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Abstract

Finding image correspondences remains a challenging
problem in the presence of intra-class variations and large
changes in scene layout, typical in scene flow computation.
We introduce a novel approach to this problem, dubbed pro-
posal flow, that establishes reliable correspondences using
object proposals. Unlike prevailing scene flow approaches
that operate on pixels or regularly sampled local regions,
proposal flow benefits from the characteristics of modern
object proposals, that exhibit high repeatability at multiple
scales, and can take advantage of both local and geomet-
ric consistency constraints among proposals. We also show
that proposal flow can effectively be transformed into a con-
ventional dense flow field. We introduce a new dataset that
can be used to evaluate both general scene flow techniques
and region-based approaches such as proposal flow. We use
this benchmark to compare different matching algorithms,
object proposals, and region features within proposal flow
with the state of the art in scene flow. This comparison,
along with experiments on standard datasets, demonstrates
that proposal flow significantly outperforms existing scene
flow methods in various settings.

1. Introduction
Classical approaches to finding correspondences across

images are designed to handle scenes that contain the same
objects with moderate view point variations in applications
such as stereo matching [42, 46], optical flow [23, 45, 51],
and wide-baseline matching [41, 53]. Scene flow methods,
such as SIFT Flow [35] for example, on the other hand,
are designed to handle a much higher degree of variability
in appearance and scene layout. They have proven useful
for many tasks such as scene recognition, image registra-
tion, semantic segmentation, and image editing and synthe-
sis [20, 29, 35, 53, 56]. In this context, however, appearance
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(a) Region-based scene flow. (b) Flow field.

Figure 1. Proposal flow generates a reliable scene flow between
similar images by establishing geometrically consistent correspon-
dences between object proposals. (a) Region-based scene flow by
matching object proposals. (b) Color-coded dense flow field gen-
erated from the region matches, and image warping using the flow.
(Best viewed in color.)

variations may confuse similarity measures for local region
matching, and prohibit the use of strong geometric con-
straints (e.g., epipolar geometry, limited disparity range).
Existing approaches to scene flow are thus easily distracted
by scene elements specific to individual objects and image-
specific details (e.g., background, texture, occlusion, clut-
ter). The motivation of our work is that robust region corre-
spondences and scene flow require focusing on regions con-
taining prominent objects and scene elements rather than
clutter and distracting details.

To address these issues, we introduce an approach to
scene flow computation, called proposal flow, that estab-
lishes region correspondences using object proposals and
their geometric relations (Fig. 1). Unlike previous scene
flow algorithms [4, 20, 22, 25, 29, 35, 44, 48, 49, 53, 56],
that use regular grid structures for local region generation
and matching, we leverage a large number of multi-scale
object proposals [1, 24, 40, 50, 57], as now widely used
in object detection [19, 27]. The proposed approach es-
tablishes region correspondences by exploiting their visual
features and geometric relations in an efficient manner, and
generates a region-based scene flow composed of object
proposal matches. We also show that the proposal flow
can be effectively transformed into a conventional dense
flow field. Finally, we introduce a new dataset that can



be used to evaluate both general scene flow techniques and
region-based approaches such as proposal flow. We use
this benchmark to compare different matching algorithms,
object proposals, and region features within proposal flow
with the state of the art in scene flow. This comparison,
along with experiments on standard datasets, demonstrates
that proposal flow significantly outperforms existing scene
flow methods in various settings.

2. Related work
Correspondence problems involve a broad range of top-

ics beyond the scope of this paper. Here we briefly de-
scribe the context of our approach, and only review rep-
resentative work pertinent for ours. Classical approaches to
stereo matching and optical flow estimate pixel-level dense
correspondences between two nearby images of the same
scene [23, 41, 42]. While advances in invariant feature de-
tection and description have revolutionized object recogni-
tion and reconstruction in the past 15 years, research on
image matching and alignment between images have long
been dominated by instance matching with the same scene
and objects [18]. Unlike these, several recent approaches
focus on handling images containing different scenes and
objects. Graph-based matching algorithms [10, 14] attempt
to find category-level feature matches by leveraging a flex-
ible graph representation of images, but they commonly
handle sparsely sampled or detected features due to their
computational complexity. Inspired by classic optical flow
algorithms, Liu et al. pioneered the idea of dense corre-
spondences across different scenes, and proposed the SIFT
Flow [35] algorithm that uses a multi-resolution image
pyramid together with a hierarchical optimization technique
for efficiency. Kim et al. [29] extended the approach by
inducing a multi-scale regularization with a hierarchically
connected pyramid of grid graphs. More recently, Long et
al. [36] have investigated the effect of pretrained ConvNet
features on scene flows, and Bristow et al. [4] have pro-
posed an exemplar-LDA approach that improves the perfor-
mance of scene flows. Despite differences in graph con-
struction, optimization, and similarity computation, exist-
ing scene flow approaches share grid-based regular sam-
pling and spatial regularization: The appearance similarity
is defined at each region or pixel on (a pyramid of) regular
grids, and spatial regularization is imposed between neigh-
boring regions in the pyramid models [29, 35]. In contrast,
our work builds on generic object proposals with diverse
spatial supports [1, 24, 40, 50, 57], and uses an irregular
form of spatial regularization based on co-occurrence and
overlap of the proposals. We show that the use of local reg-
ularization with object proposals yields substantial gains in
generic region matching and scene flow, in particular, when
handling images with significant clutter and intra-class vari-
ations.

Object proposals [1, 24, 40, 50, 57] have originally been
developed for object detection, where they are used to re-
duce the search space as well as false alarms. They are now
an important component in many state-of-the-art detection
pipelines [19, 27]. Despite their success on object detection
and segmentation, they have seldom been used in matching
tasks [9, 26]. In particular, while Cho et al. [9] have shown
that object proposals are useful for object discovery due to
their high repeatability on salient part regions, the use of
object proposals has never been throughly investigated in
scene flow computation. The proposal flow approach pro-
posed in this paper is a first step in this direction, and we
explore how the choice of object proposals, matching algo-
rithms, and features affects matching robustness and accu-
racy.

Contributions. The contributions of this paper are three-
fold: (i) We introduce the proposal flow approach to estab-
lishing robust region correspondences between related, but
not identical scenes using object proposals. (ii) We intro-
duce a benchmark for scene flow that can be used to eval-
uate both general scene flow algorithms and region match-
ing methods such as proposal flow. (iii) We demonstrate the
advantage of proposal flow over state-of-the-art scene flow
methods through extensive experimental evaluations.

3. Proposal flow
Proposal flow can use any type of object proposals [1, 24,

40, 50, 57] as candidate regions for matching two images of
related scenes. In this section, we introduce a probabilis-
tic model for region matching, and describe three matching
strategies including two baselines and a new one using local
regularization. We then describe our approach to generating
a dense flow field from region matches.

3.1. A Bayesian model for region confidence

Let us suppose that two sets of object proposals R and
R′ have been extracted from images I and I ′ (Fig. 2(a-b)).
A proposal r in R is an image region r = (f, s) with ap-
pearance feature f and spatial support s. The appearance
feature represents a visual descriptor for the region (e.g.,
SPM [31] , HOG [11], ConvNet [30]), and the spatial sup-
port describes the set of all pixel positions in the region,
that forms a rectangular box in this work. Given the data
D = (R,R′), we wish to estimate a posterior probability
of the event r 7→ r′ meaning that proposal r in R matches
proposal r′ inR′:

p(r 7→ r′ | D) = p(f 7→ f ′)p(s 7→ s′ | D), (1)

where we decouple the probabilities of appearance and spa-
tial support matching, and assume that appearance match-
ing is independent of D. In practice, the appearance term
p(f 7→ f ′) is simply computed from a similarity between



(a) Input images. (b) Object proposals [50]. (c) Object proposals near the front wheel.

(d) NAM. (e) PHM [9]. (f) LOM.

Figure 2. Top: (a-b) Two images and their object proposals [50]. (c) Multi-scale object proposals contain the same object or parts, but
they are not consistently generated across different images. Bottom: In contrast to NAM (d), PHM [9] (e) and LOM (f) both exploit
geometric consistency, which regularizes proposal flow. In particular, LOM imposes local smoothness on offsets between neighboring
regions, avoiding the problem of using a global consensus on the offset in PHM [9]. The matching score is color-coded for each match
(red: high, blue: low). The HOG descriptor [11] is used for appearance matching in this example. (Best viewed in color.)

feature descriptors f and f ′, and the geometric consistency
term p(s 7→ s′ | D) is evaluated by comparing the spatial
supports s and s′ in the context of the given data D, as de-
scribed in the next section. We set the posterior probability
as a matching score and assign the best match φ(r) for each
proposal inR:

φ(r) = argmax
r′∈R′

p(r 7→ r′ | D). (2)

Using a slight abuse of notation, if (f ′, s′) = φ(f, s), we
will write f ′ = φ(f) and s′ = φ(s).

3.2. Geometric matching strategies

We now introduce three matching strategies, using dif-
ferent geometric consistency terms p(s 7→ s′ | D).

Naive appearance matching (NAM). A straightforward
way of matching regions is to use a uniform distribution for
the geometric term so that

p(r 7→ r′ | D) ∝ p(f 7→ f ′). (3)

NAM considers appearance only, and does not reflect any
geometric relationship among regions (Fig. 2(d)).

Probabilistic Hough matching (PHM). The matching
algorithm in [9] can be expressed in our model as follows.
First, a three-dimensional location vector (center position
and scale) is extracted from the spatial support s. We de-
note it by a function γ. An offset space X is defined as
a feasible set of offset vectors between γ(s) and γ(s′):
X = {γ(s) − γ(s′) | r ∈ R, r′ ∈ R′}. The geometric
consistency term p(s 7→ s′ | D) is then defined as

p(s 7→ s′ | D) =
∑
x∈X

p(s 7→ s′ | x)p(x | D), (4)

which assumes that p(s 7→ s′ | x,D) = p(s 7→ s′ | x).
Here, p(s 7→ s′ | x) measures an offset consistency be-
tween γ(s)− γ(s′) and x by a Gaussian kernel in the three-
dimensional offset space. From this model, PHM substi-
tutes p(x | D) with a generalized Hough transform score:

h(x | D) =
∑

(r,r′)∈D

p(f 7→ f ′)p(s 7→ s′ | x). (5)

which aggregates individual votes for offset x, from all pos-
sible matches inD = R×R′. Hough voting imposes a spa-
tial regularizer on matching by taking into account a global
consensus on the corresponding offset [33, 39]. However,
it often suffers from background clutter that distracts the
global voting process (Fig. 2(e)).

Local offset matching (LOM). Here we propose a new
method to overcome this drawback of PHM [9] and ob-
tain more reliable correspondences. Object proposals often
contain a large number of distracting outlier regions from
background clutter, and are not perfectly repeatable even for
corresponding object or parts across different images (Fig.
2(c)). The global Hough voting in PHM has difficulties with
such outlier regions (background clutter). In contrast, LOM
optimizes a translation and scale offset for each proposal
by exploiting only neighboring proposals. This local ap-
proach substantially alleviates the effect of outlier regions
in matching as will be demonstrated by our experimental
results.

The main issue is how to estimate a reliable offset for
each proposal r in a robust manner without any informa-
tion about objects and their locations. One way would be
to find the corresponding region of the region r through a
multi-scale sliding window search in I ′ as in object detec-
tion [16], but this is expensive. Instead, we assume that
nearby regions have similar offsets. For each region r, we



first define its neighborhoodN (r) as the regions with over-
lapping spatial support:

N (r) = {r̂ | s ∩ ŝ 6= ∅, r̂ ∈ R}. (6)

Using an initial correspondence φ(r), determined by the
best match according to the appearance term, each neigh-
boring region r̂ is assigned its own offset, and all of them
form a set of neighbor offsets:

X (r) = {γ(ŝ)− γ(φ(ŝ)) | r̂ ∈ N (r)}. (7)

From this set of neighbor offsets, we estimate a local offset
x∗r for the region r by the geometric median [37]1:

x∗r = argmin
x∈R3

∑
y∈X (r)

‖x− y‖2 , (8)

which can be globally optimized by Weiszfeld’s algo-
rithm [6] using a form of iteratively re-weighted least
squares. Based on the local offset x∗r optimized for each
region, we define the geometric consistency function:

g(s 7→ s′|D) = p(s 7→ s′|x∗r)
∑

r̂∈N (r)

p(f̂ 7→ φ(f̂)), (9)

which means that r in R is likely to match with r′ in R′ if
their offset is close to the local offset x∗r , and r has many
neighboring matches with a high appearance fidelity.

By using g(s 7→ s′|D) as a proxy for p(s 7→ s′|D),
LOM imposes local smoothness on offsets between neigh-
boring regions. In particular, it regularizes offsets within
a local neighborhood that incorporates an overlap relation-
ship between spatial supports of regions. This local regu-
larization avoids a common problem with PHM, where the
matching results often depend on a few strong matches. The
use of local offsets optimized for each proposal effectively
suppresses matches between clutter regions, while favoring
matches between regions that contain objects rather than
object parts (Fig. 2(f)).

3.3. Flow field generation

The proposal flow gives a set of region correspondences
between images, but it can be easily transformed into a con-
ventional flow field. Let p denote a pixel in image I (yel-
low point in Fig. 3(a)). For each pixel p, its neighborhood
is defined as the region in which it lies, i.e., N (p) = {r ∈
R : p ∈ r}. We define an anchor match (r∗, φ(r∗)) as the
region correspondence that has the highest matching score
among neighboring regions (red boxes in Fig. 3(a)) where

r∗ = argmax
r∈N (p)

p(r 7→ φ(r) | D). (10)

1We found that the centroid and mode of the offset vectors in three-
dimensional offset space show worse performance than the geometric me-
dian. This is because the neighboring regions may include clutters. Clutter
causes incorrect neighbor offsets, but the geometric median is robust to
outliers [17], providing a reliable local offset.

(a) Anchor match and pixel correspondence.
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(b) Match visualization. (c) Warped image.

Figure 3. Flow field generation. (a) For each pixel (yellow point),
its anchor match (red boxes) is determined. The correspondence
(green point) is computed by the transformed coordinate with re-
spect to the position and size of the anchor match. (b) Based on
the flow field, (c) the right image is warped to the left image. The
warped object shows visually similar shape to the one in the left
image. The LOM method is used for region matching with the ob-
ject proposals [40] and the HOG descriptor [11]. (Best viewed in
color.)

Note that the anchor match contains information on transla-
tion and scale changes between objects. Using the geomet-
ric relationships between the pixel p and its anchor match
(r∗, φ(r∗)), a correspondence p′ in I ′ (green point in Fig.
3(a)) is obtained by linear interpolation.

The matching score for each correspondence is set to the
value of its anchor match. When p and q in I are matched to
the same pixel p′ in I ′, we select the match with the highest
matching score and delete the other one. Finally, joint im-
age filtering [21] is applied under the guidance of the image
I to interpolate the flow field in places without correspon-
dences. Figure 3(b-c) shows examples of the estimated flow
field and corresponding warping result between two images:
Using the dense correspondences, we warp all pixels in the
right image to the left image. Our approach using the an-
chor match aligns semantic object parts well while handling
translation and scale changes between objects.

4. RSF: A new dataset for scene flow evaluation

Current research on scene flow lacks an appropriate
benchmark with dense ground truth correspondences. Con-
ventional optical flow benchmarks (e.g., Middlebury [2] and
MPI-SINTEL [5]) do not feature within-class variations,
and ground truth for generic scene flow is difficult to capture
due to its intrinsically semantic nature, manual annotation
being extremely labor intensive and somewhat subjective.
All existing approaches are thus evaluated only with sparse



(a) keypoints and object bounding boxs. (b) Warping. (c) Rs. (d) Ground-truth correspondence.

(e) NAM. (f) PHM [9]. (g) LOM.

Figure 4. (a-d) Generating ground-truth regions and evaluating correct matches. (a) Using keypoint annotations, dense correspondences
between images are established using warping [3, 13]. (b) Based on the dense correspondences, all pixels in the left image are warped
to the right image. (c) We assume that true matches exist only between the regions near the object bounding box, and thus an evaluation
is done with the regions in this subset of object proposals. (d) For each object proposal (red box in the left image), its ground truth is
generated automatically by the dense correspondences: We use a tight rectangle (red box in the right image) of the region formed by the
warped object proposal (yellow box in the right image) as a ground-truth correspondence. (e-g) Examples of correct matches: The numbers
of correct matches are 16, 5, and 38 for NAM (e), PHM [9] (f), and LOM (g), respectively. Matches with IoU score greater than 0.5 are
considered as correct in this example. (Best viewed in color.)

ground truth or in an indirect manner (e.g. mask transfer ac-
curacy) [4, 29, 35, 44, 48, 56]. Such benchmarks only eval-
uate a small number of matches, that occur at ground-truth
keypoints or around mask boundaries in a point-wise man-
ner. To address this issue, we propose in this section a new
benchmark for scene flow, dubbed RSF for region-based
scene flow, built using ground-truth object bounding boxes
and keypoint annotations, (Fig. 4(a-b)), and propose new
evaluation metrics for region-based scene flow. Note that
while designed for region-based methods, our benchmark
can be used to evaluate any scene flow technique. As will
be seen in our experiments, it provides a reasonable (if ap-
proximate) ground truth for dense correspondences across
similar scenes without an extremely expensive annotation
campaign. As shown in the following sections, comparative
evaluations on this dataset are also good predictors for per-
formance on other tasks and datasets, further justifying its
use of RSF. In the following, we describe our ground-truth
generation process, evaluation criteria, and datasets. The
benchmark data and code will be made available online.

4.1. Ground-truth correspondence generation

We assume that true matches only exist within object
bounding boxes. Let us assume two sets of keypoint an-
notations at positions ki and k′i in I and I ′, respectively,
with i = 1, . . . ,m. Assuming the objects present in the
images and their parts may undergo shape deformation, we
use thin plate splines (TPS) [3, 13] to interpolate the sparse
keypoints. Namely, the ground truth is approximated from
sparse correspondences using TPS warping.

For each region, its ground truth match is generated as
follows. We assume that true matches only exist between

a subset of regions, i.e., regions around object bounding
boxes (Fig. 4(c)): Rs = {r | |b ∩ r| / |r| ≥ 0.75, r ∈ R}
where b denotes an object bounding box in I, and |r| indi-
cates the area of a region r. For each region r ∈ Rs, the
four vertices of the rectangle are warped to the correspond-
ing ones in I ′ by the TPS mapping function. The region
formed by the warped points is a correspondence of region
r. We fit a tight rectangle for this region and set it as a
ground-truth correspondence for the region r (Fig. 4(d)).

4.2. Evaluation criteria

We introduce two evaluation metrics for region match-
ing performance in terms of region matching precision and
match retrieval accuracy. Basically, the metrics build on
the intersection over union (IoU) score between r’s corre-
spondence φ(r) and its ground truth r?:

IoU(φ(r), r?) = |φ(r) ∩ r?| / |φ(r) ∪ r?|. (11)

For region matching precision, we propose the probability
of correct region (PCR) metric2 where region r is correctly
matched to its ground truth r? if 1 − IoU(φ(r), r?) < τ
(e.g., Fig. 5(a) top). We measure the PCR metric while
varying the IoU threshold τ from 0 to 1. For match retrieval
accuracy, we propose the average IoU of k-best matches
(mIoU@k) according to the matching score (e.g., Fig. 5(a)
bottom). We measure the mIoU@k metric while increasing
the number of top matches k. These two metrics exhibit
two important characteristics in matching: the PCR reveals
the accuracy of overall assignment, and the mIoU@k shows

2This region-based metric is developed from a conventional point-
based metric, the probability of correct keypoint (PCK) [54]. In the case
of pixel-based flow, the PCK can be adopted instead.



the reliability of match confidence scores that is crucial in
match selection.

4.3. Dataset construction

To generate our dataset, we start from the benchmark for
sparse matching of Cho et al. [8], which consists of 5 object
classes (Face, Car, Motorbike, Duck, WineBottle) with 10
keypoint annotations for each image. Note that these im-
ages contain more clutter and intra-class variation than ex-
isting datasets for scene flow evaluation, e.g., images with
tightly cropped objects or similar background [29, 44, 56].
We exclude the Face class where the number of generated
object proposals is not enough to evaluate matching accu-
racy. The other classes are split into sub-classes3 according
to the viewpoint or background clutters. We obtain a to-
tal of 10 sub-classes. Given these images and regions, we
generate ground-truth data between all possible image pairs
within each class.

5. Experiments
5.1. Experimental details

Object proposals. We evaluate four state-of-the-art ob-
ject proposal methods: EdgeBox (EB) [57], multi-
scale combinatorial grouping (MCG) [1], selective search
(SS) [50], and randomized prim (RP) [40]. In addition, we
consider three baseline proposals [24]: Uniform sampling
(US), Gaussian sampling (GS), and sliding window (SW).
See [24] for more details. For fair comparison, we use 1,000
proposals for all the methods. To control the number of pro-
posals, we use the proposal score provided for EB, MCG,
and SS. For RP, we randomly select among the proposals.
Feature descriptors and similarity. We evaluate three
popular feature descriptors: SPM [31], HOG [11], and Con-
vNet [30]. For SPM, dense SIFT features [38] are extracted
every 4 pixels and each descriptor is quantized into a 1,000
word codebook [47]. For each region, a spatial pyramid
pooling [31] is used with 1×1 and 3×3 pooling regions. We
compute the similarity between SPM descriptors by the χ2

kernel. HOG features are extracted with 8× 8 cells and 31
orientations, then whitened. For ConvNet features, we use
each output of the 5 convolutional layers in AlexNet [30]
that is pre-trained on the ImageNet dataset [12]. For HOG
and ConvNet, the dot product is used as a similarity metric.

5.2. Proposal flow components

We use the RSF benchmark in this section to compare
three versions of proposal flow (NAM, PHM, LOM), com-

3They are car (S), (G), (M), duck (S), motorbike (S), (G), (M), wine
bottle (w/o C), (w/ C), (M), where (S) and (G) denote side and general
viewpoints, respectively. (C) stands for background clutter, and (M) de-
notes mixed viewpoints (side + general) for car and motorbike classes and
a combination of images in wine bottle (w/o C + w/ C) for the wine bottle
class. The dataset has 10 images for each class, thus 100 images in total.

bined with different matching algorithms and various object
proposals [1, 24, 40, 50, 57], and features [11, 30, 31]. Fig-
ure 4(e-g) shows a qualitative comparison between region
matching algorithms on a pair of images and depicts cor-
rect matches found by each variant of proposal flow. In this
example, at the IoU threshold 0.5, the numbers of correct
matches are 16, 5, and 38 for NAM, PHM [9], and LOM,
respectively. This shows that PHM may give worse perfor-
mance than even NAM when much clutter exists in back-
ground. In contrast, the local regularization in LOM allevi-
ates the effect of such clutter.

Figure 5 summarizes the matching and retrieval perfor-
mance on average for all object classes with a variety of
combination of object proposals, feature descriptors, and
matching algorithms. Figure 5(a) compares different types
of object proposals with fixed matching algorithm and fea-
ture descriptor (LOM w/ HOG). RP shows the best match-
ing precision and retrieval accuracy among the object pro-
posals. An upper bound on precision is measured for each
object proposal method, that is the best performance we can
achieve with the proposal method. The upper bound (UB)
plots show that RP generates more consistent regions than
other proposal methods, and is adequate for region match-
ing. RP shows higher matching precision than other pro-
posals especially when the IoU threshold is low. The evalu-
ation results for different features (LOM w/ RP) are shown
in Fig. 5(b). The HOG descriptor gives the best perfor-
mance in matching and retrieval. Among ConvNet fea-
tures, the fourth and first convolutional layers (Conv4 and
Conv1) show the best and worst performance, respectively,
while other layers perform similar to SPM. This confirms
the finding in [55], which shows that Conv4 gives the best
matching performance among ImageNet-trained ConvNet
features. Figure 5(c) compares the performance of different
matching algorithms (RP w/ HOG), and shows that LOM
outperforms others in matching as well as retrieval. Figure
5(d and e) shows the area under curve (AuC) for PCR and
mIoU@k plots, respectively. This suggests that combining
of LOM, RP, and HOG performs best in both metrics. In Ta-
ble 1, we show per class AuCs for PCR plots (LOM w/ RP
and HOG). From this table, we can see that 1) higher match-
ing precision is achieved with objects having a similar pose
(e.g., mot(S) vs. mot(M)), 2) performance decreases for de-
formable object matching (e.g., duck(S) vs. car(S)), and 3)
matching precision can increase drastically by eliminating
background clutters (e.g., win(w/o C) vs. win(w/ C)).

5.3. Flow field

To compare our method with state-of-the-art scene flow
methods, we compute a conventional flow field from our
proposal flows (Sec. 3.3), and evaluate image alignment be-
tween all pairs of images in each subset. We test four ob-
ject proposal methods (MCG, EB, SS, RP) with HOG de-
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Figure 5. RSF benchmark evaluation on (a-c) region matching precision (top, PCR plots) and match retrieval accuracy (bottom, mIoU@k
plots), and (d-e) AuCs for different combinations of object proposals, features, and matching algorithms: (a) Evaluation for LOM with
HOG [11], (b) evaluation for LOM with RP [40], (c) evaluation for RP with HOG [11], (d) AuCs for PCR curves, and (e) AuCs for
mIoU@k curves. The AuC is shown in the legend. (Best viewed in color.)

Table 1. AuC performance for PCR plots (LOM w/ RP and HOG).

Methods car(S) car(G) car(M) duck(S) mot(S) mot(G) mot(M) win(w/o C) win(w/ C) win(M) Avg.

LOM 0.61 0.50 0.45 0.50 0.42 0.40 0.35 0.69 0.30 0.47 0.47
Upper bound 0.75 0.69 0.69 0.72 0.70 0.70 0.67 0.80 0.68 0.73 0.71

scriptors. For an evaluation metric, we use PCK (α = 0.1)
between warped keypoints and ground-truth ones [36, 54].
Ground-truth keypoints are deemed to be correctly pre-
dicted if they lie within α·max(h,w) pixels of the predicted
points for α in [0, 1], where h andw are the height and width

of the object bounding box, respectively. Table 2 shows
the average PCK over all object classes. In our benchmark,
all versions of proposal flow significantly outperform SIFT
Flow [35], DSP [29], and DeepFlow [45]. LOM with SS
or RP outperforms other combination of matching and pro-



(a) Source image. (b) Target image. (c) DeepFlow. (d) GMK. (e) SIFT Flow. (f) DSP. (g) Proposal Flow.

Figure 6. Examples of dense flow field. (a-b) Source images are warped to the target images using the dense correspondences estimated by
(c) DeepFlow [45], (d) GMK [14], (e) SIFT Flow [35], (f) DSP [29], and (g) Proposal Flow w/ LOM, RP and HOG.

Table 2. PCK (α = 0.1) comparison for dense flow field.

Methods MCG [1] EB [57] SS [50] RP [40]

NAM 0.46 0.50 0.52 0.53
PHM 0.48 0.45 0.55 0.54
LOM 0.49 0.44 0.56 0.55
DeepFlow [45] 0.20
GMK [14] 0.27
SIFT Flow [35] 0.38
DSP [29] 0.37

posal methods, which coincides with the results in Sec 5.2.
Figure 6 gives a qualitative comparison with the state of the
art on these examples. The better alignment found by pro-
posal flow here is typical of our experiments. Specifically,
proposal flow is robust to translation and scale changes be-
tween objects.

Matching results on Caltech-101. We also evaluate our
approach on the Caltech-101 dataset [15]. Following the
experimental protocol in [29], we randomly select 15 pairs
of images for each object class, and evaluate matching

Table 3. Matching accuracy on the Caltech-101 dataset.

Proposals Methods LT-ACC IoU LOC-ERR

SS [50]
NAM 0.68 0.44 0.41
PHM 0.74 0.48 0.32
LOM 0.78 0.50 0.25

RP [40]
NAM 0.70 0.44 0.39
PHM 0.75 0.48 0.31
LOM 0.78 0.50 0.26

DeepFlow [45] 0.74 0.40 0.34
GMK [14] 0.77 0.42 0.34
SIFT Flow [35] 0.75 0.48 0.32
DSP [29] 0.77 0.47 0.35

accuracy with three metrics: label transfer accuracy (LT-
ACC) [34], the IoU metric, and the localization error (LOC-
ERR) of corresponding pixel positions. For LT-ACC, we
transfer the class label of one image to the other using dense
correspondences, and count the number of correctly labeled
pixels. Similarly, the IoU score is measured between the
transferred label and ground truth. Table 3 compares quan-
titatively the matching accuracy of proposal flow to the state



(a) Source image. (b) Target image. (c) DSP. (d) Proposal Flow. (e) Source mask. (f) Target mask. (g) DSP. (h) Proposal Flow.

Figure 7. Examples of dense flow field on PASCAL parts. (a-b) Source images are warped to the target images using the dense correspon-
dences estimated by (c) DSP [29] and (d) Proposal Flow w/ LOM, SS and HOG. (e-f) Similarly, annotated part segments for the source
images are warped to the target images using the dense correspondences computed by (g) DSP and (h) Proposal Flow w/ LOM, SS and
HOG. (Best viewed in color.)

of the art. It shows that proposal flow using LOM outper-
forms other approaches, especially for the IoU score and the
LOC-ERR of dense correspondences. Note that compared
to LT-ACC, these metrics evaluate the matching quality for
the foreground object, separate from irrelevant scene clut-
ter. Our results verify that proposal flow focuses on regions
containing objects rather than scene clutter and distracting
details, enabling robust image matching against outliers.

Matching results on PASCAL parts. We use the dataset
provided by [56] where the images are sampled from the
PASCAL part dataset [7]. We first measure part match-
ing accuracy using human-annotated part segments. For

Table 4. Matching accuracy on the PASCAL VOC classes.

Methods IoU PCK

Congealing [32] 0.38 0.11
RASL [43] 0.39 0.16
CollectionFlow [28] 0.38 0.12
DSP [29] 0.39 0.17
NAM 0.35 0.13
PHM 0.39 0.17
LOM 0.41 0.17

this experiment, we measure the weighted IoU score be-
tween transferred segments and ground truths, with weights
determined by the pixel area of each part (Table 4). To
evaluate alignment accuracy, we measure the PCK metric



(α = 0.05) using keypoint annotations for the 12 rigid PAS-
CAL classes [52] (Table. 4). We use the same set of images
as in the part matching experiment. Proposal flow has an
advantage over existing approaches on images that contain
cluttering elements (e.g., background, instance-specific tex-
ture, occlusion), but in this dataset [56], such elements are
confined to only a small portion of the images, compared
to our benchmark and the Caltech-101 datasets [15]. This
may be a reason that, for PCK performance, our approach
with SS [50] gives similar results to other methods. Figure 7
visualize the part matching results.

For more details about our experiments, see our supple-
mentary material.

6. Discussion
We have presented a robust region-based scene flow

method, called proposal flow, and showed that it can effec-
tively be mapped onto pixel-wise dense correspondences.
We have also introduced the RSF dataset for scene flow, and
shown that it provides a reasonable benchmark for scene
flow evaluation without extremely expensive manual an-
notation of full ground-truth. RSF can be used to evalu-
ate region-based scene flow methods and even pixel-based
ones, and experiments with RSF demonstrate that proposal
flow substantially outperforms existing scene flow methods.
Experiments with Caltech and the VOC parts datasets fur-
ther validate these results.
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