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Victor Quintero1, Samir M. Perlaza1, Iñaki Esnaola2, and Jean-Marie Gorce1 ?

1 Institut National de Recherche en Informatique et en Automatique (INRIA),
CITI Laboratory, 6 Av. des Arts, 69621, Villeurbanne, France.

2 The University of Sheffield, Dep. of Automatic Control and Systems Engineering,
Mappin Street, Sheffield, S1 3JD, United Kingdom.

{victor.quintero-florez,samir.perlaza}@inria.fr,esnaola@sheffield.ac.uk,
jean-marie.gorce@inria.fr

Abstract. The two-user linear deterministic interference channel (LD-
IC) with noisy channel-output feedback is fully described by six para-
meters that correspond to the number of bit-pipes between each trans-
mitter and its corresponding intended receiver, i.e., −→n 11 and −→n 22;
between each transmitter and its corresponding non-intended receiver
i.e., n12 and n21; and between each receiver and its corresponding
transmitter, i.e., ←−n 11 and ←−n 22. An LD-IC without feedback corre-
sponds to the case in which ←−n 11 = ←−n 22 = 0 and the capacity re-
gion is denoted by C(−→n 11,

−→n 22, n12, n21, 0, 0). In the case in which
feedback is available at both transmitters, ←−n 11 > 0 and ←−n 22 > 0,
the capacity is denoted by C(−→n 11,

−→n 22, n12, n21,
←−n 11,

←−n 22). This pa-
per presents the exact conditions on ←−n 11 (resp. ←−n 22) for observing an
improvement in the capacity region C(−→n 11,

−→n 22, n12, n21,
←−n 11, 0) (resp.

C(−→n 11,
−→n 22, n12, n21, 0,

←−n 22)) with respect to C(−→n 11,
−→n 22, n12, n21, 0, 0),

for any 4-tuple (−→n 11, −→n 22, n12, n21) ∈ N4. Specifically, it is shown
that there exists a threshold for the number of bit-pipes in the feedback
link of transmitter-receiver pair 1 (resp. 2), denoted by ←−n ?

11 (resp. ←−n ?
22)

for which any ←−n 11 > ←−n ?
11 (resp. ←−n 22 > ←−n ?

22) enlarges the capacity
region, i.e., C(−→n 11,

−→n 22, n12, n21, 0, 0) ⊂ C(−→n 11,
−→n 22, n12, n21,

←−n 11, 0)
(resp. C(−→n 11,

−→n 22, n12, n21, 0, 0) ⊂ C(−→n 11,
−→n 22, n12, n21, 0,

←−n 22)). The
exact conditions on ←−n 11 (resp. ←−n 22) to observe an improvement on a
single rate or the sum-rate capacity, for any 4-tuple (−→n 11,

−→n 22, n12, n21)
∈ N4 are also presented in this paper.

Key words: linear deterministic interference channel, noisy channel-output
feedback, capacity region.
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1 Introduction

Channel-output feedback is an interference management technique that sig-
nificantly increases the number of degrees of freedom (DoF) for the two-user
Gaussian interference channel (IC) in most of the interference regimes [1]. Essen-
tially, in the very strong interference regime, the DoF gain provided by perfect-
channel output feedback can be arbitrarily large when the interference to noise
ratios (INRs) and signal to noise ratios (SNRs) grow to infinity. One of the rea-
sons why feedback provides such a surprising benefit stems from the fact that it
uses interference to create alternative paths to the existing point-to-point paths.
For instance, in the two-user IC, feedback creates a path from transmitter 1
(resp. transmitter 2) to receiver 1 (resp. receiver 2) in which symbols that are
received at receiver 2 (resp. receiver 1) are fed back to transmitter 2 (resp. trans-
mitter 1), which decodes the messages and retransmits them to receiver 1 (resp.
receiver 2). Another metric to determine the benefits of feedback is the num-
ber of generalized DoF (GDoF), see [3] for a discussion on DoF and GDoF, as
well as other metrics. The GDoF gain due to feedback in the IC depends on
the topology of the network and the number of transmitter-receiver pairs in the
network. For instance, in the symmetric K-user cyclic Z-interference channel,
the DoF gain does not increase with K [4]. In particular, in the very strong
interference regime, the DoF gain is shown to be monotonically decreasing with
K. Alternatively, in the fully connected symmetric K-user IC with perfect feed-
back, the number of GDoF per user is shown to be identical to the one in the
two-user case, with an exception in a particular singularity, and totally inde-
pendent of the exact number of transmitter-receiver pairs [5]. It is important
to highlight that the network topology, the number of transmitter-receiver pairs
and the interference regime are not the only parameters determining the effect
of feedback. Indeed, the presence of noise in the feedback links turns out to be
another relevant factor. As shown later in this paper, in the case in which one
transmitter-receiver pair is in a high interference regime (the interfering signal is
stronger than the intended signal) and the other is in a low interference regime
(the interfering signal is weaker than the intended signal), the use of feedback
in the former does not enlarge the capacity region, even in the case of perfect
output feedback. Conversely, using feedback in the latter might enlarge the ca-
pacity region depending on the SNR of the feedback link. The exact values of the
feedback SNRs beyond which the capacity region is enlarged depend on all the
other channel parameters: two forward SNRs and two forward INRs. In [6], the
capacity region of the two-user Gaussian IC (GIC) with noisy channel output
feedback is approximated to within a constant number of bits for the symmet-
ric case. These results are generalized in [11] for non-symmetric cases. However,
from the available descriptions of the capacity regions with and without feed-
back, identifying whether or not the existence of a feedback link with a given
SNR enlarges the capacity region is not a trivial task.

An alternative for dealing with the challenges described above is to study
the GIC via its linear deterministic IC (LD-IC) approximation [7], for which
the capacity region is perfectly known [8, 10]. The two-user LD-IC with noisy
channel output feedback (LD-IC-NOF) is fully described by six parameters:
(−→n 11,

−→n 22, n12, n21,
←−n 11,

←−n 22) ∈ N6. There exists a mapping between the para-
meters describing the two-user LD-IC and the parameters describing the GIC.

More specifically, there are two forward SNRs (
−−→
SNRi > 1); two forward INRs
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(INRij > 1); and two backward SNRs (
←−−
SNRi > 1), with i ∈ {1, 2} and

j ∈ {1, 2} \ {i}. In the LD-IC, the parameters of the GIC are mapped into
the number of bit-pipes between each transmitter and its corresponding in-

tended receiver, i.e., −→n ii = b 12 log2(
−−→
SNRi)c; between transmitter j and receiver

i i.e., nij = b 12 log2(INRij)c; and between each receiver and its correspond-

ing transmitter, i.e., ←−n ii = b 12 log2(
←−−
SNRi)c. An LD-IC without feedback cor-

responds to the case in which ←−n 11 = ←−n 22 = 0 and the capacity region is
denoted by C(−→n 11,

−→n 22, n12, n21, 0, 0). In the case in which feedback is avail-
able at both transmitters, ←−n 11 > 0 and ←−n 22 > 0, the capacity is denoted by
C(−→n 11,

−→n 22, n12, n21,
←−n 11,

←−n 22).
This paper presents the exact conditions on ←−n 11 (resp. ←−n 22) for obser-

ving an improvement in the capacity region C(−→n 11,
−→n 22, n12, n21,

←−n 11, 0) (resp.
C(−→n 11,

−→n 22, n12, n21, 0,
←−n 22)) with respect to C(−→n 11,

−→n 22, n12, n21, 0, 0), for any
4-tuple (−→n 11, −→n 22, n12, n21) ∈ N4. More specifically, it is shown that there
exists a threshold for the number of bit-pipes in the feedback link of transmitter-
receiver pair 1 (resp. 2), beyond which the capacity region of the two-user LD-
IC-NOF can be enlarged, i.e., C(−→n 11,

−→n 22, n12, n21, 0, 0) ⊂ C(−→n 11, −→n 22, n12,
n21, ←−n 11 , 0) (resp. C(−→n 11,

−→n 22, n12, n21, 0, 0) ⊂ C(−→n 11,
−→n 22, n12, n21, 0,

←−n 22)),
with strict inclusion. The exact conditions on ←−n 11 (resp. ←−n 22) to observe
an improvement on a single rate or the sum-rate capacity, for any 4-tuple
(−→n 11,

−→n 22, n12, n21) ∈ N4 are also presented in this paper. Surprisingly, these
values can be expressed in closed-form using relatively simple expressions that
depend on some of the parameters −→n 11,

−→n 22, n12 and n21.
Based on these results, several relevant engineering questions arise in this

setting. For instance, in which of the two transmitter-receiver pairs must the
feedback link be implemented if the objective is to improve: (a) the individual
rate of the transmitter-receiver pair in which feedback is implemented; (b) the
individual rate of the other transmitter-receiver pair; or (c) the sum-rate of
both transmitter-receiver pairs. In each of these scenarios, the feedback SNR,
either ←−n 11 or ←−n 22, must be bigger than a given threshold for the improvement
to be observed. Interestingly, for each of these scenarios there exists a complete
different answer. As a by-product of the results described above, the exact values
of ←−n 11 or ←−n 22 for which feedback does not enlarge the capacity region are also
identified.

2 Linear Deterministic Interference Channel with
Noisy-Channel Output Feedback

Consider the two-user LD-IC-NOF, with parameters −→n 11, −→n 22, n12, n21, ←−n 11

and←−n 22 described in Fig. 1. The parameters −→n ii, nij and←−n ii with i ∈ {1, 2} and
j ∈ {1, 2}\{i}, are non-negative integers. Parameter −→n ii represents the number
of bit-pipes between transmitter i and receiver i; parameter nij represents the
number of bit-pipes between transmitter j and receiver i; and parameter←−n ii rep-
resents the number of bit-pipes between receiver i and transmitter i (feedback).

At transmitter i, with i ∈ {1, 2}, the channel-input X
(n)
i at channel use n, with

n ∈ {1, . . . , N}, is a q-dimensional binary vector X
(n)
i =

Ä
X

(n)
i,1 , . . . , X

(n)
i,q

äT
,

with
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Fig. 1. Two-user linear deterministic interference channel with noisy channel-output
feedback. The bit-pipe line number 1 represents the most significant bit.

q = max (−→n 11,
−→n 22, n12, n21) , (1)

and N the block length. At receiver i, the channel-output
−→
Y

(n)
i at channel use

n is also a q-dimensional binary vector
−→
Y

(n)
i =

Ä−→
Y

(n)
i,1 , . . . ,

−→
Y

(n)
i,q

äT
. The input-

output relation during channel use n is given as follows
−→
Y

(n)
i =Sq−−→n iiX

(n)
i + Sq−nijX

(n)
j , (2)

and the feedback signal available at transmitter i at the end of channel use n is:

←−
Y

(n)

i =S(q−←−n ii)
+−→
Y

(n−d)
i , (3)

where d is a finite feedback delay, additions and multiplications are defined over
the binary field, S is a q × q lower shift matrix, and (·)+ is the positive part
operator.

Transmitter i sends Mi information bits bi,1, . . . , bi,Mi by sending the code-

word
Ä
X

(1)
i , . . . ,X

(N)
i

ä
. The encoder of transmitter i can be modeled as a set

of deterministic mappings f
(1)
i , . . . , f

(N)
i , with f

(1)
i : {0, 1}Mi → {0, 1}q and

∀n ∈ {2, . . . , N}, f (n)i : {0, 1}Mi × {0, 1}q(n−1) → {0, 1}q, such that

X
(1)
i =f

(1)
i

(
bi,1, . . . , bi,Mi

)
and (4)

X
(n)
i =f

(n)
i

(
bi,1, . . . , bi,Mi

,
←−
Y

(1)

i , . . . ,
←−
Y

(n−1)
i

)
. (5)
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At the end of the block, receiver i uses the sequence Y
(1)
i , . . . ,Y

(N)
i to gener-

ate the estimates b̂i,1, . . . , b̂i,Mi . The average bit error probability at receiver i,
denoted by pi, is calculated as follows

pi =
1

Mi

Mi∑

`=1

1{b̂i,` 6=bi,`}. (6)

A rate pair (R1, R2) ∈ R2
+ is said to be achievable if it satisfies the following

definition.

Definition 1 (Achievable Rate Pairs). The rate pair (R1, R2) ∈ R2
+ is

achievable if there exists at least one pair of codebooks XN
1 and XN

2 with code-

words of length N , and the corresponding encoding functions f
(1)
1 , . . . , f

(N)
1 and

f
(1)
2 , . . . , f

(N)
2 such that the average bit error probability can be made arbitrarily

small by letting the block length N grow to infinity.

Denote by C(−→n 11,
−→n 22, n12, n21,

←−n 11,
←−n 22) the capacity region of the two-

user LD-IC-NOF with parameters −→n 11, −→n 22, n12, n21, ←−n 11, and ←−n 22. Lemma
1 fully characterizes the set C(−→n 11,

−→n 22, n12, n21,
←−n 11,

←−n 22).

Lemma 1 (Lemma 6 in [10]). The capacity region C(−→n 11, −→n 22, n12, n21,←−n 11, ←−n 22) of the two-user LD-IC-NOF is the set of non-negative rate pairs
(R1, R2) that satisfy ∀i ∈ {1, 2} and j ∈ {1, 2} \ {i}:

Ri 6min (max (−→n ii, nji) ,max (−→n ii, nij)) , (7a)

Ri 6min
Ä
max (−→n ii, nji) ,max

Ä−→n ii,
←−n jj − (−→n jj − nji)+

ää
, (7b)

R1 +R2 6 min
(

max (−→n 22, n12) + (−→n 11 − n12)
+
,max (−→n 11, n21)

+ (−→n 22 − n21)
+
)
, (7c)

R1 +R2 6 max
(

(−→n 11 − n12)
+
, n21,

−→n 11 − (max (−→n 11, n12)−←−n 11)
+
)

+ max
(

(−→n 22 − n21)
+
, n12,

−→n 22 − (max (−→n 22, n21)−←−n 22)
+
)
, (7d)

2Ri+Rj 6 max (−→n ii, nji) + (−→n ii − nij)+

+ max
(

(−→n jj − nji)+ , nij ,−→n jj − (max (−→n jj , nji)−←−n jj)
+
)
. (7e)

3 Preliminaries

3.1 Definitions

Let αi ∈ Q be the interference regime of transmitter-receiver pair i, with i ∈
{1, 2} and j ∈ {1, 2} \ {i},

αi =
nij
−→n ii

. (8)

For each transmitter-receiver pair i, there exist five possible interference regimes
(IRs): very weak IR (VWIR), i.e., αi 6 1

2 , weak IR (WIR), i.e., 1
2 < αi 6 2

3 ,
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moderate IR (MIR), i.e., 2
3 < αi 6 1, strong IR (SIR), i.e., 1 < αi 6 2 and very

strong IR (VSIR), i.e., αi > 2 [9]. The scenarios in which the desired signal is
stronger than or equal to the interference (αi 6 1), namely VWIR, WIR and
MIR, are referred to as low-interference regimes (LIRs). Conversely, the scenarios
in which the desired signal is weaker than the interference (αi > 1), namely SIR
and VSIR, are referred to as high-interference regimes (HIRs). In the two-user
LD-IC, it is possible to observe up to twenty-five possible interference regimes,
given α1 and α2. However, only twelve cases are of real interest. This is because
the transmitter-receiver pairs can be indifferently labeled and thus, for instance,
studying the case in which α1 6 1

2 and α2 > 2 is the same as studying the case

in which α1 > 2 and α2 6 1
2 .

The main results of this paper are presented using a list of events (Boolean
variables) that are fully determined by the parameters −→n 11,

−→n 22, n12, and n21.
For instance, given the parameters (−→n 11,

−→n 22, n12, n21), the events (9)-(20) de-
scribe some combinations of interference regimes that are particularly interest-
ing. Let i ∈ {1, 2} and j ∈ {1, 2} \ {i} and define the following events:

E1 : α161 ∧ α261, (i and j in LIR) (9)

E2,i : αi6
1

2
∧ 1 <αj62, (i in VWIR and j in SIR) (10)

E3,i : αi6
1

2
∧ αj>2, (i in VWIR and j in VSIR) (11)

E4,i :
1

2
<αi6

2

3
∧ αj>1, (i in WIR and j in HIR) (12)

E5,i :
2

3
<αi61 ∧ 1 <αj62, (i in MIR and j in SIR) (13)

E6,i :
2

3
<αi61 ∧ αj>2, (i in MIR and j in VSIR) (14)

E7,i :
1

2
<αi61 ∧ αj>1, (i in WIR or MIR and j in HIR) (15)

E8,i : αi>1 ∧ αj61, (i in HIR and j in LIR) (16)

E9 : α16
2

3
∧ α26

2

3
, (i and j in VWIR or WIR) (17)

E10,i : αi6
2

3
∧ 2

3
<αj61, (i in VWIR or WIR and j in MIR) (18)

E11,i :
2

3
<αi61 ∧ αj6

2

3
, (i in MIR and j in VWIR or WIR) (19)

E12 : α1>2 ∧ α2>2, (i and j in VSIR). (20)

Some other auxiliary events are considered. The event in which the signal from
transmitter i is stronger (resp. weaker) in its intended receiver than in its non-

intended receiver is denoted by E13,i (resp. ‹E13,i), i.e.,

E13,i:
−→n ii>nji, (21)‹E13,i:
−→n ii<nji. (22)

The event in which the sum of the number of bit-pipes in the direct links is bigger
(resp. smaller) than the sum of the number of bit-pipes in the cross-interference

links is denoted by E14,i (resp. ‹E14,i), i.e.,
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E14:−→n 11 +−→n 22>n12 + n21, (23)‹E14:−→n 11 +−→n 22<n12 + n21. (24)

The event in which the number of bit-pipes in the direct link j is bigger than
the sum of bit-pipes in both cross-interference links is denoted by

E15,i:
−→n jj>nij + nji. (25)

The event in which the sum of the number of bit-pipes in the direct links is
bigger than the sum of the number of bit-pipes in one cross-interference link and
twice the number of the bit-pipes in the other cross-interference link is denoted
by

E16,i:
−→n ii +−→n jj>nij + 2nji. (26)

Finally, the event in which the sum of the number of bit-pipes in the direct links
is bigger than the number of bit-pipes in one cross-interference link is denoted
by

E17,i:
−→n ii +−→n jj<nij . (27)

Combining the events (9)-(27), five main events are identified:

S1,i:(E1 ∧ E13,i) ∨ (E2,i ∧ E13,i) ∨ (E3,i ∧ E13,i ∧ E14) ∨ (E4,i ∧ E13,i ∧ E14)

∨ (E5,i ∧ E13,i ∧ E14) ∨
Ä
E6,i ∧ ‹E13,j ∧ E14

ä
, (28)

S2,i:
Ä
E3,i ∧ ‹E13,j ∧ ‹E14

ä
∨
Ä
E7,i ∧ ‹E13,j ∧ ‹E14

ä
∨
Ä
E1 ∧ ‹E13,j

ä
, (29)

S3,i:
(
E1 ∧ E13,i

)
∨
(
E2,i ∧ E13,i

)
∨
(
E3,i ∧ E13,j ∧ E13,i

)
∨
(
E4,i ∧ E13,j ∧ E13,i

)

∨
(
E5,i ∧ E13,j ∧ E13,i

)
∨ (E6,i ∧ E13,j) ∨

(
E1 ∧ E13,j

)
∨ (E8,i) , (30)

S4,i:(E9 ∧ E13,i ∧ E13,j) ∨ (E10,i ∧ E13,i ∧ E13,j ∧ E16,i ∧ E16,j)

∨ (E11,i ∧ E13,i ∧ E13,j ∧ E16,i ∧ E16,j) (31)

S5,i:E12 ∧ E17,i ∧ E17,j . (32)

For all i ∈ {1, 2} the events S1,i, S2,i and S3,i exhibit the property stated by the
following lemma.

Lemma 2. For all i ∈ {1, 2} and for all (−→n 11,
−→n 22, n12, n21) ∈ N4, only one of

the events S1,i, S2,i and S3,i is true.

Proof: The proof follows from verifying that for all i ∈ {1, 2} and j ∈
{1, 2} \ {i}, the events (28)-(30) are mutually exclusive. For instance, consider
that the event (E1 ∧ E13,i) in (28) is true. Then, S1,i is true and E2,i, E3,i, E4,i,
E5,i, E6,i, E7,i and E8,i hold false, which implies that S2,i and S3,i hold false as
well, since all events in (29) and (30) hold false. The same verification can be
made for all the remaining events in (28). This proves that if S1,i is true then S2,i

and S3,i hold simultaneously false. The same verification can be done for showing
that when S2,i holds true (resp. S3,i), both events S1,i and S3,i (resp. S1,i and
S2,i) hold simultaneously false. Finally following the same reasoning it can be
verified that if any pair of the events {S1,i, S2,i, S3,i} is false, the remaining event
is necessarily true. This completes the proof.

For all i ∈ {1, 2} the events S4,i and S5,i exhibit the property stated by the
following lemma.
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Lemma 3. For all i ∈ {1, 2} if one of the events S4,i or S5,i holds true, then
the other necessarily holds false.

Proof: The proof of Lemma 3 follows along the same lines of the proof of
Lemma 2.

3.2 Rate Improvement Metrics

The rate improvements are given in terms of the following metrics [8, 10]: (a)
maximum individual rate improvements ∆1 and ∆2; and (b) maximum sum-rate
improvement Σ, with ∆i ∈ R+ and Σ ∈ R+ for i ∈ {1, 2}.

Let C1 = C(−→n 11,
−→n 22, n12, n21,

←−n 11,
←−n 22) and C2 = C(−→n 11,

−→n 22, n12, n21, 0, 0)
be the capacity region with noisy channel-output feedback and without feedback,
respectively. In order to formally define ∆1, ∆2 and Σ, consider a two-user LD-
IC-NOF with parameters −→n 11, −→n 22, n12, n21, ←−n 11, and ←−n 22. The maximum
improvement of the individual rate Ri, ∆i(

−→n 11,
−→n 22, n12, n21,

←−n 11,
←−n 22), due

to the effect of channel-output feedback with respect to the case without feed-
back is

∆i(
−→n 11,

−→n 22, n12, n21,
←−n 11,

←−n 22) =max
Rj>0

sup
(Ri,Rj)∈C1

Ri − sup
(R†

i
,Rj)∈C2

R†i , (33)

and the maximum improvement of the sum rate Σ(−→n 11,
−→n 22, n12, n21,

←−n 11,
←−n 22)

with respect to the case without feedback is

Σ(−→n 11,
−→n 22, n12, n21,

←−n 11,
←−n 22) = sup

(R1,R2)∈C1
R1 +R2 − sup

(R†
1,R

†
2)∈C2

R†1 +R†2.

(34)

In the following, when feedback is exclusively used by transmitter-receiver
pair i, i.e., ←−n ii > 0 and ←−n jj = 0, then the maximum improvement of the
individual rate of transmitter-receiver k, with k ∈ {1, 2}, and the maximum
improvement of the sum rate are denoted by ∆k(−→n 11, −→n 22, n12, n21, ←−n ii) and
Σ(−→n 11,

−→n 22, n12, n21,
←−n ii), respectively. Hence, this notation ∆k(−→n 11,−→n 22, n12,

n21, ←−n ii) replaces either ∆k(−→n 11, −→n 22, n12, n21, ←−n 11, 0) or ∆k(−→n 11, −→n 22, n12,
n21, 0, ←−n 22), when i = 1 or i = 2, respectively. The same holds for the no-
tation Σ(−→n 11,

−→n 22, n12, n21,
←−n ii) that replaces Σ(−→n 11,

−→n 22, n12, n21,
←−n 11, 0) or

Σ(−→n 11,
−→n 22, n12, n21, 0,

←−n 22), when i = 1 or i = 2, respectively.

4 Main Results

4.1 Enlargement of the Capacity Region

In this subsection, the capacity region of a two-user LD-IC-NOF with parameters
(−→n 11, −→n 22, n12, n21), when feedback is available only at transmitter-receiver
pair i, i.e., ←−n ii > 0 and −→n jj = 0, is denoted by C (−→n 11,

−→n 22, n12, n21,
←−n ii)

instead of C (−→n 11,
−→n 22, n12, n21,

←−n 11, 0) or C (−→n 11,
−→n 22, n12, n21, 0,

←−n 22), when
i = 1 or i = 2, respectively. Following this notation, Theorem 1 identifies the
exact values of ←−n ii for which the strict inclusion C (−→n 11,

−→n 22, n12, n21, 0, 0) ⊂
C (−→n 11,

−→n 22, n12, n21,
←−n ii) holds, with i ∈ {1, 2}.
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Theorem 1. Let i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ←−n ∗ii ∈ N be

←−n ∗ii =

®
max

Ä
nji, (

−→n ii − nij)+
ä

if S1,i = True
−→n jj + (−→n ii − nij)+ if S2,i = True.

(35)

Assume that S3,i = True. Then, for all ←−n ii ∈ N, C (−→n 11,
−→n 22, n12, n21, 0, 0) =

C (−→n 11,
−→n 22, n12, n21,

←−n ii). Assume that either S1,i = True or S2,i = True. Then,
for all ←−n ii 6 ←−n ∗ii, C (−→n 11,

−→n 22, n12, n21, 0, 0) = C(−→n 11,
−→n 22, n12, n21,

←−n ii) and
for all ←−n ii >

←−n ∗ii, C (−→n 11,
−→n 22, n12, n21, 0, 0) ⊂ C (−→n 11,

−→n 22, n12, n21,
←−n ii).

Proof: The proof of Theorem 1 is presented in [12].
Theorem 1 shows that under event S3,i in (30), implementing feedback in

transmitter-receiver pair i does not bring any capacity region enlargement. Al-
ternatively, under events S1,i in (28) and S2,i in (29), the capacity region can
be enlarged whenever ←−n ii >

←−n ∗ii. That is, there exists a threshold on the SNR
of the feedback link beyond which it is possible to observe a capacity region
enlargement.

An interesting observation is that the threshold ←−n ∗ii beyond which feed-
back is useful is different under event S1,i in (28) and event S2,i in (29). In
general when S1,i holds true, the enlargement of the capacity region is due
to the fact that feedback allows using interference as side information [13].
More specifically, when feedback is used at transmitter-receiver pair i and
←−n ii > max

Ä
nji, (

−→n ii − nij)+
ä
, transmitter i obtains part of the information

sent by transmitter j. This information can be re-transmitted by transmitter i
to cancel the interference it produced at receiver i when it was first transmitted
by transmitter j. Interestingly, the interference perceived at receiver j due to
this re-transmission can be cancelled given that this information was reliably
decoded when it was first sent by transmitter j. This allows transmitter-receiver
pair i or j to improve its individual rate.

Alternatively, when S2,i in (29) holds true, the enlargement of the capacity
region occurs thanks to the fact that some of the bits that cannot be transmitted
directly from transmitter j to receiver j, that is, those transmitted via the bit-
pipes −→n jj + 1, . . . ,max (−→n jj , nij), can arrive to receiver j via an alternative
path: transmitter j - receiver i - transmitter i - receiver j. For this to be possible

at least the
Ä−→n jj + (−→n ii − nij)+ + 1

ä
-th (feedback) bit-pipe from receiver i to

transmitter i must be noise-free, i.e., ←−n ii >
−→n jj + (−→n ii − nij)+.

4.2 Improvement of the Individual Rate Ri by Using Feedback in
Link i

Implementing channel output feedback in transmitter-receiver pair i might allow
increasing the individual rate of either transmitter-receiver pair i or j. Theorem
2 identifies the exact values of ←−n ii for which the individual rate Ri can be
improved, given the parameters (−→n 11,

−→n 22, n12, n21) and ←−n jj = 0 in the two-
user LD-IC-NOF.

Theorem 2. Let i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ←−n †ii ∈ N be

←−n †ii = max
Ä
nji, (

−→n ii − nij)+
ä
. (36)
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Assume that either S2,i = True or S3,i = True. Then, for all ←−n ii ∈ N, ∆i(
−→n 11,

−→n 22, n12, n21, ←−n ii) = 0. Assume that S1,i = True. Then, when ←−n ii 6
←−n †ii, it

holds that ∆i(
−→n 11, −→n 22, n12, n21, ←−n ii) = 0; and when ←−n ii >

←−n †ii, it holds that
∆i(
−→n 11, −→n 22, n12, n21, ←−n ii) > 0.

Proof: The proof of Theorem 2 is presented in [12].
Theorem 2 highlights that under events S2,i in (29) and S3,i in (30), the indi-

vidual rate Ri cannot be improved by using feedback in transmitter-receiver pair
i, i.e., ∆i(

−→n 11,
−→n 22, n12, n21,

←−n ii) = 0. Alternatively, under event S1,i in (28),
the individual rate Ri can be improved, i.e., ∆i(

−→n 11,
−→n 22, n12, n21,

←−n ii) > 0,

whenever ←−n ii > max
Ä
nji, (

−→n ii − nij)+
ä
.

It is worth noting that under event S3,i in (30), the capacity region cannot
be improved via feedback (Theorem 1) and thus, none of the individual rates
can be improved as suggested by Theorem 2. Alternatively, under event S2,i in
(29), the capacity region can be enlarged (Theorem 1) but the individual rate
Ri cannot be improved (Theorem 2). This implies that the capacity improve-
ment occurs due to the fact that Rj can be improved. More specifically, in this
case: ∆i(

−→n 11,
−→n 22, n12, n21,

←−n ii) = 0 and ∆j(
−→n 11,

−→n 22, n12, n21,
←−n ii) > 0. This

implies that using feedback in transmitter-receiver pair i is exclusively beneficial
for transmitter-receiver pair j, as shown in the following section.

4.3 Improvement of the Individual Rate Rj by Using Feedback in
Link i

Implementing channel output feedback in transmitter-receiver pair i might al-
low increasing the individual rate of transmitter-receiver pair i or j; or both
individual rates. This reveals the altruistic nature of implementing feedback as
suggested in [2]. Theorem 3 identifies the exact values of ←−n ii for which the
individual rate Rj can be improved by using feedback in transmitter-receiver
pair i, given the parameters (−→n 11,

−→n 22, n12, n21) and ←−n jj = 0 in the two-user
LD-IC-NOF.

Theorem 3. Let i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ←−n ‡ii ∈ N be

←−n ‡ii =

®
max

Ä
nji, (

−→n ii − nij)+
ä

if S1,i = True
−→n jj + (−→n ii − nij)+ if S2,i = True.

(37)

Assume that S3,i = True. Then, for all←−n ii ∈ N, ∆j(
−→n 11, −→n 22, n12, n21,←−n ii) =

0. Assume that either S1,i = True or S2,i = True. Then, when ←−n ii 6
←−n ‡ii, it

holds that ∆j(
−→n 11, −→n 22, n12, n21, ←−n ii) = 0; and when ←−n ii >

←−n ‡ii, it holds that
∆j(
−→n 11, −→n 22, n12, n21, ←−n ii) > 0.

Proof: The proof of Theorem 3 is presented in [12].
Theorem 3 shows that under event S3,i in (30), implementing feedback in

transmitter-receiver pair i does not bring any improvement on the rate Rj . This
is in line with the results of Theorem 1 that states that under event S3,i in
(30), implementing feedback in transmitter-receiver pair i does not enlarge the
capacity region.



Two-User LD-IC with Noisy Channel-Output Feedback 11

In contrast, under events S1,i in (28) and S2,i in (29), the individual rate

Rj can be improved (∆j(
−→n 11,

−→n 22, n12, n21,
←−n ii) > 0) whenever ←−n ii >

←−n ‡ii.
It is important to highlight that under event S1,i, the threshold on ←−n ii for

increasing the individual rate Ri i.e., (←−n †ii), and Rj i.e., (←−n ‡ii), are identical, see
Theorem 2 and Theorem 3. This shows that in this case, the use of feedback

in transmitter-receiver pair i, with ←−n ii >
←−n †ii = ←−n ‡ii, simultaneously improves

both individual rates. Under event S2,i, using feedback in transmitter-receiver

pair i, with ←−n ii >
←−n ‡ii, exclusively benefits transmitter-receiver pair j, which

can improve its own individual rate.

4.4 Improvement of the Sum-Capacity

Implementing channel output feedback in transmitter-receiver pair i might allow
increasing the sum-capacity. Theorem 4 identifies the exact values of ←−n ii for
which the sum-capacity can be improved, for parameters (−→n 11,

−→n 22, n12, n21)
and ←−n jj = 0 in the two-user LD-IC-NOF.

Theorem 4. Let i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ←−n +
ii ∈ N be

←−n +
ii =

®
max

Ä
nji, (

−→n ii − nij)+
ä

if S4,i = True
−→n jj + (−→n ii − nij)+ if S5,i = True.

(38)

Assume that S4,i = False and S5,i = False. Then, for all ←−n ii ∈ N, Σ(−→n 11, −→n 22,
n12, n21, ←−n ii) = 0. Assume that S4,i = True or S5,i = True. Then, when
←−n ii 6

←−n +
ii , it holds that Σ(−→n 11,

−→n 22, n12, n21,
←−n ii) = 0; and when ←−n ii >

←−n +
ii ,

it holds that Σ(−→n 11,
−→n 22, n12, n21,

←−n ii) > 0.

Proof: The proof of Theorem 4 is presented in [12].
Theorem 4 identifies the conditions under which implementing feedback in
transmitter-receiver pair i improves the sum-capacity whenever ←−n ii >

←−n +
ii ,

that is, Σ(−→n 11,
−→n 22, n12, n21,

←−n ii) > 0. Theorem 4 highlights that one of the
necessary but not sufficient conditions for improving the sum-capacity by im-
plementing feedback in transmitter-receiver pair i is that either (a) at least one
transmitter-receiver pair must be in VWIR or WIR; or (b) both transmitter-
receiver pairs must be in VSIR. This follows immediately from observing that
for S4,i or S5,i to hold true, at least one of the events E9, E10,i, E11,i or E12

must hold true.
Interestingly, Theorem 4 shows that if at least one transmitter-receiver pair is

in SIR, then the sum-capacity cannot be improved. Finally, note that the thresh-
olds ←−n +

ii in the events S4,i and S5,i coincide with those observed in Theorem
1.

5 Conclusions

This paper presented the exact conditions on the feedback parameters ←−n 11 and←−n 22, beyond which the capacity region of the two-user LD-IC-NOF can be en-
larged for any 4-tuple (−→n 11,

−→n 22, n12, n21) ∈ N4. More specifically, the exact val-
ues of←−n 11 (resp.←−n 22) for which C(−→n 11, −→n 22, n12, n21, 0, 0) ⊂ C(−→n 11, −→n 22, n12,
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n21, ←−n 11, 0) (resp. C(−→n 11,
−→n 22, n12, n21, 0, 0) ⊂ C(−→n 11,

−→n 22, n12, n21, 0,
←−n 22)),

with strict inclusion. The exact conditions on ←−n 11 (resp. ←−n 22) to observe
an improvement on a single rate or the sum-rate capacity, for any 4-tuple
(−→n 11,

−→n 22, n12, n21) ∈ N4 were also presented. Interestingly, there exist condi-
tions in the two-user LD-IC-NOF in which the use of feedback does not enlarge
the capacity region.
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