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Proposal Flow

Finding image correspondences remains a challenging problem in the presence of intra-class variations and large changes in scene layout. Semantic flow methods are designed to handle images depicting different instances of the same object or scene category. We introduce a novel approach to semantic flow, dubbed proposal flow, that establishes reliable correspondences using object proposals. Unlike prevailing semantic flow approaches that operate on pixels or regularly sampled local regions, proposal flow benefits from the characteristics of modern object proposals, that exhibit high repeatability at multiple scales, and can take advantage of both local and geometric consistency constraints among proposals. We also show that proposal flow can effectively be transformed into a conventional dense flow field. We introduce a new dataset that can be used to evaluate both general semantic flow techniques and region-based approaches such as proposal flow. We use this benchmark to compare different matching algorithms, object proposals, and region features within proposal flow, to the state of the art in semantic flow. This comparison, along with experiments on standard datasets, demonstrates that proposal flow significantly outperforms existing semantic flow methods in various settings.

Introduction

Classical approaches to finding correspondences across images are designed to handle scenes that contain the same objects with moderate view point variations in applications such as stereo matching [START_REF] Okutomi | A multiple-baseline stereo[END_REF]47], optical flow [START_REF] Horn | Determining optical flow: A retrospective[END_REF][START_REF] Revaud | Deepmatching: Hierarchical deformable dense matching[END_REF][START_REF] Weinzaepfel | Deepflow: Large displacement optical flow with deep matching[END_REF], and wide-baseline matching [START_REF] Matas | Robust widebaseline stereo from maximally stable extremal regions[END_REF]54]. Semantic flow methods, such as SIFT Flow [35] for example, on the other hand, are designed to handle a much higher degree of variability in appearance and scene layout, typical of images depicting different instances of the same object or scene category. They have proven useful for many tasks such as scene recognition, image registration, semantic segmentation, and image editing and synthesis [START_REF] Hacohen | Non-rigid dense correspondence with applications for image enhancement[END_REF][START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF]35,54,[START_REF] Zhou | FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences[END_REF]. In this context, however, appearance and shape variations may confuse similarity measures for local region matching, and prohibit the use of strong geometric constraints (e.g., epipolar geometry, limited disparity range). Existing approaches to semantic flow are thus easily distracted by scene elements specific to individual objects and image-specific details (e.g., background, texture, occlusion, clutter). This is the motivation for our work, where we use robust region correspondences to focus on regions containing prominent objects and scene elements rather than clutter and distracting details.

Concretely, we introduce an approach to semantic flow computation, called proposal flow, that establishes region correspondences using object proposals and their geometric relations (Fig. 1). Unlike previous semantic flow algorithms [4, [START_REF] Hacohen | Non-rigid dense correspondence with applications for image enhancement[END_REF][START_REF] Hassner | On SIFTs and their scales[END_REF][START_REF] Hur | Generalized deformable spatial pyramid: Geometry-preserving dense correspondence estimation[END_REF][START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF]35,[START_REF] Qiu | Scale-space SIFT flow[END_REF][START_REF] Tau | Dense correspondences across scenes and scales[END_REF][START_REF] Trulls | Dense segmentation-aware descriptors[END_REF]54,[START_REF] Zhou | FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences[END_REF], that use regular grid structures for local region generation and matching, we leverage a large number of multi-scale object proposals [START_REF] Arbelaez | Multiscale combinatorial grouping[END_REF][START_REF] Hosang | What makes for effective detection proposals?[END_REF][START_REF] Manen | Prime object proposals with randomized Prim's algorithm[END_REF][START_REF] Uijlings | Selective search for object recognition[END_REF][START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF], as now widely used in object detection [START_REF] Girshick | Fast R-CNN[END_REF][START_REF] Kaiming | Spatial pyramid pooling in deep convolutional networks for visual recognition[END_REF]. The proposed approach establishes region correspondences by exploiting their visual features and geometric relations in an efficient manner, and generates a region-based semantic flow composed of object proposal matches. We also show that the proposal flow can be effectively transformed into a conventional dense flow field. Finally, we introduce a new dataset that can be used to evalu-ate both general semantic flow techniques and region-based approaches such as proposal flow. We use this benchmark to compare different matching algorithms, object proposals, and region features within proposal flow, to the state of the art in semantic flow. This comparison, along with experiments on standard datasets, demonstrates that proposal flow significantly outperforms existing semantic flow methods in various settings.

Related work

Correspondence problems involve a broad range of topics beyond the scope of this paper. Here we briefly describe the context of our approach, and only review representative works pertinent for ours. Classical approaches to stereo matching and optical flow estimate pixel-level dense correspondences between two nearby images of the same scene [START_REF] Horn | Determining optical flow: A retrospective[END_REF][START_REF] Matas | Robust widebaseline stereo from maximally stable extremal regions[END_REF][START_REF] Okutomi | A multiple-baseline stereo[END_REF]. While advances in invariant feature detection and description have revolutionized object recognition and reconstruction in the past 15 years, research on image matching and alignment between images have long been dominated by instance matching with the same scene and objects [START_REF] Forsyth | Computer vision: A modern approach (2nd edition)[END_REF]. Unlike these, several recent approaches to semantic flow focus on handling images containing different scenes and objects. Graph-based matching algorithms [START_REF] Cho | Progressive graph matching: Making a move of graphs via probabilistic voting[END_REF][START_REF] Duchenne | A graph-matching kernel for object categorization[END_REF] attempt to find category-level feature matches by leveraging a flexible graph representation of images, but they commonly handle sparsely sampled or detected features due to their computational complexity. Inspired by classic optical flow algorithms, Liu et al. pioneered the idea of dense correspondences across different scenes, and proposed the SIFT Flow [35] algorithm that uses a multi-resolution image pyramid together with a hierarchical optimization technique for efficiency. Kim et al. [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF] extended the approach by inducing a multi-scale regularization with a hierarchically connected pyramid of grid graphs. More recently, Long et al. [START_REF] Long | Do convnets learn correspondence?[END_REF] have investigated the effect of pretrained ConvNet features on the SIFT Flow algorithm, and Bristow et al. [4] have proposed an exemplar-LDA approach that improves the performance of semantic flow. Despite differences in graph construction, optimization, and similarity computation, existing semantic flow approaches share grid-based regular sampling and spatial regularization: The appearance similarity is defined at each region or pixel on (a pyramid of) regular grids, and spatial regularization is imposed between neighboring regions in the pyramid models [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF]35]. In contrast, our work builds on generic object proposals with diverse spatial supports [START_REF] Arbelaez | Multiscale combinatorial grouping[END_REF][START_REF] Hosang | What makes for effective detection proposals?[END_REF][START_REF] Manen | Prime object proposals with randomized Prim's algorithm[END_REF][START_REF] Uijlings | Selective search for object recognition[END_REF][START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF], and uses an irregular form of spatial regularization based on co-occurrence and overlap of the proposals. We show that the use of local regularization with object proposals yields substantial gains in generic region matching and semantic flow, in particular when handling images with significant clutter and intra-class variations.

Object proposals [START_REF] Arbelaez | Multiscale combinatorial grouping[END_REF][START_REF] Hosang | What makes for effective detection proposals?[END_REF][START_REF] Manen | Prime object proposals with randomized Prim's algorithm[END_REF][START_REF] Uijlings | Selective search for object recognition[END_REF][START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF] have originally been developed for object detection, where they are used to reduce the search space as well as false alarms. They are now an important component in many state-of-the-art detection pipelines [START_REF] Girshick | Fast R-CNN[END_REF][START_REF] Kaiming | Spatial pyramid pooling in deep convolutional networks for visual recognition[END_REF]. Despite their success on object detection and segmentation, they have seldom been used in matching tasks [START_REF] Cho | Unsupervised object discovery and localization in the wild: Part-based matching using bottom-up region proposals[END_REF][START_REF] Jiang | Matching bags of regions in RGBD images[END_REF]. In particular, while Cho et al. [START_REF] Cho | Unsupervised object discovery and localization in the wild: Part-based matching using bottom-up region proposals[END_REF] have shown that object proposals are useful for region matching due to their high repeatability on salient part regions, the use of object proposals has never been thoroughly investigated in semantic flow computation. The approach proposed in this paper is a first step in this direction, and we explore how the choice of object proposals, matching algorithms, and features affects matching robustness and accuracy.

Contributions. The contributions of this paper are threefold: (i) We introduce the proposal flow approach to establishing robust region correspondences between related, but not identical scenes using object proposals. (ii) We introduce a benchmark for semantic flow that can be used to evaluate both general semantic flow algorithms and region matching methods. (iii) We demonstrate the advantage of proposal flow over state-of-the-art semantic flow methods through extensive experimental evaluations.

Proposal flow

Proposal flow can use any type of object proposals [START_REF] Arbelaez | Multiscale combinatorial grouping[END_REF][START_REF] Hosang | What makes for effective detection proposals?[END_REF][START_REF] Manen | Prime object proposals with randomized Prim's algorithm[END_REF][START_REF] Uijlings | Selective search for object recognition[END_REF][START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF] as candidate regions for matching two images of related scenes. In this section, we introduce a probabilistic model for region matching, and describe three matching strategies including two baselines and a new one using local regularization. We then describe our approach to generating a dense flow field from the region matches.

A Bayesian model for region matching

Let us suppose that two sets of object proposals R and R have been extracted from images I and I (Fig. 2(a-b)). A proposal r in R is an image region r = (f, s) with appearance feature f and spatial support s. The appearance feature represents a visual descriptor for the region (e.g., SPM [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] , HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], ConvNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]), and the spatial support describes the set of all pixel positions in the region, that forms a rectangular box in this work. Given the data D = (R, R ), we wish to estimate a posterior probability of the event r → r meaning that proposal r in R matches proposal r in R :

p(r → r | D) = p(f → f )p(s → s | D), (1) 
where we decouple the probabilities of appearance and spatial support matching, and assume that appearance matching is independent of D. In practice, the appearance term p(f → f ) is simply computed from a similarity between feature descriptors f and f , and the geometric consistency term p(s → s | D) is evaluated by comparing the spatial supports s and s in the context of the given data D, as described in the next section. We set the posterior probability In particular, LOM imposes local smoothness on offsets between neighboring regions, avoiding the problem of using a global consensus on the offset in PHM [START_REF] Cho | Unsupervised object discovery and localization in the wild: Part-based matching using bottom-up region proposals[END_REF]. The matching score is color-coded for each match (red: high, blue: low). The HOG descriptor [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] is used for appearance matching in this example. (Best viewed in color.)

as a matching score and assign the best match φ(r) for each proposal in R:

φ(r) = argmax r ∈R p(r → r | D). (2) 
Using a slight abuse of notation, if (f , s ) = φ(f, s), we will write f = φ(f ) and s = φ(s).

Geometric matching strategies

We now introduce three matching strategies, using different geometric consistency terms p(s → s | D). Naive appearance matching (NAM). A straightforward way of matching regions is to use a uniform distribution for the geometric term so that

p(r → r | D) ∝ p(f → f ).
(3) NAM considers appearance only, and does not reflect any geometric relationship among regions (Fig. 2(d)). Probabilistic Hough matching (PHM). The matching algorithm in [START_REF] Cho | Unsupervised object discovery and localization in the wild: Part-based matching using bottom-up region proposals[END_REF] can be expressed in our model as follows.

First, a three-dimensional location vector (center position and scale) is extracted from the spatial support s. We denote it by a function γ. An offset space X is defined as a feasible set of offset vectors between γ(s) and γ(s ):

X = {γ(s) -γ(s ) | r ∈ R, r ∈ R }. The geometric consistency term p(s → s | D) is then defined as p(s → s | D) = x∈X p(s → s | x)p(x | D), (4) 
which assumes that p(s

→ s | x, D) = p(s → s | x).
Here, p(s → s | x) measures an offset consistency between γ(s) -γ(s ) and x by a Gaussian kernel in the threedimensional offset space. From this model, PHM substitutes p(x | D) with a generalized Hough transform score: 

h(x | D) = (r,r )∈D p(f → f )p(s → s | x). (5 

Local offset matching (LOM).

Here we propose a new method to overcome this drawback of PHM [START_REF] Cho | Unsupervised object discovery and localization in the wild: Part-based matching using bottom-up region proposals[END_REF] and obtain more reliable correspondences. Object proposals often contain a large number of distracting outlier regions from background clutter, and are not perfectly repeatable even for corresponding object or parts across different images (Fig.

2(c))

. The global Hough voting in PHM has difficulties with such outlier regions. In contrast, we optimize a translation and scale offset for each proposal by exploiting only neighboring proposals. That is, instead of averaging p(s → s |x) over all feasible offsets X in PHM, we use one reliable offset optimized for each proposal. This local approach substantially alleviates the effect of outlier regions in matching as will be demonstrated by our experiment results.

The main issue is how to estimate a reliable offset for each proposal r in a robust manner without any information about objects and their locations. One way would be to find the corresponding region of the region r through a multi-scale sliding window search in I as in object detection [START_REF] Felzenszwalb | A discriminatively trained, multiscale, deformable part model[END_REF], but this is expensive. Instead, we assume that nearby regions have similar offsets. For each region r, we first define its neighborhood N (r) as the regions with overlapping spatial support:

N (r) = {r | s ∩ ŝ = ∅, r ∈ R}. (6) 
Using an initial correspondence φ(r), determined by the best match according to the appearance term, each neighboring region r is assigned its own offset, and all of them form a set of neighbor offsets:

X (r) = {γ(ŝ) -γ(φ(ŝ)) | r ∈ N (r)}. (7)
From this set of neighbor offsets, we estimate a local offset x * r for the region r by the geometric median [START_REF] Lopuhaa | Breakdown points of affine equivariant estimators of multivariate location and covariance matrices[END_REF] 1 :

x * r = argmin

x∈R 3 y∈X (r) x -y 2 , (8) 
which can be globally optimized by Weiszfeld's algorithm [START_REF] Chandrasekaran | Open questions concerning weiszfeld's algorithm for the fermat-weber location problem[END_REF] using a form of iteratively re-weighted least squares. Based on the local offset x * r optimized for each region, we define the geometric consistency function:

g(s → s |D) = p(s → s |x * r ) r∈N (r) p( f → φ( f )), ( 9 
)
which means that r in R is likely to match with r in R if their offset is close to the local offset x * r , and r has many neighboring matches with a high appearance fidelity.

By using g(s → s |D) as a proxy for p(s → s |D), LOM imposes local smoothness on offsets between neighboring regions. This geometric consistency function effectively suppresses matches between clutter regions, while favoring matches between regions that contain objects rather than object parts (Fig. 2(f)). In particular, the use of local offsets optimized for each proposal regularizes offsets within a local neighborhood that incorporates an overlap relationship between spatial supports of regions. This local regularization avoids a common problem with PHM, where the matching results often depend on a few strong matches.

Flow field generation

The proposal flow gives a set of region correspondences between images, but it can be easily transformed into a conventional dense flow field. Let p denote a pixel in image I (yellow point in Fig. 3(a)). For each pixel p, its neighborhood is defined as the region in which it lies, i.e., N (p) = {r ∈ R : p ∈ r}. We define an anchor match (r * , φ(r * )) as the region correspondence that has the highest matching score among neighboring regions (red boxes in Fig. 3(a)) where

r * = argmax r∈N (p) p(r → φ(r) | D). ( 10 
)
Note that the anchor match contains information on translation and scale changes between objects. Using the geometric relationships between the pixel p and its anchor match (r * , φ(r * )), a correspondence p in I (green point in Fig. 3(a)) is obtained by linear interpolation. The matching score for each correspondence is set to the value of its anchor match. When p and q in I are matched The LOM method is used for region matching with the object proposals [START_REF] Manen | Prime object proposals with randomized Prim's algorithm[END_REF] and the HOG descriptor [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]. (Best viewed in color.)

to the same pixel p in I , we select the match with the highest matching score and delete the other one. Finally, joint image filtering [21] is applied under the guidance of the image I to interpolate the flow field in places without correspondences. Figure 3(b-c) shows examples of the estimated flow field and corresponding warping result between two images: Using the dense flow field, we warp all pixels in the right image to the left image. Our approach using the anchor match aligns semantic object parts well while handling translation and scale changes between objects.

A new dataset for semantic flow evaluation

Current research on semantic flow lacks an appropriate benchmark with dense ground-truth correspondences. Conventional optical flow benchmarks (e.g., Middlebury [START_REF] Baker | A database and evaluation methodology for optical flow[END_REF] and MPI-Sintel [START_REF] Butler | A naturalistic open source movie for optical flow evaluation[END_REF]) do not feature within-class variations, and ground truth for generic semantic flow is difficult to capture due to its intrinsically semantic nature, manual annotation being extremely labor intensive and somewhat subjective. All existing approaches are thus evaluated only with sparse ground truth or in an indirect manner (e.g. mask transfer accuracy) [4, [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF]35,[START_REF] Qiu | Scale-space SIFT flow[END_REF][START_REF] Tau | Dense correspondences across scenes and scales[END_REF][START_REF] Zhou | FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences[END_REF]. Such benchmarks only evaluate a small number of matches, that occur at groundtruth keypoints or around mask boundaries in a point-wise manner. To address this issue, we introduce in this section a new dataset for semantic flow, dubbed proposal flow (PF) dataset, built using ground-truth object bounding boxes and keypoint annotations, (Fig. 4(a-b)), and propose new evalu- ation metrics for region-based semantic flow methods such as proposal flow. Note that while designed for region-based methods, our benchmark can be used to evaluate any semantic flow technique. As will be seen in our experiments, it provides a reasonable (if approximate) ground truth for dense correspondences across similar scenes without an extremely expensive annotation campaign. As shown in the following sections, comparative evaluations on this dataset are also good predictors for performance on other tasks and datasets, further justifying the use of our benchmark. In the following, we describe our ground-truth generation process, evaluation criteria, and datasets. The benchmark data and code are available online: http://www.di.ens.fr/ willow/research/proposalflow.

Ground-truth correspondence generation

We assume that true matches only exist within object bounding boxes. Let us assume two sets of keypoint annotations at positions k i and k i in I and I , respectively, with i = 1, . . . , m. Assuming the objects present in the images and their parts may undergo shape deformation, we use thin plate splines (TPS) [3,[START_REF] Donato | Approximate thin plate spline mappings[END_REF] to interpolate the sparse keypoints. Namely, the ground truth is approximated from sparse correspondences using TPS warping.

For each region, its ground-truth match is generated as follows. We assume that true matches only exist between a subset of regions, i.e., regions around object bounding boxes (Fig. 4(c)): R s = {r | |b ∩ r| / |r| ≥ 0.75, r ∈ R} where b denotes an object bounding box in I, and |r| indicates the area of a region r. For each region r ∈ R s , the four vertices of the rectangle are warped to the corresponding ones in I by the TPS mapping function. The region formed by the warped points is a correspondence of region r. We fit a tight rectangle for this region and set it as a ground-truth correspondence for the region r (Fig. 4(d)).

Evaluation criteria

We introduce two evaluation metrics for region matching performance in terms of region matching precision and match retrieval accuracy. Basically, the metrics build on the intersection over union (IoU) score between r's correspondence φ(r) and its ground truth r :

IoU(φ(r), r ) = |φ(r) ∩ r | / |φ(r) ∪ r |. (11) 
For region matching precision, we propose the probability of correct region (PCR) metric2 where region r is correctly matched to its ground truth r if 1 -IoU(φ(r), r ) < τ (e.g., Fig. 5(a) top). We measure the PCR metric while varying the IoU threshold τ from 0 to 1. For match retrieval accuracy, we propose the average IoU of k-best matches (mIoU@k) according to the matching score (e.g., Fig. 5(a) bottom). We measure the mIoU@k metric while increasing the number of top matches k. These two metrics exhibit two important characteristics of matching: the PCR reveals the accuracy of overall assignment, and the mIoU@k shows the reliability of matching scores that is crucial in match selection.

Dataset construction

To generate our dataset, we start from the benchmark for sparse matching of Cho et al. [START_REF] Cho | Learning graphs to match[END_REF], which consists of 5 object classes (Face, Car, Motorbike, Duck, WineBottle) with 10 keypoint annotations for each image. Note that these images contain more clutter and intra-class variation than existing datasets for semantic flow evaluation, e.g., images with tightly cropped objects or similar background [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF][START_REF] Qiu | Scale-space SIFT flow[END_REF][START_REF] Zhou | FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences[END_REF]. We exclude the Face class where the number of generated object proposals is not sufficient to evaluate matching accuracy. The other classes are split into sub-classes3 according to viewpoint or background clutter. We obtain a total of 10 sub-classes. Given these images and regions, we generate ground-truth data between all possible image pairs within each class.

Experiments

Experimental details

Object proposals. We evaluate four state-of-the-art object proposal methods: EdgeBox (EB) [START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF], multiscale combinatorial grouping (MCG) [START_REF] Arbelaez | Multiscale combinatorial grouping[END_REF], selective search (SS) [START_REF] Uijlings | Selective search for object recognition[END_REF], and randomized prim (RP) [START_REF] Manen | Prime object proposals with randomized Prim's algorithm[END_REF]. In addition, we consider three baseline proposals [START_REF] Hosang | What makes for effective detection proposals?[END_REF]: Uniform sampling (US), Gaussian sampling (GS), and sliding window (SW). See [START_REF] Hosang | What makes for effective detection proposals?[END_REF] for more details. For fair comparison, we use 1,000 proposals for all the methods. To control the number of proposals, we use the proposal score provided by EB, MCG, and SS. For RP, we randomly select among the proposals. Feature descriptors and similarity. We evaluate three popular feature descriptors: SPM [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF], HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], and Con-vNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. For SPM, dense SIFT features [38] are extracted every 4 pixels and each descriptor is quantized into a 1,000 word codebook [START_REF] Tang | Co-localization in real-world images[END_REF]. For each region, a spatial pyramid pooling [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] is used with 1×1 and 3×3 pooling regions. We compute the similarity between SPM descriptors by the χ 2 kernel. HOG features are extracted with 8 × 8 cells and 31 orientations, then whitened. For ConvNet features, we use each output of the 5 convolutional layers in AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], which is pre-trained on the ImageNet dataset [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF]. For HOG and ConvNet, the dot product is used as a similarity metric.

Proposal flow components

We use the PF benchmark in this section to compare three variants of proposal flow using different matching algorithms (NAM, PHM, LOM), combined with various object proposals [START_REF] Arbelaez | Multiscale combinatorial grouping[END_REF][START_REF] Hosang | What makes for effective detection proposals?[END_REF][START_REF] Manen | Prime object proposals with randomized Prim's algorithm[END_REF][START_REF] Uijlings | Selective search for object recognition[END_REF][START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF], and features [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF][START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF].

Figure 4(e-g) shows a qualitative comparison between region matching algorithms on a pair of images and depicts correct matches found by each variant of proposal flow. In this example, at the IoU threshold 0.5, the numbers of correct matches are 16, 5, and 38 for NAM, PHM [START_REF] Cho | Unsupervised object discovery and localization in the wild: Part-based matching using bottom-up region proposals[END_REF], and LOM, respectively. This shows that PHM may give worse performance than even NAM when much clutter exists in background. In contrast, the local regularization in LOM alleviates the effect of such clutter.

Figure 5 summarizes the matching and retrieval performance on average for all object classes with a variety of combination of object proposals, feature descriptors, and matching algorithms. Figure 5(a) compares different types of object proposals with fixed matching algorithm and feature descriptor (LOM w/ HOG). RP shows the best matching precision and retrieval accuracy among the object proposals. An upper bound on precision is measured for object proposals (around a given object) in the image I using a corresponding ground truths in image I , that is the best matching accuracy we can achieve with each proposal method. The upper bound (UB) plots show that RP generates more consistent regions than other proposal methods, and is adequate for region matching. RP shows higher matching precision than other proposals especially when the IoU threshold is low. The evaluation results for different features (LOM w/ RP) are shown in Fig. 5(b). The HOG descriptor gives the best performance in matching and retrieval. The CNN features in our comparison come from AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] trained for ImageNet classification. Such CNN features have a task-specific bias to capture discriminative parts for classification, which may be less adequate for patch correspondence or retrieval than engineered features such as HOG. Similar conclusions are found in recent papers [START_REF] Long | Do convnets learn correspondence?[END_REF]43]. See, for example, Table 3 in [43] where SIFT outperforms all AlexNet features (Conv1-5). Among ConvNet features, the fourth and first convolutional layers (Conv4 and Conv1) show the best and worst performance, respectively, while other layers perform similar to SPM. This confirms the finding in [START_REF] Zagoruyko | Learning to compare image patches via convolutional neural networks[END_REF], which shows that Conv4 gives the best matching performance among ImageNet-trained ConvNet features. Figure 5(c) compares the performance of different matching algorithms (RP w/ HOG), and shows that LOM outperforms others in matching as well as retrieval. Figure 5(d ande) shows the area under curve (AuC) for PCR and mIoU@k plots, respectively. This suggests that combining LOM, RP, and HOG performs best in both metrics.

In Table 1, we show AuCs of PCR plots for each class (LOM w/ RP and HOG). From this table, we can see that 1) higher matching precision is achieved with objects having a similar pose (e.g., mot(S) vs. mot(M)), 2) performance decreases for deformable object matching (e.g., duck(S) vs. car(S)), and 3) matching precision can increase drastically by eliminating background clutters (e.g., win(w/o C) vs. win(w/ C)).

Flow field

To compare our method with state-of-the-art semantic flow methods, we compute a dense flow field from Matching results on Caltech-101. We also evaluate our approach on the Caltech-101 dataset [START_REF] Fei-Fei | One-shot learning of object categories[END_REF]. Following the experimental protocol in [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF], we randomly select 15 pairs of images for each object class, and evaluate matching accuracy with three metrics: Label transfer accuracy (LT-ACC) [34], the IoU metric, and the localization error (LOC-ERR) of corresponding pixel positions. For LT-ACC, we transfer the class label of one image to the other using dense [START_REF] Peng | Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images[END_REF] 0.39 0.16 CollectionFlow [START_REF] Kemelmacher-Shlizerman | Collection flow[END_REF] 0.38 0.12 DSP [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF] 0.39 0.17 Matching results on PASCAL parts. We use the dataset provided by [START_REF] Zhou | FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences[END_REF] where the images are sampled from the PASCAL part dataset [7]. We first measure part match-ing accuracy using human-annotated part segments. For this experiment, we measure the weighted IoU score between transferred segments and ground truths, with weights determined by the pixel area of each part (Table 4). To evaluate alignment accuracy, we measure the PCK metric (α = 0.05) using keypoint annotations for the 12 rigid PAS-CAL classes [START_REF] Xiang | Beyond pascal: A benchmark for 3d object detection in the wild[END_REF] (Table 4). We use the same set of images as in the part matching experiment. Proposal flow has an advantage over existing approaches on images that contain cluttering elements (e.g., background, instance-specific texture, occlusion), but in this dataset [START_REF] Zhou | FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences[END_REF], such elements are confined to only a small portion of the images, compared to the PF and the Caltech-101 [START_REF] Fei-Fei | One-shot learning of object categories[END_REF] datasets. This may be a reason that, for the PCK metric, our approach with SS [START_REF] Uijlings | Selective search for object recognition[END_REF] gives similar results to other methods. While FlowWeb [START_REF] Zhou | FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences[END_REF] gives better results than ours, it relies on a cyclic constraint across multiple images (at least, three images). Thus, directly comparing our pairwise matching to FlowWeb is probably not fair. FlowWeb uses the output of DSP [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF] as initial correspondences, and refines them with the cyclic constraint. Since our method clearly outperforms DSP, using FlowWeb as a post processing would likely increase performance. Figure 7 visualize the part matching results.

For more examples and qualitative results, see our project webpage.

Discussion

We have presented a robust region-based semantic flow method, called proposal flow, and showed that it can effectively be mapped onto pixel-wise dense correspondences. We have also introduced the PF dataset for semantic flow, and shown that it provides a reasonable benchmark for semantic flow evaluation without extremely expensive manual annotation of full ground truth. Our benchmark can be used to evaluate region-based semantic flow methods and even pixel-based ones, and experiments with the PF dataset demonstrate that proposal flow substantially outperforms existing semantic flow methods. Experiments with Caltech and the VOC parts datasets further validate these results.

  Region-based semantic flow. (b) Dense flow field.

Figure 1 .

 1 Figure 1. Proposal flow generates a reliable semantic flow between similar images using local and geometric consistency constraints among object proposals, and it can be transformed into a dense flow field. (a) Region-based semantic flow. (b) Dense flow field and image warping using the flow field. (Best viewed in color.)

Figure 2 .

 2 Figure 2. Top: (a-b) Two images and their object proposals[START_REF] Uijlings | Selective search for object recognition[END_REF]. (c) Multi-scale object proposals contain the same object or parts, but they are not perfectly repeatable across different images. Bottom: In contrast to NAM (d), PHM[START_REF] Cho | Unsupervised object discovery and localization in the wild: Part-based matching using bottom-up region proposals[END_REF] (e) and LOM (f) both exploit geometric consistency, which regularizes proposal flow. In particular, LOM imposes local smoothness on offsets between neighboring regions, avoiding the problem of using a global consensus on the offset in PHM[START_REF] Cho | Unsupervised object discovery and localization in the wild: Part-based matching using bottom-up region proposals[END_REF]. The matching score is color-coded for each match (red: high, blue: low). The HOG descriptor[START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] is used for appearance matching in this example. (Best viewed in color.)

  ) which aggregates individual votes for offset x, from all possible matches in D = R×R . Hough voting imposes a spatial regularizer on matching by taking into account a global consensus on the corresponding offset [33, 39]. However, it often suffers from background clutter that distracts the global voting process (Fig. 2(e)).

  (a) Anchor match and pixel correspondence.

  Match visualization. (c) Warped image.

Figure 3 .

 3 Figure 3. Flow field generation. (a) For each pixel (yellow point), its anchor match (red boxes) is determined. The correspondence (green point) is computed by the transformed coordinate with respect to the position and size of the anchor match. (b) Based on the flow field, (c) the right image is warped to the left image. The warped object shows visually similar shape to the one in the left image.The LOM method is used for region matching with the object proposals[START_REF] Manen | Prime object proposals with randomized Prim's algorithm[END_REF] and the HOG descriptor[START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]. (Best viewed in color.)

  (a) keypoints and object bounding boxs. (b) Warping. (c) Rs. (d) Ground-truth correspondence. (e) NAM. (f) PHM [9]. (g) LOM.

Figure 4 .

 4 Figure 4. (a-d) Generating ground-truth regions and evaluating correct matches. (a) Using keypoint annotations, dense correspondences between images are established using warping [3, 13]. (b) Based on the dense correspondences, all pixels in the left image are warped to the right image. (c) We assume that true matches exist only between the regions near the object bounding box, and thus an evaluation is done with the regions in this subset of object proposals. (d) For each object proposal (red box in the left image), its ground truth is generated automatically by the dense correspondences: We use a tight rectangle (red box in the right image) of the region formed by the warped object proposal (yellow box in the right image) as a ground-truth correspondence. (e-g) Examples of correct matches: The numbers of correct matches are 16, 5, and 38 for NAM (e), PHM [9] (f), and LOM (g), respectively. Matches with IoU score greater than 0.5 are considered as correct in this example. (Best viewed in color.)
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Figure 5 .

 5 Figure 5. PF benchmark evaluation on (a-c) region matching precision (top, PCR plots) and match retrieval accuracy (bottom, mIoU@k plots), and (d-e) AuCs for different combinations of object proposals, feature descriptors, and matching algorithms: (a) Evaluation for LOM with HOG[START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], (b) evaluation for LOM with RP[START_REF] Manen | Prime object proposals with randomized Prim's algorithm[END_REF], (c) evaluation for RP with HOG[START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], (d) AuCs for PCR plots, and (e) AuCs for mIoU@k plots. The AuC is shown in the legend. (Best viewed in color.)

  (a) Source image. (b) Target image. (c) DeepFlow. (d) GMK. (e) SIFT Flow. (f) DSP. (g) Proposal Flow.

Figure 6 .

 6 Figure 6. Examples of dense flow field. (a-b) Sourse images are warped to the target images using the dense correspondences estimated by (c) DeepFlow[START_REF] Revaud | Deepmatching: Hierarchical deformable dense matching[END_REF], (d) GMK[START_REF] Duchenne | A graph-matching kernel for object categorization[END_REF], (e) SIFT Flow [35], (f) DSP[START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF], and (g) Proposal Flow (LOM w/ RP and HOG).

  (a) Source image. (b) Target image. (c) DSP. (d) Proposal Flow. (e) Source mask. (f) Target mask. (g) DSP.(h) Proposal Flow.

Figure 7 .

 7 Figure 7. Examples of dense flow field on PASCAL parts. (a-b) Source images are warped to the target images using the dense correspondences estimated by (c) DSP [29] and (d) Proposal Flow w/ LOM, SS and HOG. (e-f) Similarly, annotated part segments for the source images are warped to the target images using the dense correspondences computed by (g) DSP and (h) Proposal Flow w/ LOM, SS and HOG. (Best viewed in color.)

FlowWeb [ 57 ]

 57 0.43 0.26 correspondences, and count the number of correctly labeled pixels. Similarly, the IoU score is measured between the transferred label and ground truth. Table3compares quan-titatively the matching accuracy of proposal flow to the state of the art. It shows that proposal flow using LOM outperforms other approaches, especially for the IoU score and the LOC-ERR of dense correspondences. Note that compared to LT-ACC, these metrics evaluate the matching quality for the foreground object, separate from irrelevant scene clutter. Our results verify that proposal flow focuses on regions containing objects rather than scene clutter and distracting details, enabling robust image matching against outliers.

Table 1 .

 1 AuC performance for PCR plots on the PF dataset (LOM w/ RP and HOG).

	Methods	car(S) car(G) car(M) duck(S) mot(S) mot(G) mot(M) win(w/o C) win(w/ C) win(M) Avg.
	LOM	0.61	0.50	0.45	0.50	0.42	0.40	0.35	0.69	0.30	0.47	0.47
	Upper bound 0.75	0.69	0.69	0.72	0.70	0.70	0.67	0.80	0.68	0.73	0.71
	our proposal flows (Sec. 3.3), and evaluate image align-	ones [36, 55]. Ground-truth keypoints are deemed to be
	ment between all pairs of images in each subset of the PF						
	dataset. We test four object proposal methods (MCG, EB,						
	SS, RP) with HOG descriptors. For an evaluation metric,						
	we use PCK between warped keypoints and ground-truth						

correctly predicted if they lie within αmax(h, w) pixels of the predicted points for α in [0, 1], where h and w are the height and width of the object bounding box, respectively. Table

2

shows the average PCK (α = 0.1) over all object

Table 2 .

 2 PCK comparison for dense flow field on the PF dataset.

	NAM	0.46	0.50	0.52	0.53
	PHM	0.48	0.45	0.55	0.54
	LOM	0.49	0.44	0.56	0.55
	DeepFlow [46]		0.20		
	GMK [14]		0.27		
	SIFT Flow [35]		0.38		
	DSP [29]		0.37		
	classes. In our benchmark, all versions of proposal flow sig-
	nificantly outperform SIFT Flow [35], DSP [29], and Deep-
	Flow [46]. LOM with SS or RP outperforms other combi-
	nation of matching and proposal methods, which coincides
	with the results in Sec 5.2. Figure 6 gives a qualitative com-
	parison with the state of the art on the PF dataset. The bet-
	ter alignment found by proposal flow here is typical of our
	experiments. Specifically, proposal flow is robust to trans-
	lation and scale changes between objects.	

Methods

MCG

[START_REF] Arbelaez | Multiscale combinatorial grouping[END_REF] 

EB

[START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF] 

SS

[START_REF] Uijlings | Selective search for object recognition[END_REF] 

RP

[START_REF] Manen | Prime object proposals with randomized Prim's algorithm[END_REF] 

Table 3 .

 3 Matching accuracy on the Caltech-101 dataset.

	Proposals Methods LT-ACC IoU LOC-ERR
		NAM	0.68	0.44	0.41
	SS [51]	PHM	0.74	0.48	0.32
		LOM	0.78	0.50	0.25
		NAM	0.70	0.44	0.39
	RP [40]	PHM	0.75	0.48	0.31
		LOM	0.78	0.50	0.26
	DeepFlow [46]	0.74	0.40	0.34
	GMK [14]		0.77	0.42	0.34
	SIFT Flow [35]	0.75	0.48	0.32
	DSP [29]		0.77	0.47	0.35

Table 4 .

 4 Matching accuracy on the PASCAL VOC classes.

	Proposals Methods IoU PCK
		NAM	0.35 0.13
	SS [51]	PHM	0.39 0.17
		LOM	0.41 0.17
	Congealing [32]	0.38 0.11
	RASL		

We found that the centroid and mode of the offset vectors in threedimensional offset space show worse performance than the geometric median. This is because the neighboring regions may include clutter. Clutter causes incorrect neighbor offsets, but the geometric median is robust to outliers[START_REF] Fletcher | Robust statistics on riemannian manifolds via the geometric median[END_REF], providing a reliable local offset.

This region-based metric is based on a conventional point-based metric, the probability of correct keypoint (PCK)[START_REF] Yang | Articulated human detection with flexible mixtures of parts[END_REF]. In the case of pixelbased flow, PCK can be adopted instead.

They are car (S), (G), (M), duck (S), motorbike (S), (G), (M), wine bottle (w/o C), (w/ C), (M), where (S) and (G) denote side and general viewpoints, respectively. (C) stands for background clutter, and (M) denotes mixed viewpoints (side + general) for car and motorbike classes and a combination of images in wine bottle (w/o C + w/ C) for the wine bottle class. The dataset has 10 images for each class, thus 100 images in total.
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