked systems and to express clock
relations through the automata. A first attempt was made a
few years ago to define polychronous mode automata [21],
but compared to our current proposal, it did not allow to
manipulate automata as specific objects that can be used,
for instance, to specify dynamic properties of events. In its
spirit, our approach, which is based on constraint specification
relating occurrence of events, is relatively close to that taken
for Lutin [22], but with a different purpose. In Lutin, state-
ments describe sequences of non deterministic atomic reactions
expressing constraints on input/output values. It is used mainly
for test sequence specification and generation. In our proposal,
constraints relate values and clocks of signals.

Although motivated by practical reasons such as the effec-
tive combination of heterogeneous programming notations, the
main purpose of this paper is not to propose another extension
of an existing programming language. Instead, we focus on the
definition of a specific model of automata, specially adapted to
the polychronous model of computation. Such automata have
to relate events by expressing and specifying clock relations
(or clock constraints) between these events. For the definition
of polychronous automata, the Signal language is used as
syntactic support to express clock equations. Simple examples
such as alternating events are used in this paper as they are
sufficient to illustrate the basics of the model.

In the next section, we first recall the main operators of
the Signal language and their semantics. Then we define in
Section III the Boolean control algebra which is used to manip-
ulate clock formulas. In Section IV, we describe the refinement
of polychronous programs as automata. In Section V, we
highlight different forms of polychronous automata described
as equations on signals. Relying on these requirements in terms
of expressivity, we define our model of automata in Section VI.
Then, regular event expressions for simple forms of automata
are proposed in Section VII. Conclusion and future work are
drawn in Section VIII.

II. THE SIGNAL LANGUAGE
We first introduce the Signal language and its semantics,

before to formalize its Boolean control algebra, that is the basis
for clock calculus. Signal is a declarative language expressed
within the polychronous model of computation. The reader
is referred to the bibliography of the Signal language for a
detailed description (for instance [23] for an overview, [24],
[5] for detailed syntax and semantics).

A Signal process defines a set of (partially) synchronized
signals as the composition of equations. A signal x is a
finite ((∃n ∈ N)(x = (xt)t∈N,t≤n) or infinite (x = (xt)t∈N)
sequence of typed values in the data domain Dx; the indices
in the sequence represent logical discrete time instants. At
each instant t, a signal is either present and holds a value
v in Dx, absent and virtually holds an extra value denoted ⊥,
or completed and never holds any actual or virtual value for
all instants s such that t ≤ s. The set of instants at which
a signal x is present is represented by its clock x̂. Two
signals are synchronous iff they have the same clock. Clock
constraints result from implicit constraints over signals and
explicit constraints over clocks.

The semantics of the full language is deduced from the
semantics of a core language, and from the Signal definition
of the extended features. A Signal process is either an equation

x := f(x1, . . . , xn), where f is a function, or the composition
P |Q of two processes P and Q, or the binding P/x of the
signal variable x to the process P . In this section, we give a
sketch of its functional part using data-flow models.

Semantic domains. For a set of values of some type D, we
define its extension D⊥ = D ∪ {⊥}, where ⊥ /∈ D denotes
the absence of a signal value. The semantics of Signal is
defined as least domain fixed point. For a data domain D,
we consider a poset (D⊥ ∪ {•,#},≤) such that (D⊥,≤)
is flat, i.e., x≤y ⇒ x = y, for all x, y ∈ D⊥ (• and #
denote respectively the presence of a signal and the absence
of information). We denote by D∞ the set of finite and infinite
sequences of “values” in D⊥. The empty sequence is denoted
by ε. All n-ary functions f : D∞n → D∞ are defined using
the convention of noting s a (possibly empty) signal in D∞,
v a value in D, x a value in D⊥. As usual, |s| is the length
of s, s1.s2 is the concatenation of s1 and s2.

Given a non empty finite set of signal variables A, a
function b : A → D∞ that associates a sequence b(a) with
each variable of a ∈ A is named a behavior on A. The length
|b| of a behavior b on A is the length of the smallest sequence
b(a). An event on A is a behavior b : A→ D⊥. For a behavior
b on a set of signal variables A, and an integer i ≤ |b|, b(i)
denotes the event e on A such that e(a) = (b(a))(i) for all
a ∈ A. An event e on A is said to be empty iff e(a) = ⊥ for
all a ∈ A. The concatenation of signals is extended to tuples
of signals. Two behaviors b1, b2 are stretch-equivalent iff they
only differ on non-final empty events (see [1] for more details).

Signal functions. A Signal function is a n-ary (with n > 0)
function f that is total, strict and continuous over domains [25]
(w.r.t. prefix order) and that satisfies:

– stretching: f(⊥.s1, . . . ,⊥.sn) = ⊥.f(s1, . . . , sn)
– termination: ((∃i ∈ 1, n)(si = ε))⇒ f(s1, . . . , sn) = ε

Stepwise extension. Given n > 0 and a n-ary total function
f : D1 × . . .×Dn → Dn+1, the stepwise extension of f (e.g.,
=, and , +, etc.) denoted F is the synchronous function that
satisfies:

– F (v1.s1, ..., vn.sn) = f(v1, ..., vn).F (s1, ..., sn)

Delay. Function delay: D× D∞ → D∞ satisfies:
– delay(v1, v2.s) = v1.delay(v2, s)
The infix syntax of delay(v1, s) is: s $ init v1.

Merge. Function default: D∞ × D∞ → D∞ satisfies:
– default(v.s1, x.s2) = v.default(s1, s2)
– default(⊥.s1, x.s2) = x.default(s1, s2)
The infix syntax of default(s1, s2) is: s1 default s2.

Sampling. Let B = {ff , tt} denote the set of Boolean values.
Function when: D∞ × B∞ → D∞ satisfies:

– for b ∈ {⊥,ff }, when(x.s1, b.s2) = ⊥.when(s1, s2)
– when(x.s1, tt.s2) = x.when(s1, s2)
The infix syntax of when(s1, s2) is: s1 when s2.

Process. An equation is a pair (x,E) denoted x := E.
An equation x := E associates with the variable x the se-
quence resulting from the evaluation of the Signal function
f denoted by E (defined as a composition of functions). If
A = {x1, ..., xn} (x /∈ A) is the set of the free variables
in E, the equation x := E denotes a process on A, i.e., a
set of behaviors on A ∪ {x}; a process is closed by stretch-

equivalence (thanks to the stretching rule).
The parallel composition of equations defines a process by

a network of strict continuous functions connected by signal
names. Composition of processes is associative, commutative
and idempotent. When it satisfies the Kahn conditions (no
cycle, single assignment. . .), it then is a strict continuous
function or Kahn Process Network (KPN) [26], defined as
least upper bound satisfying the equations. It further satisfies
the termination and stretching properties (it is closed for the
stretching relation). It may or may not be synchronous. In the
semantics of Signal [1], a process is the set of infinite behaviors
accepted by the above “KPN semantics”.

A process with feedback or local variables may be not time-
deterministic. The semantics of a non deterministic process
can be defined using Plotkin’s power-domain construction [27].
The input-free equation x := x $ init 0 is a typical exam-
ple of not timely deterministic process: x holds a sequence
of constant value 0 separated by an undetermined number of
silent transitions, characterized by an occurrence of ⊥.

An example of non deterministic process is the equation
x ::= E, that defines x to be equal to E when E is present
and undefined when E is ⊥ (partial definition). This equation
is a shortcut for x := E default x. A signal x can be
constructively defined by several equations x ::= E1, . . . , x
::= En in a process, provided that for every pair of equations
x ::= Ei, x ::= Ej, when Ei and Ej are both present, they
hold the same value. If E1, . . . , En do not recursively refer to
x and if they denote functions, then (x ::= E1|...|x ::=
En) is a deterministic process.

Partial definitions are very useful in automata where the
function that computes the value of a signal often depends
on current state. The states being exclusive, the consistency
property is satisfied. Partial definitions are used also to define
state variables the elements of which are present as frequently
as necessary. When such a state variable is not explicitly
defined, it keeps its previous value.

Derived operators. The following notations (which are
derived operators) are used to manipulate clocks, represented
as signals of type event, always true if and only if present.
• null clock ̂0 (never present)
• signal clock ̂x, defined by x = x (present, and true,

when x is present)
• selection ˜b (a.k.a. [b] or when b), defined by ̂b when

b (present, and true, when b is present and is true)
• intersection x1 ̂* x2 by ̂x1 when ̂x2
• union x1 ̂+ x2 by ̂x1 default ̂x2
• difference x1 ̂- x2 by when ((not ̂x2) default̂x1)
• synchronization x1 ̂= x2 as (c := (̂x1 = ̂x2))/c
A synchronized memory y := x cell c init x0 is de-

fined by y := x default (y $ init x0) and y ̂= x ̂+
[c]. It defines y with the most recent value of x when x
is present or c is present and true. Finally, the Signal term
ll :: P associates the label ll with the process P; a label
ll is a signal of type event. Its clock is the tick of the
labeled process, P (i.e., the upper bound of all the clocks in
P).

III. BOOLEAN CONTROL ALGEBRA
We define the syntax and set the axioms of the Boolean

control algebra, taking into account state variables used to

represent states of the automata.

Definition 1. Considering V a (possibly empty) countable set
of signal variables, S a non empty finite set of state variables
with S∩V = ∅, a Boolean control algebra Φ(V, S) is a tuple
(FV,S , ∗̂, +̂, −̂,¬,0,1V), where:

• ∗̂, +̂ designate meet (infimum) and join (supremum);
• 0, 1V are the minimum and maximum.

The set of control Boolean formulas FV,S is the smallest set
that satisfies:

• constants 0,1V ∈ FV,S;
• atoms ∀x ∈ V ∪ S, x̂, x̃ ∈ FV,S;
• unary expressions ∀f ∈ FV,S , ¬f ∈ FV,S;
• binary expressions ∀f, g ∈ FV,S , +̂fg, ∗̂fg, −̂fg ∈ FV,S .

Parentheses and infix notations can be used in the formulas.

The formula x̂ designates the clock of a variable x. The
formulas satisfy Boolean axioms: (FV,S , ∗̂, +̂,¬,0,1V) is a
Boolean algebra. The following supplementary axioms are also
considered.
• difference f −̂ g = f ∗̂ ¬g;
• partition ∀x ∈ V ∪ S, x̂ = x̃ +̂ ¬x̃ and x̃ ∗̂ ¬x̃ = 0;
• exclusion ∀s1, s2 ∈ S, s̃1 ∗̂ s̃2 = 0 or s1 = s2;
• 1∅ = 0.
The clock of an automaton with a non-empty V is defined

by
∑

x∈V (x̃ +̂ ¬x̃) = 1V , and ∀s ∈ S, ŝ = 1V . Formulas
in the Boolean control algebra have normal forms: Shannon
disjunctive forms (given an arbitrary total order on variables).

Clock hierarchy. In this context, timing analysis mainly refers
to analyzing clock relations based on clock hierarchy. The
clock hierarchy of a process is a component of its Data
Control Graph (DCG). The DCG is made of a multigraph
G and a clock system Σ. We refer to [23] for a more complete
description. A clock equation is a class of equivalent clock
formulas. The clock system Σ is a forest (set of trees) of
clock equations: this is why it is called clock hierarchy. The
clock hierarchy is defined by a relation ↘̂ (dominates) on the
quotient set of signals by ̂= (x and y are in the same class
iff they are synchronous). Informally, a class C dominates a
class D if the clock of D is computed as a function of Boolean
signals belonging to C and/or to classes recursively dominated
by C. A node n of a tree, which is a clock equation, contains
also the list of signals signal(n) the clock of which is equal
to this class. A tree represents an endochronous process: it has
a fastest rated clock and the status (presence/absence) of all
signals is a pure flow function (this status depends neither on
communication delays, nor on computing latencies).

The equational nature of the Signal language is a funda-
mental characteristic that makes it possible to consider the
compilation of programs as an endomorphism over Signal pro-
grams. We have mentioned a few properties allowing to rewrite
programs with rules such as commutativity and associativity of
parallel composition. More generally, until the very final steps
of code generation (when code generation is an objective), the
compilation process may be seen as a sequence of morphisms
allowing to rewrite programs as transformed Signal programs.
The final steps (C code generation for instance) are simple
morphisms over the transformed Signal programs. These trans-
formation steps, to sequential, clustered, or distributed code
generation, are described in [23].

IV. REFINEMENT OF PROCESSES AS AUTOMATA
So far, contrary to what is done for other synchronous lan-

guages, including data-flow ones like Lustre (see for instance
[28]), no explicit representation of automata was directly
produced in the compilation of Signal programs, either for
code generation purpose, or as input to formal verification
tools. In this section, we propose a method for deriving an
automaton from a polychronous program, which relies heavily
on the concept of clock.

A given Signal program may be seen as an automaton
which contains one single state and one single transition,
labeled by a clock. This clock is the upper bound of all the
clocks of the program (the tick of the program).

The construction of a refined automaton from a Signal
program will be based on delayed signals, viewed as state
variables (in particular Boolean ones). A state of the automaton
is a Signal program with some valuation of its state variables.
Transitions are labeled by clocks, which represent the events
that fire these transitions. The principle of the construction
consists in dividing a given state according to the possible
values of a state variable (i.e., true and false for Boolean state
variables, which are considered here) in order to get two states,
and thus two new Signal programs. Each one of these two
states is obtained using a rewriting of the starting program.
Moreover, the absence of value for the state variable (which
can be considered as another possible value) is taken into
account in the clocks labeling the transitions. The construction
of the automaton is a hierarchic process.

P

P1 P2

k

¬s̃
k−̂¬s̃

s̃
k−̂s̃

Figure 1. Refinement of state s in P by the automaton A1 = (P1, P2)

Figure 1 illustrates the first step of the construction. Ini-
tially, the automaton A has one single state, which is the Signal
program P , with one transition, labeled by the tick k of P .
The construction is started with the valuation of a first state
variable, s, in the program P , respectively with true and false,
which gives two new programs, P1 and P2. The new programs
are obtained by rewriting the previous one, taking into account
the considered valuation. This rewriting results generally in
simplifications of the programs. The resulting automaton, A1,
now contains two states, P1 and P2. The calculus of the
transitions consists in computing the clocks of the events that
cause a change of state. The transition from P1 to P2 occurs
when the state variable s, which was true, becomes false; thus
the corresponding clock is ¬s̃. Conversely, the transition from
P2 to P1 occurs at the clock s̃. The transition from P1 to
itself is labeled by the clock k, minus the instants at which
there is a transition from P1 to P2 (and the same reasoning
for P2). Note that the transitions are not instantaneous. When
a clock raising a change of state is present at a given instant,
the effective change of state of the automaton takes place at
the following instant (with respect to the tick).

The construction of the automaton is an iterative process,
by successive valuation of its state variables, s1, s2, etc. For

instance, the second step would introduce new states, P11 and
P12 from P1, by discriminating it according to the value of
a second variable s2. One could, equivalently, introduce two
others states from P2. Now, at any refinement step n > 1,
one could then potentially define 2n states by iterating the
refinement of all sub-processes Pn−1

i , of clocks kn−1i and
indices 0 < i ≤ 2n−1 obtained from step n−1, by partitioning
them according to an nth state variable sn and by using the
same mechanism, Figure 2.

Pn
i1 Pn

i2¬s̃n
kn−1i −̂¬s̃n

s̃n
kn−1i −̂s̃n

Figure 2. Refinement of state sn in Pn−1
i by the automaton (Pn

i1, P
n
i2)

This would seem to be an expensive construction, at least
in the worst case, in the size of the explicit automaton being
an exponential of its number of state variables. Fortunately,
however, all Signal programs have a clock hierarchy, defined
from the dominance relation introduced in Section III, which
is used to represent the control flow of the program in a
much more efficient way (and actually optimal, as hierarchies
can be normalised and admit a canonical representation).
Concretely, most of the 2n are in practice inaccessible, because
of dominance (of a state value by a clock).

Example. Let’s for instance consider a Signal program with
two state variables s1 and s2 such that s2 is not defined when
s1 is false, i.e., s2 ̂= when s1. In other words, s1 has a
higher frequency than s2, and in the built clock hierarchy,
the clock of s1 dominates s2. If we construct its automaton as
in figure 2, evaluating s1 first, s2 second, we would obtain
four sub-processes P 2

11,12,21,22 from P 1
1 and P 1

2 . However,
partitioning P 1

2 into P 2
21,22 is useless, since s2 is not present

when s1 is false.
It may further be observed that, when constructing the

automaton, the order in which state variables are valuated has
an influence on the number of states of the automaton. Our
choice is to therefore base this order on the clock hierarchy
of the Signal program, using a pre-order depth-first traversal.
In this way, more frequent state variables are evaluated before
less frequent ones. Note also that when some state variable
is valuated, the corresponding program is rewritten, using in
particular constant propagation. This results generally in many
simplifications, since a number of clocks may become null,
thus eliminating corresponding variables.

V. AUTOMATON DESCRIPTION IN SIGNAL EQUATIONS
Of particular interest from the previous example is that, in

the polychronous framework, the behavior of an automaton
may be either reactive, with respect to its environment or
context, or restrictive: constrained by clock relations. This can
be illustrated on an automaton alternating two events, a and
b. Events a and b are constrained to alternate by the clock
relation a ∗̂ b = 0, which imposes that they cannot happen
simultaneously (the intersection of clocks a and b is never
present). It should further be assumed also that b cannot occur
in S1 and a cannot occur in S2. It can be noticed that the
occurrences of a and b are always controlled (or constrained),
and control is state dependent.

a∗̂b = 0 S1 S2a
b

Figure 3. A restrictive behavior

Such an automaton can also be expressed by constraining a
and b to occur in either of the automaton states s.
s := not (s $ init false) | a ̂= [s] | b ̂= [not s]

A reactive behavior, as in Lustre or Esterel, is different.
Events a and b are free to occur at any time. An Esterel
or a Lustre program does not “control” the delivery of its
input signals. A reactive automaton will observe and record
the alternating occurrences of a and b, Figure 4, it will not
enforce them.

S1 S2ab−̂a b a−̂b

Figure 4. A reactive behavior

In Signal, the observer will be implemented using a couple
of equations that monitor alternation using a state variable
change and stuttering using another wait.

wait := change cell (aˆ+b) init false
| waiting := wait $ init false
| change := (true when a when not waiting)

default (false when b when waiting)

A resettable Esterel program like the famous ABRO is
an object which falls in between constrained and reactive
behaviors: it emits an output O immediately after receiving
both inputs A and B. It is reset when R occurs. So, signal O is
control, while others aren’t.

module ABRO:
input A, B, R;
output O;
loop

[await A || await B];
emit O

each R
end module

The automaton for the ABRO is represented Figure 5,
where transitions are labeled by Signal clock expressions.

Sr

SaSb

So

a−̂(r+̂b)
b−̂(r+̂a)

(a∗̂b∗̂o)−̂r

r

r

(b∗̂o)−̂r

a−̂(r+̂b)

r

(a∗̂o)−̂rb−̂(r+̂a)

r

(a+̂b)−̂r

Figure 5. Automaton for ABRO

An equational definition of the ABRO may be specified as
follows in Signal, using a state variable for representing the
expectation of a and b:

sa := ((false when r) default a) cell b init false
| sb := ((false when r) default b) cell a init false
| wait := r default (false when o) default waiting
| waiting := wait $ init true
| o := [waiting] when (sa and sb)

VI. EXPLICIT STRUCTURE OF AUTOMATA
Although it is always possible to represent automata by

systems of equations, equations are clearly not always the
most natural way to represent them. Moreover, in a model-
driven engineering context, it is better suited to explicitly
represent user-specified and automatically generated automata
to maintain high-level semantic properties as well as the
traceability of model transformations. We have hence chosen
light-weight syntactic extensions to the Signal language in
order to introduce explicit representations of automata.

We add a new syntactic category of process, called
automaton. In such an automaton process, labeled processes
represent states, and generic processes such as Transition
are used to represent the automaton features. Usual equations
can be used in these automaton processes to specify constraints
or to define computations. Then comes the question of whether
these automata should be only a syntactic structure (in such a
way that they would be systematically translated as ordinary
equations on signals when compiled), or whether they should
be reflected in the polychronous formal model itself. This latter
choice has the advantage of allowing a formal manipulation
of automata (which may be, or not, translated as equations).
For instance, it may be the case that a given behavior is
best abstracted as an interface automaton than as a system
of clock equations which would require to make explicit some
hidden Boolean variables. It is therefore desirable to define a
model of “polychronous automata” allowing a possible smooth
integration within the polychronous model.

A basic statement for the definition of our automata is that
state change takes time. It is also assumed in [13], [14], or in
SCADE 6. In this way, there is a single state at each logical
instant and there is no immediate transition. Such automata
should be used to schedule steps, not actions in a step.
This drives towards simplicity and is also suitable for high-
level mode modeling in an application. In the polychronous
framework, transitions will be labeled by clock (or event)
expressions named triggers and a state is implicitly exited on
the upper bound of its triggers. An automaton is clocked: it
is controllable by an external clock, its control clock. There
are several possible interpretations of a given automaton: in a
permissive view, all non forbidden events are allowed in states;
while in a restrictive one, all non allowed events are forbidden
in states. By default, we adopt the permissive hypothesis.

A. Notations for constrained automata
To make things concrete, let us write a syntactic repre-

sentation of the automaton in Fig. 6. This simple automaton
has two external events, a and b, and its control clock is,
implicitly, the upper bound, a ̂+ b of the clocks of its inputs.
The two states, S1 and S2, are designated by labels, associated
here with empty processes. The statement Never (a ̂* b)
represents the constraint of the automaton. This constraint,
which much always be respected, can be expressed by a clock

formula that is constrained to be null: here, a ̂* b ̂= ̂0,
expressed as Never (a ̂* b). Such constraints can always
be expressed as a conjunction of Never formulas (which can
also be specified as one single Never statement with several
parameters) or of explicit synchronizations like Synchro (x,
y) (with Synchro (x, y) defined as Never (x ̂- y, ŷ- x)). In this small automaton with two states and two
explicit transitions, the initial state is S1. We will see below
that there are also implicit transitions.

Les us state some vocabulary and notations. For a transition
T = Transition (S1, S2, h), S1 is the source of T,
S2 is the target of T, h is the trigger of T, denoted trigger(T),
and a trigger in S1; h is a clock expression, that may represent,
for instance, a conjunction of events (e.g., a ̂* b represents
the conjunction of events a and b). The transition T is enabled
at k iff (k ̂* h) is not null and the current state is S1.

a∗̂b=̂0

S1 S2
a

b−̂a

b

a−̂b S1 :: P1()
| S2 :: P2()
| Initial_State (S1)
| Transition (S1, S2, a)
| Transition (S2, S1, b)
| Never (a ˆ* b)

Figure 6. Constrained automaton (with implicit stuttering loops)

A step is defined as being an implicit not exiting reflexive
(e.g. stuttering) transition. A step S1--h->>S1 is enabled at
k iff (k ̂* h) is not null, current state is S1 and there is no
enabled transition. All steps that are not explicitly forbidden
are allowed. In the example of Fig. 6, S1 -- b̂-a ->> S1
and S2 -- â-b ->> S2 are steps (they appear as dotted
transitions). Steps allow for “stuttering” when there is no
enabled transition. For a state S, exiting on (one of the) en-
abled transitions is mandatory. A formal model of constrained
automata, consistent with the polychronous framework, is
proposed in the next section.

B. Formal definition
For an automaton A of signal variables VA and states SA,

we denote by FA,S the set of normal form formulas in the
Boolean control algebra Φ(VA, SA) (cf. Section III).

Definition 2. A polychronous automaton A is an epsilon-free
automaton defined up to isomorphism (over states) as a tuple
A = (SA, s0, RA,VA, TA, CA) where:
• SA is the non empty finite set of states;
• s0 is the initial state;
• RA ⊂ SA × SA is the transition relation;
• VA is the, possibly empty, finite set of signal variables;
• TA : (RA) → FA,S is the function that assigns a formula

to a transition;
• CA is the constraint of A: it is a formula in FA,S that is

(constrained to be) null (thus a formula f in FA,S is null
in A iff f ∗̂ CA = f).

Remarks. A transition in TA carries a formula in the Boolean
control algebra that represents its trigger. Polychronous au-
tomata are subject to clock constraints CA which are expressed
by a formula in the Boolean control algebra. If CA is 0,
then the automaton is constraint-free; if CA is 1VA

(i.e., the
supremum of the algebra is constrained to be null), all formulas
are null. The notation 1A is used to denote the supremum 1VA

.

An automaton with an empty set of transitions is OV =
({s}, s, ∅, V, ∅,1V), which blocks all occurrences of all vari-
ables of V . The automaton with an empty set of variables
is I = I∅ = ({s}, s, ∅, ∅, ∅,0); it is equal to O∅ =
({s}, s, ∅, ∅, ∅,1∅).

Example. The automaton in Fig. 6 is defined by A =
(SA, s0, RA, VA, TA, CA) with
• SA : {S1, S2}
• s0 : S1

• RA : {(S1, S2), (S2, S1)}
• VA : {a, b}
• TA : (S1, S2) 7→ a, (S2, S1) 7→ b
• CA : a ∗̂ b +̂ ¬ã +̂ ¬b̃

(a, b are events thus ¬ã, ¬b̃ should be null).
A labeled transition is denoted by “h : s1RAs2” meaning

that ((s1, s2) ∈ RA and TA((s1, s2)) = h).
Now notions introduced previously can be formalized:
• The control clock of an automaton A is 1A (=∑

x∈VA
(x̂)), the supremum of the clocks of its variables.

• In h : s1RAs2, h is the trigger of (s1, s2) and a trigger
in s1.

• The trigger of a state s, triggerA(s), is the upper bound
of the triggers of (s, ∗), where (s, ∗) stands for all the
transitions outgoing from s.

Then it is possible to define the stuttering clock of a
state as the clock difference between the control clock of the
automaton and the trigger of the state (plus the null clock
of the state, CA(s) = s̃ ∗̂ CA): the stuttering clock of a
state s is τ(s) = 1A −̂ (CA(s) +̂ triggerA(s)). Hence the
definition of implicit transitions: when the stuttering clock τ(s)
of a state s is not null, there is a silent implicit transition
τ(s) : sRAs named step. Usual properties of automata can be
easily extended to polychronous automata:
• A state t is n-reachable in A iff s0 and t are not null and

either
◦ n = 0 and t = s0,
◦ n > 0 and t is (n− 1)-reachable in A,
◦ n > 0 and (∃s (n− 1)-reachable in A)

(∃h)(h ∗̂ s̃ not null)(h : sRAt).
• A state t is reachable in A iff it is |SA|-reachable in A.
• A state s is deterministic if the triggers of its transi-

tions are mutually exclusive: formally, s is determinis-
tic iff (∀((s, s1), (s, s2)) ∈ RA × RA)((s1 = s2) ∨
(TA((s, s1)) ∗̂ TA((s, s2)) = 0)).

• An automaton is deterministic iff all its reachable states
are deterministic.

• A state s is total (or reactive) iff
τ(s) +̂ (Σ(s,t) ∈ RA

(triggerA((s, t)))) = 1A.
• An automaton is total (or reactive) iff all its states are total

(we observe that if CA is not 0 then A is not reactive).

C. Polychronous automata algebra
Just like the synchronous composition, the composition (or

synchronous product) of polychronous automata corresponds
to the conjunction of the behaviors specified by each of them.

Definition 3. Let A = (SA, s0, RA, VA, TA, CA) and
B = (SB , t0, RB ,VB , TB , CB) two polychronous au-
tomata, their composition is defined by AB = A|B =
(SAB , (s0, t0), RAB ,VAB , TAB , CAB), where:
• SAB = SA × SB ,

• RAB = {((s1, t1), (s2, t2)) | ((s1, s2), (t1, t2)) ∈ RA ×
RB},

• VAB = VA ∪ VB ,
• (∀ st = ((s1, t1), (s2, t2)) ∈ RAB) (TAB(st) =
TAB((s1, t1)) ∗̂ TAB((s2, t2))),

• CAB = CA +̂ CB .

Note that the constraint of the composed automaton (its null
formula CAB) is defined by the clock union of the constraints
of the operand automata.

Theorem 1. The composition of polychronous constrained
automata has the following properties:
• if A is deterministic, A|A = A, it is idempotent;
• it is commutative;
• it has a neutral element I = ({s}, s, ∅, ∅, ∅,0);
• it is associative.

Idempotence for deterministic automata can be proved
using induction on n-reachability of states. Associativity can
be proved by induction on n-prefix automata (the states of a n-
prefix automaton of an automaton A are the n-reachable states
of A). Associativity corresponds to context independence and
commutativity to order independence.

D. Discussion
The added value provided by the formal model of the

polychronous automata is to allow for a smooth integration
of automata into the polychronous model of computation of
the Signal data-flow language. They have not necessarily to be
translated by systems of equations on signals, although such a
translation is, of course, possible (comparable translations have
been studied in previous works, such as [14] for example, and
it is not our purpose here to describe a translation that would
not be so different). We have defined a parallel composition
(synchronous composition) of polychronous automata. A clas-
sical extension of finite automata is also that of hierarchical
automata, in which states may be non atomic. Here, this
can be handled quite simply in the context of the Signal
language. It is not detailed in this paper since it does not
present new challenges with respect to previous works. Just
like labels are syntactically associated with states, labels can
also be associated with transitions, and these labels can be
used as clocks. The label of a transition is an event signal
(a clock), which is true (present) when this transition is
fired. Actions associated with an automaton can be expressed
as polychronous equations (in our case, in Signal), that are
composed with the constraints of the automaton. They may use
specific events associated with the automaton, such as labels
of transitions, but also other typical events such as entering or
exiting a given state, etc.

A further remark can be made on permissive versus re-
strictive interpretation (recall permissive is the default one).
The transformation of a given automaton from a permissive
interpretation to a restrictive one is obtained as follows by
disabling its steps. Given a (permissive) automaton A, the high
level operation “strong A” consists in adding the following
constraint for every state s in A: (1A −̂ triggerA(s)) ∗̂ s̃ = 0.
For an event h and a clock S, let us write (in a more readable
way) “h in S” the clock h ̂* [S]. Consider as example
the A automaton represented in Fig. 6.

Defining “automaton alternate = strong A”
adds to A the constraints (â+b)̂-a) in S1 ̂= O and

a in sb=̂0 | b in sa=̂0

sa sb
a

b

Sa :: P1()
| Sb :: P2()
| Initial_State (Sa)
| Transition (Sa, Sb, a)
| Transition (Sb, Sa, b)
| Never (b in Sa, a in Sb)

Figure 7. “alternate” automaton

(â+b)̂-b) in S2 ̂= O. Applying constraint reduction,
we get the following automaton, represented in Fig. 7.

VII. SIGNAL REGULAR EXPRESSIONS
A further possible extension could be to introduce regular

event expressions in order to abstract polychronous automata
or represent their constraint (or null formula). They can be
used also to represent simple automata in which non explicitly
allowed events are forbidden.

To define the algebra of regular expressions [29], we
consider a Kleene algebra (A,+, ., ∗, 0, 1), i.e., an idempotent
semi-ring (A,+, ., 0, 1), where (A,+, 0) is an idempotent
commutative monoid and (A, ., 1) a monoid s.t. a.0 = 0.a = 0,
a.(b + c) = a.b + a.c and (a + b).c = a.c + b.c. A supports
a natural, monotonic, partial order (a ≤ b) iff (a + b = b)
and star definition satisfying 1 + a.a∗ ≤ a∗, 1 + a ∗ .a ≤ a∗,
b+ a.x ≤ x⇒ a ∗ .b ≤ x and b+ x.a ≤ x⇒ b.a∗ ≤ x. Our
objective is to represent events and event formulas as regular
expressions (extended) with counting. We compare with the
related property specification language PSL [30].

Signal regular event expressions are defined on a (finite)
vocabulary made of the equivalence classes of event formulas.
Values h are event formula classes (in place of {h} in PSL) and
neither the empty set 0 nor 1 = {ε} have PSL representation.
Both 0 and 1 should remain implicit, as part of the event
algebra, with no explicit syntax.

Operators are concatenation, often denoted S1.S2, S1;S2

here, as in PSL; union S1 + S2 (S1|S2 in PSL); and star S∗.
Usual notations may be utilized for positive S+ = S;S∗ and
option S? = 1+S. Usual reduction rules apply. Other operators
are defined as well, such as fusion S : T (same as PSL) and
synchronous product S|T . Finally, regular expressions with
counting are considered [31], where counters of the form S[n]
are inductively defined by S[0] = 1 and S[m+ 1] = S;S[m].

As an example, the constraint of the alternating automaton
represented in Fig. 3, C = (a ∗̂ b), can equivalently be ex-
pressed as the regular event expression ((a ̂- b) + (b ̂-
a))∗. The alternating automaton could itself be alternatively
expressed by the composition of two regular event expressions
consisting of the negation of the constraint (a ̂* b)∗ and of
its transitions (a;b)∗, which yields ((a ̂- b);(b ̂- a))∗.

VIII. CONCLUSION
We have presented a model of finite-state automata, called

polychronous automata, that integrates smoothly with data-
flow equations in the polychronous model of computation.
They define transition systems to express explicit reactions
together with properties, in the form of Boolean formulas over
logical time, to constrain their behavior. The implementation
of such automata amounts to composing explicit transition
systems with a controller synthesized from the specified con-
straints. Polychronous automata are being integrated in the

open-source version of the Polychrony toolset. They may be
used to specify behaviors (and constraints) and to abstract
behaviors, as the result of a formal calculus. A special class
of automata is that which may be represented by regular event
expressions, for which a specific formal calculus could be
further developed. Such regular expressions would be used
as a powerful mechanism to express dynamic properties of
polychronous processes. Finally, this formal model of automata
supports the recommendations adopted by the SAE committee
on the AADL to implement a timed and synchronous be-
havioural annex for the standard [32].

REFERENCES

[1] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “Polychrony for system
design,” Journal of Circuits, Systems and Computers, vol. 12, no. 03,
Jun. 2003, http://hal.inria.fr/docs/00/07/18/71/PDF/RR-4715.pdf.

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone, “The synchronous languages twelve years later,”
Proceedings of the IEEE, Special issue on Modeling and Design of
Embedded Systems, vol. 91, no. 1, 2003, http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.96.1117.

[3] G. Berry and G. Gonthier, “The ESTEREL synchronous program-
ming language: design, semantics, implementation,” Sci. of Computer
Program., vol. 19, no. 2, pp. 87–152, 1992, http://dx.doi.org/10.1016/
0167-6423(92)90005-V.

[4] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
dataflow programming language LUSTRE,” Proc. of the IEEE, vol. 79,
no. 9, pp. 1305–1320, Sep. 1991.

[5] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire, “Pro-
gramming real-time applications with Signal,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1321–1336, 1991, http://hal.inria.fr/inria-00540460.

[6] A. Gamatié, Designing Embedded Systems with the SIGNAL Program-
ming Language. Springer, 2009, http://www.springer.com/engineering/
circuits+%26+systems/book/978-1-4419-0940-4.

[7] H. Yu, Y. Ma, Y. Glouche, J.-P. Talpin, L. Besnard, T. Gautier, P. Le
Guernic, A. Toom, and O. Laurent, “System-level co-simulation of
integrated avionics using Polychrony,” in ACM Symp. on Applied Com-
puting, TaiChung, Taiwan, Mar. 2011, http://hal.inria.fr/inria-00536907/
en/.

[8] “Aerospace Standard AS5506A: Architecture Analysis and Design
Language (AADL),” 2009.

[9] G. Berry, “Scade: Synchronous design and validation of embedded
control software,” in Next Generation Design and Verification Method-
ologies for Distributed Embedded Control Systems. Springer, 2007.

[10] S. Tripakis, C. Stergiou, C. Shaver, and E. A. Lee, “A modular formal
semantics for Ptolemy,” Math. Structures in Computer Science, vol. 23,
pp. 834–881, 2013, http://chess.eecs.berkeley.edu/pubs/877.html.

[11] E. A. Lee and S. Tripakis, “Modal models in Ptolemy,” in Proceedings
of 3rd International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools (EOOLT 2010), October 2010, pp. 1–
11, http://chess.eecs.berkeley.edu/pubs/700.html.

[12] G. Hamon and J. Rushby, “An operational semantics for Stateflow,” in
Fundamental Approaches to Software Engineering: 7th International
Conference (FASE), ser. LNCS 2984. Springer, 2004, pp. 229–243.

[13] F. Maraninchi and Y. Rémond, “Mode-automata: a new domain-specific
construct for the development of safe critical systems,” Science of
Computer Programming, vol. 46, no. 3, pp. 219–254, 2003, http:
//dx.doi.org/10.1016/S0167-6423(02)00093-X.

[14] J.-L. Colaço, B. Pagano, and M. Pouzet, “A conservative extension of
synchronous data-flow with state machines,” in Proceedings of the 5th
ACM international conference on Embedded software, ser. EMSOFT
’05. ACM, 2005, pp. 173–182, http://doi.acm.org/10.1145/1086228.
1086261.

[15] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231–274, Jun.
1987, http://dx.doi.org/10.1016/0167-6423(87)90035-9.

[16] Y. Wang, J.-P. Talpin, A. Benveniste, and P. Le Guernic, “A semantics of
UML state-machines using synchronous pre-order transition systems,”

in Proceedings of the Third IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, ser. ISORC ’00. IEEE
Computer Society, 2000, pp. 96–103, http://dl.acm.org/citation.cfm?id=
850984.855510.

[17] C. André, “Semantics of SyncCharts,” I3S Laboratory, Sophia-
Antipolis, France, Tech. Rep. ISRN I3S/RR–2003–24–FR, April 2003.

[18] R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth, M. Mendler,
J. Aguado, S. Mercer, and O. O’Brien, “SCCharts: Sequentially con-
structive statecharts for safety-critical applications,” in ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), June 2014.

[19] R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann,
C. Motika, S. Mercer, and O. O’Brien, “Sequentially constructive
concurrency—A conservative extension of the synchronous model of
computation,” in Design, Automation Test in Europe Conference Exhi-
bition (DATE), 2013, March 2013.

[20] I. Radojevic, Z. Salcic, and P. Roop, “Design of distributed heteroge-
neous embedded systems in DDFCharts,” IEEE Trans. Parallel Distrib.
Syst., vol. 22, no. 2, pp. 296–308, 2011, http://dx.doi.org/10.1109/TPDS.
2010.69.

[21] J.-P. Talpin, C. Brunette, T. Gautier, and A. Gamatié, “Polychronous
mode automata,” in Proceedings of the 6th ACM & IEEE International
conference on Embedded software, ser. EMSOFT ’06. ACM, 2006,
pp. 83–92, http://doi.acm.org/10.1145/1176887.1176900.

[22] P. Raymond, Y. Roux, and E. Jahier, “Lutin: a language for specifying
and executing reactive scenarios,” EURASIP Journal on Embedded
Systems, 2008.

[23] L. Besnard, T. Gautier, P. Le Guernic, and J.-P. Talpin, “Compilation of
polychronous data flow equations,” in Synthesis of Embedded Software.
Springer, 2010, http://hal.inria.fr/inria-00540493.

[24] L. Besnard, T. Gautier, and P. Le Guernic, “SIGNAL V4-
INRIA version: Reference Manual,” 2010, http://www.irisa.fr/espresso/
Polychrony/documentation.php.

[25] S. Abramsky and A. Jung, “Domain theory,” in Handbook of Logic in
Computer Science, S. Abramsky, D. Gabbay, and T. Maibaum, Eds.
Oxford University Press, 1994, vol. 3, pp. 1–168.

[26] G. Kahn, “The semantics of a simple language for parallel program-
ming,” Proceedings of the IFIP Congress 74, Stockholm, Sweden, pp.
471–475, 1974.

[27] G. Plotkin, “A powerdomain construction,” SIAM Journal on Comput-
ing, vol. 5, pp. 452–487, 1976.

[28] N. Halbwachs, P. Raymond, and C. Ratel, “Generating efficient code
from data-flow programs,” in Third International Symposium on Pro-
gramming Language Implementation and Logic Programming, Passau
(Germany), August 1991.

[29] D. Kozen, “A completeness theorem for kleene algebras and the algebra
of regular events,” in Logic in Computer Science, 1991, pp. 214–225.

[30] “IEEE standard for property specification language (PSL),” IEEE Std
1850-2005, pp. 1–143, 2005.

[31] W. Gelade, M. Gyssens, and W. Martens, “Regular expressions with
counting: Weak versus strong determinism,” SIAM Journal of Comput-
ing, vol. 41, no. 1, pp. 160–190, 2012.

[32] L. Besnard, E. Borde, P. Dissaux, T. Gautier, P. Le Guernic, and J.-P.
Talpin, “Logically timed specifications in the AADL: a synchronous
model of computation and communication (recommendations to the
SAE committee on AADL),” Technical Report RT-0446, Apr. 2014.
[Online]. Available: https://hal.inria.fr/hal-00970244

http://hal.inria.fr/docs/00/07/18/71/PDF/RR-4715.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.1117
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.1117
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://hal.inria.fr/inria-00540460
http://www.springer.com/engineering/circuits+%26+systems/book/978-1-4419-0940-4
http://www.springer.com/engineering/circuits+%26+systems/book/978-1-4419-0940-4
http://hal.inria.fr/inria-00536907/en/
http://hal.inria.fr/inria-00536907/en/
http://chess.eecs.berkeley.edu/pubs/877.html
http://chess.eecs.berkeley.edu/pubs/700.html
http://dx.doi.org/10.1016/S0167-6423(02)00093-X
http://dx.doi.org/10.1016/S0167-6423(02)00093-X
http://doi.acm.org/10.1145/1086228.1086261
http://doi.acm.org/10.1145/1086228.1086261
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dl.acm.org/citation.cfm?id=850984.855510
http://dl.acm.org/citation.cfm?id=850984.855510
http://dx.doi.org/10.1109/TPDS.2010.69
http://dx.doi.org/10.1109/TPDS.2010.69
http://doi.acm.org/10.1145/1176887.1176900
http://hal.inria.fr/inria-00540493
http://www.irisa.fr/espresso/Polychrony/documentation.php
http://www.irisa.fr/espresso/Polychrony/documentation.php
https://hal.inria.fr/hal-00970244

