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Singular Optimal Control of a 1-D Parabolic-Hyperbolic

Degenerate Equation

Mamadou Gueye∗, Pierre Lissy †

Abstract

In this paper, we consider the controllability of a strongly degenerate parabolic equation
with a degenerate one-order transport term. Despite the strong degeneracy, we prove a
result of well-posedness and null controllability with a Dirichlet boundary control that acts
on the degenerate part of the boundary. Then, we study the uniform controllability in
the vanishing viscosity limit and prove that the cost of the control explodes exponentially
fast in small time and converges exponentially fast in large time in some adapted weighted
norm. The main tools used are a spectral decomposition involving Bessel functions and
their zeros, some usual results on admissibility of scalar controls for diagonal semigroups,
and the moment method of Fattorini and Russell.

Keywords: degenerate parabolic equations, cost of the control, uniform controllability, de-
generate transport equation.

1 Introduction

Let (ε, T, L,M,α) ∈ (0,+∞)4 × (0, 1). We consider the following degenerate controlled
transport-diffusion equation :

yt − ε(xα+1yx)x +Mxαyx = 0 in (0, L)× (0, T ),

y(0, t) = u(t), y(L, t) = 0 on (0, T ),

y(x, 0) = y0(x) in (0, L).

(1)

The goal of this work is twofold :

(a) At fixed (ε, T, L,M,α) ∈ (0,+∞)4× (0, 1), we prove the well-posedness of (1) in appropriate
interpolation spaces under a structural condition on these parameters. This provides an ex-
ample of strongly degenerate parabolic equation with non-homogeneous Dirichlet boundary
conditions.

(b) We prove the null controllability of (1), and letting ε → 0+, we perform an asymptotic
analysis of the cost needed to control (1). Motivation for studying such singular optimal
control emerges from the field of conservation laws in the context of weak entropy solutions.

Let us explain with more details the last point. Let H be a Hilbert space, that will be
described precisely later on, so that system (1) admits a unique solution for initial conditions in
H. We say that system (1) is null controllable in H at time T with controls in L2(0, T ) if for
any y0 ∈ H there exists u ∈ L2(0, T ) such that y(·, T ) ≡ 0. Assume that (1) is null controllable
in some space H, we denote by U(ε, T, L,M,α, y0) the set of controls u ∈ L2(0, T ) such that
the corresponding solution of (1) satisfies y(·, T ) ≡ 0. Now, we can define the quantity which
measures the cost of the null controllability for the system (1) as follows:

K(ε, T, L,M,α) := sup
‖y0‖H≤1

{
inf{‖u‖L2(0,T ) : u ∈ U(ε, T, L,M,α, y0)}

}
. (2)
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We are interested in the dependence of this cost with respect to ε, T, L,M and α in the vanishing
viscosity limit ε→ 0+. In particular it is interesting to know whether or not this quantity remains
bounded as ε→ 0+. If it is the case, we will say that the system is uniformly null controllable.

To have an insight of how the cost K(ε, T, L,M,α) behaves, it is natural to look at the limit
system when ε→ 0+ : 

yt +Mxαyx = 0 in (0, L)× (0, T ),

y(0, t) = u(t) on (0, T ),

y(x, 0) = y0(x) in (0, L).

(3)

Let us point out that, as for system (1), it is not clear how to define the potential solutions of
(3). The fact that the transport coefficient vanishes at {x = 0} and is not Lipschitz excludes
the use of the standard theory of transport equations. Nevertheless, as for transport equations
with BV coefficients (see [8] and [2]), it remains possible to prove the existence of solutions in a
satisfactory sense. We postpone to Appendix B a definition and the proof of the existence and
uniqueness of a solution to (3) in appropriate spaces, thanks to the method of characteristics.

By regarding the characteristics of (3) (see (100)), it is straightforward to observe that
system (3) is null controllable if and only if T 6 L1−α/((1−α)M). Hence, we may expect that,
as ε→ 0+:

• K(ε, T, L,M,α)→∞ for T < L1−α/((1− α)M),

• K(ε, T, L,M,α)→ 0 for T > L1−α/((1− α)M).

However, proving this kind of result is very difficult even in the non-degenerate case (and
might even be false, cf [7]). Our first main result, which concerns the uniform controllability of
system (1), is the following.

Theorem 1.1. For every (ε, T, L,M,α) ∈ (0,+∞)4 × (0, 1) such that M/ε > α and any y0 ∈
L2((0, 1);x−M/εdx), there exists a control u ∈ L2(0, T ) such that the associated solution to (1)
satisfies y(·, T ) ≡ 0. Moreover, there exists some constant Q(T, L,M,α) > 0 such that, for every
(ε, T, L,M,α) ∈ (0,+∞)4 × (0, 1) with M/ε > α and T verifying

T >
(2
√

6)L1−α

M(1− α)
, (4)

we have

K(ε, α, T, L,M) ≤ exp

(
−Q(T, L,M,α)

ε

)
. (5)

Remark 1.1. Let us remark that this case covers a wide range of initial conditions, notably
every initial condition with compact support or even every initial condition that vanishes faster
than any polynomial, i.e. in

⋂
ε∈(0,M/α) L

2((0, 1);x−M/εdx).

The second main result of this work concerns a lower bound for the cost of controllability in
small time.

Theorem 1.2. There exists some constant R(T, L,M,α) > 0 such that, for every (ε, T, L,M,α) ∈
(0,+∞)4 × (0, 1) with M/ε > α, for ε small enough and T verifying

T <
(0, 98)L1−α

M(1− α)
, (6)

we have

K(ε, α, T, L,M) ≥ exp

(
R(T, L,M,α)

ε

)
. (7)

Null controllability of uniformly parabolic equations in one dimension is by now well under-
stood. In the case where the control is distributed or is acting on a part of the boundary we refer
to [9, 10, 18]. The case of parabolic equations degenerating at the boundary of the domain have
been tackled more recently, using similar methods with new ingredients. The case of distributed
controls or controls acting on a part of the boundary where the equation is non-degenerate, solved
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in [4], is approached using global Carleman estimates (cf. [10]). When the control acts on a part
of the boundary where degeneracy occurs, approximate null controllability was first obtained in
[5] using local Carleman estimates (cf. [18]). Then, this last result has been extended to exact
null controllability in [15], using the moment method (cf. [9]) together with the transmutation
method.

Let us now give a quick overview of some results concerning the study of the uniform control-
lability in singular limits. For more details concerning the exact scope of the existing results, we
refer to the introduction of [24]. The first example of study was given in [7], where the authors
studied the case of a transport-diffusion equation with constant coefficients in the vanishing vis-
cosity limit, with positive or negative speed of propagation. In this paper, the authors proved
that the cost of the control has to explode in small time and decreases exponentially in large
time, however there is still a range of times for which the exact behavior of the cost of the control
is unknown. The study of this simpler case has been continued in [11, 21, 22] (in these two last
articles, a link is notably made between the vanishing viscosity problem and another famous
problem concerning the cost of fast controls for the heat equation) and [24]. Let us also mention
some extensions for varying in time and space speed M in arbitrary space dimension in [14], for
conservation laws in [20] and for vanishing dispersion in [12, 13, 6].

The rest of the paper is organized as follows:

• In section 2.1, we give some notations and set our functional framework.

• In section 2.2, we perform a careful spectral analysis of the degenerate elliptic operator
appearing in (1). As usual for degenerate operators, the eigenfunctions will be expressed
thanks to Bessel functions and the eigenvalues thanks to the zeros of these Bessel functions.

• In section 2.3, we give a well-posedness result for system (1) in appropriate spaces. The
main tools used are the previous spectral decomposition and a result concerning the ad-
missibility of scalar control operators for diagonal semigroups proved in [17].

• In section 3.1, we prove our first Theorem concerning the null controllability and the
exponential decreasing of the cost of the control in large time when ε → 0+. We use the
moment method (see [9]), which requires to study carefully some infinite product involving
the eigenvalues and to exhibit an appropriate multiplier, which will be the one used in [32].

• To conclude, in section 3.2, we prove our second Theorem concerning the explosion of the
cost of controllability in small time when ε → 0+. The main ingredient of the proof is
to consider some “quasi-optimal control” bringing the first eigenfunction of the elliptic
operator to 0 at time T and the use of tools coming from complex analysis (notably an
appropriate representation Theorem for entire functions) in the spirit of [7].

2 Preliminaries

2.1 Functional setting

Here we give some notations and introduce some necessary materials.
We introduce an unbounded operator A : D(A) ⊂ L2((0, L);x−M/εdx) → L2((0, L);x−M/εdx)
given by {

D(A) := { y ∈ Dmax(A)| limx→0,L y(x) = 0 },
∀ y ∈ D(A), A[y](x) := −ε(xα+1yx)x +Mxαyx,

(8)

where

Dmax(A) =
{
u ∈ L2((0, L);x−M/εdx) : u, u′ ∈ ACloc,Au ∈ L2((0, L);x−M/εdx)

}
.

Then, under the structural assumption M/ε > α, it is proven that (A, D(A)) is self-adjoint on
L2((0, L);x−M/εdx) and generates an analytic semigroup of bounded linear operators S(t) (see
[29, section 4]). Besides, there exists a Hilbert basis (Φn)n∈N\{0} of L2((0, L);x−M/εdx) and a
sequence (λn)n∈N\{0} of real numbers, with λn > 0 and λn →∞, such that

AΦn = λnΦn ∀n ∈ N\{0}. (9)
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Now, thanks to the continuous functional calculus, we can introduce appropriate interpolation
spaces for the initial data [31, pp 35-39]. For any s ≥ 0, we define

Hs(0, L) :=

u =
∑

n∈N\{0}

anΦn / ‖u‖2Hs :=
∑

n∈N\{0}

|an|2λsn <∞

 , (10)

and let
H−s(0, L) := [Hs(0, L)]′. (11)

We denote the duality product by 〈·, ·〉H−s,Hs , since the spacial domain will not change. Let us
recall that for f :=

∑
anΦn ∈ H−s and g :=

∑
bnΦn ∈ Hs, it is easy to compute the duality

product 〈f, g〉H−s,Hs by the following formula:

〈f, g〉H−s,Hs =
∑

n∈N\{0}

anbn. (12)

for a time T > 0 and a real number ` we let H`(0, T ) be the usual Sobolev space and we will
use Bochner type spaces H`(0, T ;Hs) (see [26, page 11]).
For any z ∈ Dmax(A) we denote by Oε,M,α(z) the generalized derivative at {x = 0}, that is

Oε,M,α(z) := lim
x→0

xα+1−M/εz′(x). (13)

2.2 Spectral analysis

We aim at giving explicit expression of the eigenfunctions and eigenvalues of the spectral
problem {

A[ϕ](x) = λϕ(x), x ∈ (0, 1),

ϕ(0) = ϕ(1) = 0,
(14)

where A was defined in (8). This is a special case of Sturm-Liouville problem. Indeed, let us
consider the following general case of Bessel equation

x2y′′ + axy′ + (bx` + c)y = 0, x ∈ (0,∞), (15)

where a, b, and c are real numbers and ` 6= 0. Then, referring to [16, Section C, Equation
2.162(1a)] the solutions of (15) can be written as follows:

b 6= 0 : y(x) = x
1
2 (1−a)Zν(κ−1

√
bxκ),

b = 0 : y(x) =

{
C1 x

1
2 (1−a+`ν) + C2 x

1
2 (1−a−`ν) if ν 6= 0,

x
1
2 (1−a)(C1 + C2 log x) if ν = 0,

(16)

where

ν :=
1

`

√
(1− a)2 − 4c , κ :=

`

2
, (17)

and Zν is any Bessel function of order ν (see Appendix A for some results concerning Bessel
functions).

The Sturm-Liouville problem (14) is exactly (15) with

a = α+ 1− M

ε
, b =

λ

ε
, ` = 1− α, c = 0. (18)

Then, from (16) we infer

ϕ(x, λ) = x
1
2 (
M
ε −α)Zν(κ−1

√
λ

ε
xκ), x ∈ (0,∞) , λ ∈ R, (19)

with the real parameters ν and κ defined by

ν := (M/ε− α)/(1− α), κ :=
1

2
(1− α). (20)
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Now, assuming that ε is small enough such that M/ε−α > 0, using the boundary conditions in
(14) one gets

ϕ(x, λn) = x
1
2 (M/ε−α)Jν

(
κ−1

√
λn
ε
xκ

)
, x ∈ (0, 1) , (21)

where
λn := ε(κjν,n)2, n ∈ N\{0}. (22)

Now, using Lemma A.3 we normalize our eigenvectors in the L2((0, 1);x−M/εdx)-norm :

Φn(x) :=
(2κ)

1
2

|J ′ν(jν,n)|
x

1
2 (M/ε−α)Jν (jν,n x

κ) , x ∈ (0, 1). (23)

Let us prove that the family {Φn, n ∈ N\{0}} form an Hilbert basis of L2((0, 1);x−M/εdx)
by checking the Bessel equality. Let f ∈ L2((0, 1);x−M/εdx) and let

an :=

∫ 1

0

f(x)Φn(x)x−M/εdx.

Then, using Lemma A.3 and changing variables twice

∑
n∈N\{0}

|an|2 =
∑

n∈N\{0}

∣∣∣∣∣
∫ 1

0

f(x)
(2κ)

1
2

|J ′ν(jν,n)|
x

1
2 (
M
ε −α)Jν (jν,n x

κ)x−M/εdx

∣∣∣∣∣
2

= κ
∑

n∈N\{0}

∣∣∣∣∫ 1

0

κ−1f(y1/κ)y−(M/ε−α)/2κ+(1−κ)/κ
√

2y

|J ′ν(jν,n)|
Jν (jν,n y) dy

∣∣∣∣2

=

∫ 1

0

κ−1|f(y1/κ)|2y−(M/ε−α)/κ+2(1−κ)/κdy =

∫ 1

0

|f(x)|2x−M/εdx.

Remark 2.1. One can observe that it is crucial in our spectral analysis that M/ε > α, and the
computations above would not work in the case M 6 0. This explains why we are able here to
define boundary Dirichlet conditions at the boundary, contrary to the case where M = 0.

We finish by giving a formula for the generalized derivatives of our eigenfunctions at the
degeneracy point.

Lemma 2.1. We have the following equalities:

lim
x→0

xα+1−M/εΦnx(x) := Oε,M,α(Φn) =
(M/ε− α)(2κ)1/2(jν,n)ν

2ν |J ′ν(jν,n)|Γ(ν + 1)
∀n ∈ N\{0}. (24)

The proof of this Lemma is straightforward using (86) and the recurrence formula (87).

2.3 Well-posedness of the boundary control problem (1)

In this section we make precise what we mean by a weak solution of (1). The functional
setting and the well-posedness are crucial issues in this work. This result could be seen as
an immediate consequence of the admissibility results for diagonal operators and scalar input
control given in [17]. One has to be careful that in [17], the authors consider H−s itself as the
pivot space (which is not our case here since our pivot space is L2((0, L), x−M/ε)) and then the
equivalent of (25) is written using the inner product 〈·, ·〉H−s . Here, we decided to work with the
duality product 〈·, ·〉H−s,Hs(see [26]), however one easily verifies that Theorem 2.2 of [17] can be
easily adapted to this case.

Definition 2.1. Let (ε, T, L,M,α) ∈ (0,+∞)2 × [0, 1) such that M/ε − α > 0, let y0 ∈ H−s,
for some s > 0 and u ∈ L2(0, T ). A weak solution of (1) is a function y ∈ C0([0, T ];H−s) such
that for every τ ∈ (0, T ] and for every zτ ∈ Hs one has

〈y(τ), zτ 〉H−s,Hs =

∫ τ

0

u(t)Oε,M,α(S(τ − t)zτ ) dt+ 〈y0, z(0)〉H−s,Hs . (25)
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Let us give a result of well-posedness for this problem.

Proposition 2.1. Let (ε, T, L,M,α) ∈ (0,+∞)4 × [0, 1) such that M/ε > α, u ∈ L2(0, T ) and
y0 ∈ H−s, such that s ≥ ν − 1/2 where ν = (M/ε−α)/(1−α). Then, the formula (25) defines,
for each τ ∈ [0, T ], a unique element y(τ) ∈ H−s that can be written as

y(τ) = S(τ)y0 +B(τ)u, τ ∈ (0, T ], (26)

Where B(τ) is the strongly continuous family of bounded operators B(τ) : L2(0, T )→ H−s given
by

〈B(τ)u, zτ 〉H−s,Hs =

∫ τ

0

u(t)Oε,M,α(S(τ − t)zτ ) dt, ∀ zτ ∈ Hs. (27)

Moreover, the unique weak solution y on [0, T ] to (1) (in the sense of (25)) belongs to C0([0, T ];H−s)
and verifies

‖y‖L∞([0,T ];H−s) ≤ C(‖y0‖H−s + ‖u‖L2(0,T )). (28)

Proof of Proposition 2.1. Using the fact that for s > 0,

Hs ⊂ L2((0, 1);x−M/εdx) ⊂ H−s,

with dense embeddings, it is clear that

y(τ)− S(τ)y0 = ζ(τ),

where

〈ζ(τ), zτ 〉H−s,Hs =

∫ τ

0

u(t)Oε,M,α(S(τ − t)zτ ) dt, ∀ zτ ∈ Hs. (29)

Then, it suffices to prove that the operator ζ(τ) defined by (29) has a continuous extension to
H−s → L2(0, T ). To do so, let zτ ∈ Hs, such that s > 0, that we expand as follows:

zτ (x) =
∑

n∈N\{0}

bnΦn(x). (30)

We infer
S(τ − t)zτ (x) =

∑
n∈N\{0}

exp{λn(t− τ)}bn Φn(x), ∀ t ∈ [0, τ ]. (31)

Using Lemma 2.1 and Lemma A.4, we obtain∫ τ

0

|Oε,M,α(S(τ − t)zτ )|2 dt =

∫ τ

0

∑
n∈N\{0}

|bn|2
∣∣∣∣ (M/ε− α)(2κ)1/2(jν,n)ν

2νΓ(ν + 1)|J ′ν(jν,n)|
exp{λn(t− τ)}

∣∣∣∣2 dt

(32)
≤ C‖zτ‖Hs ,

as soon as s ≥ ν− 1/2. Then, following the proof of [17, Theorem 2.2], we conclude the proof.

Remark 2.2. We will see in the following that from now on we essentially work with initial con-
ditions belonging to L2((0, L), x−M/ε). This is not a problem since L2((0, L), x−M/ε) ⊂ H−ν+1/2,
so the result of Proposition 2.1 applies with s = ν − 1/2, however one has to be careful that we
will not have that the corresponding solution y belongs to C0([0, T ], L2((0, L), x−M/ε)) but only
to C0([0, T ],H−ν+1/2).

Remark 2.3. In all what follows, it is enough to consider the case L = 1 and M = 1. Indeed,
this is a consequence of the following scaling argument: if y is a solution of (1), then z(t, x) :=
y(L1−αt/M,Lx) is solution of

yt − ε̃(xα+1yx)x + xαyx = 0 in (0, T̃ )× (0, 1),

y(0, t) = u(t), y(1, t) = 0 on (0, T̃ ),

y(x, 0) = y0(x) in (0, 1),

(33)

where T̃ := TM/L1−α and ε̃ := ε/M .
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3 Proof of the Theorems 1.1 and 1.2

3.1 Convergence of the cost of null controllability in large time

During all the proof, we will consider L = 1 and M = 1 (see Remark 2.3). Moreover, for the
sake of simplicity, we will denote by F (ε, T, α) some fractional function of ε, T, α that may vary
from line to line (its behavior is negligible with respect to the exponential terms in ε and T that
will appear).

We are going to proceed as in the seminal work [9], i.e. we will use the moment method (see
also [3]) to solve the controllability problem. This method consists in finding a bi-orthogonal
family {Ψk}k∈N∗ to the family of exponential {e−λk(T−t)}k∈N\{0} on [0, T ], i.e. verifying∫ T

0

Ψk(t)e−λ`(T−t)dt = δk`, k, ` ∈ N∗.

This will enable us to provide an upper bound on the cost of the control. The strategy
to construct such a bi-orthogonal sequence is based on the Paley-Wiener theorem. After some
translation argument that we be given in details later, one can reduce the problem to finding a
bi-orthogonal family {Ψk}k∈N\{0} to {eλkt}k∈N\{0} on [−T/2, T/2].

For the time being, consider Jk the Fourier transform of Ψk. Then, {Ψk}k∈N\{0} is bi-

orthogonal to the family of exponentials {eλkt}k∈N\{0} on [−T/2, T/2] if and only if

Jk(iλ`) = δk`, k, ` ∈ N\{0}.

The first idea to exhibit such a family {Jk}k∈N\{0} could be to consider a single entire function
having simple zeros at {iε(κjν,k)2, k ∈ N\{0}}. Thus, let us begin with exhibiting such an entire
function. The function

Λ(z) :=

+∞∏
k=1

(
1 +

iz

ε(κjν,k)2

)
(34)

has exactly its zeros at these points. Using [33, Chap. XV, Page 498, (3)], we know that

Λ(z) = Γ(ν + 1)

(
2
√
εκ√
iz

)ν
Jν

(
−
√
iz√
εκ

)
. (35)

Let us give some basic properties of this infinite product.

Lemma 3.1. 1. If z ∈ C,

|Λ(z)| ≤ exp

(√
|z|

κ
√
ε

)
. (36)

2. If x ∈ R,

|Λ(x)| ≤ exp

(√
|x|

κ
√

2ε

)
. (37)

Proof of Lemma 3.1: Using (35) and taking into account (85), we infer that

|Λ(z)| 6 e
|=(
√
iz)|√
εκ ,

from which we easily deduce the result, taking into account that
√
i = (1 + i)/2.

Once Λ is given, and because the roots of Λ are exactly the iλk and are simple, the most
natural choice for Jk would be the following:

ψk(z) :=
Λ(z)

Λ′(iλk)(z − iλk)
, k ∈ N\{0}. (38)

However, since the asymptotic given in (37) is optimal at infinity, Φk cannot be in L2 and it
cannot be directly used to obtain a bi-orthogonal family in L2(0, T ) (the Paley-Wiener theorem
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cannot be applied). Nevertheless, we will slightly modify these functions in order to make them
bounded and still of exponential type without perturbing their zeros.

Let us now introduce the multiplier, that is very similar to the one used in [32]. Let θ > 0
and β > 0 to be chosen later, and define

σθ(t) := exp

(
− θ

1− t2

)
,

prolonged by 0 outside (−1; 1), then σθ is analytic on B(0, 1). We call

Hβ(z) := Cθ

∫ 1

−1
σθ(t)e

−iβtzdt, (39)

where

Cθ :=

(∫ 1

−1
σθ(t)dt

)−1
.

In the following, F (β, θ) will denote some fractional function of θ and β that may vary from line
to line. The following result gives the main properties needed for the multiplier.

Lemma 3.2. The function Hβ defined by (39) verifies the following inequalities:

Hβ(ix) ≥ F (β, θ), (40)

|Hβ(z)| 6 F (β, θ)eβ|=(z)|, (41)

Hβ(x) 6 F (β, θ)
√
|x| exp

(
3θ

4
−
√
βθx

)
. (42)

Estimates (40) and (41) directly follow from [32, Page 85], whereas (42) can be easily deduced
from the beginning of [32, Page 86].

We then introduce

Jk(z) := ψk(z)
Hβ(z)

Hβ(iλk)
. (43)

Let us now explain how we choose θ and β. Let δ > 0 be a small parameter. We want to
apply the Paley-Wiener Theorem on the interval [−T/2, T/2], so that after some translation our
control will have its support included in [0, T ]. Hence, we have to choose β close to T/2 and we
set β as follows:

β :=
T (1− δ)

2
. (44)

Now, we want to “compensate” the bad growth of ψ on the real line given by (37) thanks to
the “good” decreasing of the multiplier given in (42), hence we have to choose

√
βθ close to

1/(κ
√

2ε). Taking into account (44), we choose

θ :=
1 + δ

εκ2T (1− δ)
. (45)

Let us give precise estimates on Jk.

Lemma 3.3. For any k ∈ N\{0} the function Jk is of exponential type T/2, Jk ∈ L1(R)∩L2(R)
and verifies

Jk(iλl) = δkl ∀ k, ` ∈ N\{0}, (46)

moreover there exists a constant C > 0 (independant of θ and β) such that

||Jk||L1(R) 6
1

λk|Λ′(iλk)|
F (ε, T, α)e

3
4θ . (47)

Proof of Lemma 3.3.
Using (41) together with (44), (36) and (43), we easily see that Jk is of exponential type T/2.

Moreover, thanks to (43) and (38), Jk verifies (46). Now, we want to estimate the L1−norm of
Jk on the real axis. Using (43), (37), (40) at point −λk, (42), (44) and (45), we infer that

|Jk(x)| 6 C

|Λ′(iλk)(x− iλk)|
(θ + 1)e3θ/4−(1+δ/2)

√
|x|
2ε e

√
|x|
2ε (48)
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We remark that (by using the change of variables t = δ
2

√
x
2ε )∫

R
e−

δ
2

√
|x|
2ε dx 6 Cε. (49)

Using (48) and (49), we deduce that Jk(x) ∈ L1(R) ∩ L2(R) and that (47) holds.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1.

Using Lemma 3.3, we deduce, by applying the version of the Paley-Wiener Theorem given
in [30, Theorem 19.3, Page 370], that Jk is the Fourier-Laplace transform of some function
fk ∈ L2(R) with compact support in [−T/2, T/2]. Let us consider

gn(t) := eTλk/2fk(t− T/2). (50)

gn is supported in [0, T ] and is bi-orthogonal to the family {e−λl(T−t)} because thanks to (46)
we have∫ T

0

gk(t)e−λl(T−t)dt =

∫ T

0

fk(t−T/2)eTλk/2e−λk(T−t)dt =

∫ T/2

−T/2
fk(s)eTλk/2e−λk(T/2−s)ds = δkl.

(51)
We are now able to solve our moment problem. Let us consider some initial condition

y0 ∈ L2(x−
1
ε ), that we decompose in the orthonormal basis given by the Φn:

y0(x) =
∑

n∈N\{0}

anΦn(x). (52)

We set

u(t) :=
∑

n∈N\{0}

− ane
−λnT

Oε,M,α(Φn)
gn(t), (53)

provided that 1/ε > α (see expression (24)). Using (51) and (12), we infer that∫ T

0

u(t)Oε,M,α(Φn)e−λn(T−t)dt = −ane−λnT = −〈y0,Φne−λnT 〉H−s,Hs .

Coming back to the definition given in (25) and taking into account that the solution of −∂tϕ−
Aφ = 0 with final condition ϕT = Φn is exactly Φne−λn(T−t), we deduce that necessarily, the
corresponding solution y of (1) verifies

〈y(·, T ),Φn〉H−s,Hs = 0 for every n ∈ N\{0},

which exactly means that y(·, T ) = 0. Let us now estimate the control u. According to (53), by
using (47), the fact that fn is the Fourier transform of Jn, and (50), we deduce that u ∈ C0([0, T ])
and

||u||∞ 6 F (ε, T, α)
∑

n∈N\{0}

an
|Oε,M,α(Φn)|

1

λn|Λ′(iλn)|
exp

(
3θ/4− λnT/2− βλn/(2

√
θ + 1)

)
.

(54)
Let us estimate |Oε,M,α(Φn)λnΛ′(iλn)|. Using the definition of Λ given in (35), we observe

that

Λ′(iλn) = Γ(ν + 1)

(
2

jν,n

)ν
1

2εκ2jν,n
J ′ν(jν,n), n ∈ N\{0}.

Therefore, using (24) and (22), we deduce that

|Onε,L,M,αλnΛ′(iλn)| = (1/ε− α)(2κ)
1
2 jν,n. (55)

Hence, combining (55) and (54), we deduce that for ε small enough

||u||∞ 6 F (ε, T, α)e
3θ
4

∑
n∈N\{0}

ane
−λnT/2jν,n 6 F (ε, T, α) exp

(
3θ

4
− λ1T/2

)
.
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Using Cauchy-Schwarz inequality and the fact that jν,n > nπ/2, we infer

||u||∞ 6 F (ε, T, α)

 ∑
n∈N\{0}

a2n

 1
2

exp

(
3θ

4
− λ1T/2

)
,

i.e.

||u||∞ 6 F (ε, T, α) exp

(
3θ

4
− λ1T/2

)
||y0||L2((0,1);x−1/εdx). (56)

Using the expression of θ given in (45) and the definition of λ1 given in (22), we deduce that (5)
holds as soon as

3

4εκ2T
−
εTκ2j2ν,1

2
< 0.

Using the inequalities on jν,1 given in Lemma A.2 and taking into account the definition of ν
and κ given in (20), we obtain that (7) holds as soon as

T >
2
√

6

1− α
>

4.9

1− α
. (57)

Remark 3.1. According to the expression of u given in (53), u is of class C∞ and for every
k ∈ N, estimate (56) still holds if we consider the W k,∞-norm instead of the L∞-norm.

3.2 Explosion of the cost of null controllability in small time

During all the proof, we will consider L = 1 and M = 1 (see Remark 2.3). For the sake of
simplicity we will simply denote byK the cost of the controlK(ε, T, 1, 1, α) and by F (ε, T, α) some
fractional function of (ε, T, α) that may vary from line to line. Let (ε, T, α) ∈ (0,+∞)2 × (0, 1)
such that 1/ε > α. Recall that ν and κ are defined in (20). We define y0 ∈ L2((0, 1);x−1/εdx)
as follow:

y0(x) := x
1
2 (1/ε−α)Jν(jν,1x

κ), x ∈ (0, 1). (58)

From Lemma (A.3) we infer∫ 1

0

|y0(x)|2x−1/εdx =

∫ 1

0

x−αJ2
ν (jν,1x

κ)dx =
[J ′ν(jν,1)]2

2κ
. (59)

Let us consider some small parameter η > 0. We consider u ∈ U(ε, T, α, y0) such that (remind
that the quantity K is not necessarily reached for some control u here)

y(·, T ) ≡ 0 and ‖u‖L2(0,T ) ≤ (K + η)‖y0‖L2((0,1);x−1/εdx). (60)

For any n ∈ N\{0}, let us define zn : [0, L]× [0, T ] 7→ R by

zn(x, t) := x
1
2 (1/ε−α)Jν(jν,nx

κ) exp
(
ε(κjν,n)2(t− T )

)
, (x, t) ∈ (0, 1)× (0, T ). (61)

Then, it is not difficult to check that zn(t) ∈ Hs for any s ≥ 0 and

− znt − ε(xα+1znx )x + xαznx = 0, (x, t) ∈ (0, 1)× (0, T ), (62)

zn(0, t) = 0, zn(1, t) = 0, t ∈ (0, T ). (63)

Moreover, from (25) we get, for some s ≥ ν − 1/2,

〈y0, zn(0)〉H−s,Hs = −
∫ T

0

u(t)Oε,1,α(zn)(t)dt. (64)

Then, using (59), (64), Lemma (A.3) and Lemma 2.1, we get that for all n ∈ N\{0}

(1/ε− α)(jν,n)ν

2νΓ(ν + 1)

∫ T

0

u(t) exp
(
ε(κjν,n)2t

)
dt = −δ1n

[J ′ν(jν,1)]2

2κ
. (65)
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Next we introduce the function v : C→ C defined by

v(s) :=

∫ −T/2
−T/2

u

(
t+

T

2

)
e−istdt, s ∈ C. (66)

Then, it is not difficult to see from (65) and (66) that we have

v(iε(κjν,n)2) = 0 if n ∈ N\{0, 1} (67)

and

v(iε(κjν,1)2) = − 2νΓ(ν + 1)[J ′ν(jν,1)]2

(1− α)(1/ε− α)(jν,1)ν
exp

(
−ε(κjν,1)2T

2

)
. (68)

On the other hand, we readily have

|v(s)| ≤ exp

(
T |=(s)|

2

)∫ T

0

|u(t)|dt ≤ (K + η)T 1/2 exp

(
T |=(s)|

2

)∥∥y0∥∥
L2((0,1);x−1/ε)

dx. (69)

Let us introduce the function f : C→ C defined by

f(s) := v

(
s− iδ
ε

)
, s ∈ C, (70)

for some δ > 0 that will be chosen later on. Then, it is not difficult to see that f is an entire
function satisfying

f(ak) = 0, k ∈ N\{0, 1}, with ak := i
(
(εκjν,k)2 + δ

)
, k ∈ N\{0}. (71)

Moreover, thanks to (68) and (69) we infer

f(a1) = − 2νΓ(ν + 1)[J ′ν(jν,1)]2

(1− α)(1/ε− α)(jν,1)ν
exp

(
−ε(κjν,1)2T

2

)
(72)

and

log |f(s)| ≤ T |=(s)− δ|
2ε

+ log

(
(K + η)T 1/2 |J ′ν(jν,1)|√

2κ

)
. (73)

Before going further let us recall the following representation theorem [28, p. 56].

Theorem 3.1. Let g(z) be an entire function of exponential type and suppose that∫ +∞

−∞

log+ |g(x)|
1 + x2

dx <∞. (74)

Denote by {b`}`∈N the set of zeros of g(z) lying in =(z) > 0 (each zero being repeated according
to its multiplicity). Then, for =(z) > 0

log |g(z)| = A=(z) +

∞∑
`=1

log

∣∣∣∣z − b`z − b`

∣∣∣∣+
=(z)

π

∫ +∞

−∞

log |g(s)|
|s− z|2

ds, (75)

where

A = lim sup
y→+∞

log |g(iy)|
y

.

We apply Theorem 3.1 to the function f defined in (70) and we obtain

log |f(a1)| =
(
(εκjν,1)2 + δ

)
T

2ε
+

∞∑
`=2

log

∣∣∣∣a1 − a`a1 − a`

∣∣∣∣+
=(a1)

π

∫ +∞

−∞

log |f(s)|
|s− a1|2

ds. (76)

Thanks to (71), and the fact that =(a`) > 0 for ` ∈ N\{0, 1} we have
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∞∑
`=2

log

∣∣∣∣a1 − a`a1 − a`

∣∣∣∣ =

∞∑
`=2

log

(
(εjν,`)

2 − (εjν,1)2

2δ/κ2 + (εjν,1)2 + (εjν,`)2

)

≤
∞∑
`=2

1

jν,`+1 − jν,l

∫ jν,l+1

jν,l

log

(
ε2x2

2δ/κ2 + ε2x2

)
dx

≤ 1

π

∫ ∞
jν,2

log

(
ε2x2

2δ/κ2 + ε2x2

)
dx, (77)

where we have used Lemma A.2. Now, we make the change of variables

τ =
εκ√
2δ
x,

then performing integration by parts we obtain
√

2δ

εκ

∫ ∞
εκjν,2/

√
2δ

log

(
τ2

1 + τ2

)
dτ

= −jν,2 log

(
1

1 + 2δ/(εκjν,2)2

)
− 2

√
2δ

εκ

∫ ∞
εκjν,2/

√
2δ

1

1 + τ2
dτ

= −jν,2 log

(
1

1 + 2δ/(εκjν,2)2

)
− 2

√
2δ

εκ

(π
2
− tan−1

(
εκjν,2/

√
2δ
))

.

Thus, we get for any (ε, T, α) ∈ (0,+∞)2 × (0, 1) such that 1/ε > α that

∞∑
`=2

log

∣∣∣∣a1 − a`a1 − a`

∣∣∣∣ ≤ −
√

2δ

εκ
+
jν,2
π

log
(
1 + 2δ/(εκjν,2)2

)
+

2
√

2δ

εκπ
tan−1

(
εκjν,2/

√
2δ
)
. (78)

On the other hand, straightforward computations using (73) give for some C > 0

=(a1)

π

∫ +∞

−∞

log |f(s)|
|s− a1|2

ds ≤ Tδ

2ε
+ log

(
(K + η)T 1/2 |J ′ν(jν,1)|√

2κ

)
+ C. (79)

At this point, we have for any δ > 0 and some C > 0 independent of (ε, T, α)

log

(
2νΓ(ν + 1)[J ′ν(jν,1)]2

(1− α)(1/ε− α)(jν,1)ν

)
− ε(κjν,1)2T

2
≤
(
(εκjν,1)2 + δ

)
T

2ε
+

2
√

2δ

εκπ
tan−1

(
εκjν,2/

√
2δ
)

−
√

2δ

εκ
+
jν,2
π

log
(
1 + 2δ/(εκjν,2)2

)
+
Tδ

2ε
+ log

(
(K + η)T 1/2 |J ′ν(jν,1)|√

2κ

)
+ C. (80)

Taking the exponential in (80), we obtain

exp

(
−(ε(κjν,1)2 +

δ

ε
)T +

√
2δ

εκ
− jν,2

π
log
(
1 + 2δ/(εκjν,2)2

)
− 2
√

2δ

εκπ
tan−1

(
εκjν,2√

2δ

))

≤ F (ε, T, α)(K + η)
|J ′ν(jν,1)|(jν,1)ν

2νΓ(ν + 1)
. (81)

Using Lemma A.2 and making use of the definition of ν in (20), we obtain

jν,n ∼
1

ε(1− α)
as ε→ 0+, n = 1, 2.

Hence, for ε small enough one gets from (81) that (remind the definition of κ given in (20))

exp

(
1

ε

(
−T

4
− δT +

2
√

2δ

1− α
− ln(1 + 8δ)

(1− α)π
− 4

√
2δ

(1− α)π
tan−1(

1

2
√

2δ
)

))

≤ F (ε, T, α)(K + η)
|J ′ν(jν,1)|(jν,1)ν

2νΓ(ν + 1)
. (82)
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However, there is a hidden leading coefficient in the right hand side of (82). Indeed, Using
Lemma A.4 and the Stirling formula (see for example [1, 6.1.39]), we see that

2νΓ(ν + 1)

|J ′ν(jν,1)|(jν,1)ν
∼ F (ε, T, α)

(
2

e

)ν
as ε→ 0+. (83)

We deduce, using (83) together with (82), that

exp

(
1

ε

(
ln(2)− 1

1− α
− T

4
− δT +

2
√

2δ

1− α
− ln(1 + 8δ)

(1− α)π
− 4

√
2δ

(1− α)π
tan−1(

1

2
√

2δ
)

))
≤ F (ε, T, α)(K + η). (84)

Finally, by taking η small enough, we deduce(7) holds as soon as

ln(2)− 1

(1− α)
− T

4
− δT +

2
√

2δ

(1− α)
− ln(1 + 8δ)

(1− α)π
− 4

√
2δ

(1− α)π
tan−1(

1

2
√

2δ
) > 0,

i.e.

T <
4(−π + 2π

√
2δ − 4

√
2δtan−1( 1

2
√
2δ

) + π ln(2)− ln(1 + 8δ))

(1− α)π(1 + 4δ)
.

Maximizing the right-hand side with respect to δ and taking a numerical approximation of the
maximum (reached for δ ' 1.37), we infer the result.

Appendix

A Bessel functions

Bessel functions of order ν are solutions of the differential equation

x2
d2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0, x ∈ (0,∞).

The Bessel functions Jν of the first kind that are finite at the origin, the Bessel functions Yν
of the second kind, that are linearly independent of Jν . Only the first type of Bessel functions
will be relevant to our analysis.

It is possible to define the Bessel functions of the first kind by their Taylor series expansion
around x = 0 (see [33] for various way to define the Bessel functions)

Jν(x) =
∑
m≥0

(−1)m

m! Γ(m+ ν + 1)

(x
2

)2m+ν

, x ≥ 0, (85)

where Γ(·) is the Gamma function. In particular, for ν ∈ R\{−N∗} and 0 < x ≤
√
ν + 1, from

(85) one can obtain (see [1, 9.1.7, p. 360]):

Jν(x) ∼ 1

Γ(ν + 1)

(x
2

)ν
as x→ 0+. (86)

Besides, Bessel functions of the first kind satisfy the recurrence formula [1, 9.1.27]:

xJ ′ν(x)− νJν(x) = −xJν+1(x). (87)

Let us now recall the following well-known asymptotic behavior of Bessel function Jν

Lemma A.1. [19, Lemma 7.2, p.129] For any ν ∈ R

Jν(x) =

√
2

πx

{
cos
(
x− νπ

2
− π

4

)
+O

(
1

x

)}
as x→∞. (88)

The function Jν , for ν ≥ −1, has an infinite number of real zeros jν,1 < jν,2 < · · ·, all of
which are simple, with the possible exception of x = 0. We have the following informations on
the location of the zeros of the Bessel functions Jν :
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Lemma A.2. [19, Proposition 7.8] Let ν ≥ 0.

1. The difference sequence (jν,n+1 − jν,n)n converges to π as n→ +∞.

2. The sequence (jν,n+1− jν,n)n is strictly decreasing if |ν| > 1
2 , strictly increasing if |ν| < 1

2 ,
and constant if |ν| = 1

2 .

3. For ν large enough, one has

ν + ν
1
3 < jν,1 < ν + 4ν

1
3 ;

The Bessel functions enjoy the following orthogonality property in [0, 1].

Lemma A.3. For any ν ≥ −1/2, (see [27, ]):∫ 1

0

xJν(jν,nx)Jν(jν,mx)dx =
δnm

2
[J ′ν(jν,n)]2. (89)

(89)allow to prove that the family{ √
2y

|J ′ν(jν,n)|
Jν (jν,n y)

}
n∈N\{0}

forms an orthonormal basis of L2(0, 1).

Lemma A.4. For any ν ≥ 0 and any n ∈ N\{0} we have

√
jν,n|J ′ν(jν,n)| =

√
2

π
+On→∞

(
1

jν,n

)
. (90)

The proof of this result is left to the reader using Lemma A.1 and the recurrence formula(87).

B The Transport equation

Let T > 0, L > 0 and α ∈ (0, 1) . We aim at giving a meaning to the following transport
equation: 

yt +Mxαyx = 0 in (0, L)× (0, T ),

y(0, t) = u(t) on (0, T ),

y(x, 0) = y0(x) in (0, L).

(91)

In all what follows, a function defined on some subset of R will always be extended on R by 0.
We define the following spaces of regular functions :

Cα([0, T ]× [0, L]) := {g ∈ C0([0, T ]× [0, L])|gt ∈ C0([0, T ]× [0, L]), xαgx ∈ C0([0, T ]× [0, L])}
(92)

and

Sα((0, T )× (0, L)) := W 1,1((0, T ), L1(0, L)) ∩ L1((0, T ),W 1
α(0, L)), (93)

where
W 1
α(0, L) := {ϕ ∈ L1(0, L)|(xαϕ)x ∈ L1(0, L)}.

One observes that functions g ∈ Sα((0, T )× (0, L)) are notably such that

xαg ∈ C0([0, L], L1(0, T )), g ∈ C0([0, T ], L1(0, L)). (94)

We will assume from now on that

y0 ∈ L∞(0, L), u ∈ L∞(0, T ). (95)

14



If y ∈ Cα([0, T ] × [0, L]) and verifies (91) everywhere, then necessarily y0 ∈ C0([0, L]),
u ∈ C0([0, T ]) and y0(0) = u(0). Then, for every ϕ ∈ Sα((0, T ) × (0, L)), one has, using
integrations by parts and (95),

−
∫ T

0

∫ L

0

y(ϕt + (xαϕ)x)dxdt+

∫ T

0

y(L, t)Lαϕ(L, t)dt−
∫ T

0

u(t){xαϕ(x, t)}|x=0dt

+

∫ L

0

y(x, T )ϕ(x, T )dx−
∫ L

0

y0(x)ϕ(x, 0)dx = 0.

This computation justifies the following definition:

Definition B.1. A weak solution of the Cauchy problem (91) is a function y ∈ L∞((0, T ) ×
(0, L)) such that, for every ϕ ∈ Sα((0, T )× (0, L)) verifying moreover

ϕ(L, ·) = 0 in (0, T ), (96)

ϕ(·, T ) = 0 in (0, L), (97)

one has

−
∫ T

0

∫ L

0

(ϕt + (xαϕ)x)ydxdt−
∫ T

0

u(t){xαϕ(x, t)}|x=0dt−
∫ L

0

y0(x)ϕ(x, 0)dx = 0. (98)

We are now going to prove the following well-posedness result for the Cauchy problem (91):

Theorem B.1. The Cauchy Problem (91) has a unique weak solution verifying moreover

||y||L∞((0,T )×(0,L)) 6 max (||y0||L∞(0,L), ||u||L∞(0,L)) (99)

Proof of Theorem B.1. One can compute explicitly the characteristics curves of (91): let
x0 ∈ (0, L), the solutions of the ordinary differential equation{

x′ = xα,

x(0) = x0

are given in the following way for every t ∈ R:

x(t) = (x1−α0 + (1− α)t)
1

1−α , t > − x
1−α
0

1− α
, x(t) = 0, t 6 − x

1−α
0

1− α
. (100)

Remark B.1. We remark that the characteristic curves intersect (and are even mixed up), but
only for x = 0. There is some hope to use these characteristic curves to exhibit some solutions
because for every point in (0, T ) × (0, L), there exists a unique characteristic curve coming to
that point.

Existence. we consider

y(t, x) := y0
((
x1−α − t(1− α)

) 1
1−α
)

+ u

(
(t− x1−α

1− α

)
. (101)

One readily verifies that y ∈ L∞((0, T ) × (0, L)). Let us know introduce (y0n)n∈N a sequence
of functions in C1

0 ([0, L]) converging to y0 in L∞(0, L) for the weak-* topology and (un)n∈N a
sequence of functions in C1

0 (0, T ) converging to u in L∞(0, T ) for the weak-* topology. Let

yn(t, x) := y0n

((
x1−α − t(1− α)

) 1
1−α
)

+ un

(
t− x1−α

1− α

)
. (102)

yn is differentiable with respect to t, xα∂xyn has a meaning at every point (t, x), and one has

∂tyn(t, x) = −(x1−α + (1− α)t)
α

1−α y0n
′
(

(x1−α − t(1− α))
1

1−α

)
+ u′n

(
t− x1−α

1− α

)
= −xα∂xyn(t, x).
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This implies that yn satisfies (91) in the classical sense and one verifies that y ∈ Cα([0, T ]×[0, L]).
From equality (102), we obtain

||yn||L∞((0,T )×(0,L)) 6 max(||y0n||L∞(0,L), ||un||L∞(0,T )).

Since the sequences (y0n)n∈N and (un)n∈N converge for weak-* L∞-topology, theses sequences are
bounded for the strong L∞-topology. This implies that (yn) is bounded in L∞((0, T )× (0, L)),
hence, up to some subsequence yn *⇀y in the weak-* L∞-topology.

The only thing that remains to prove is that y is a weak solution of (91). Using that for
all n, yn is a weak solution of (91), we obtain that for every ϕ ∈ Sα((0, T ) × (0, L)) verifying
moreover (96) and (97),

−
∫ T

0

∫ L

0

(ϕt + (xαϕ)x)yndxdt−
∫ T

0

un(t)(xαϕ(t, x))|x=0dt−
∫ L

0

y0n(x)ϕ(0, x) = 0.

One can make n → ∞ in this equality (see notably (94)). We obtain that y is a weak solution
of (91).

Uniqueness. Let y1 and y2 be two solutions of (91) (with initial condition y0 and boundary
condition u) and let us consider y := y1 − y2. y is a weak solution of

yt + xαyx = 0 in (0, T )× (0, L),

y(0, x) = 0 in (0, L),

y(t, 0) = 0 in (0, T ).

(103)

We want to prove that necessarily y ≡ 0. Using (103) and (98), necessarily for every ϕ ∈
Sα((0, T )× (0, L)) verifying (96) and (97),

−
∫ T

0

∫ L

0

(ϕt + (xαϕ)x)ydxdt = 0. (104)

Let us consider some Φ ∈ C∞0 ((0, T )×(0, L)). We want to solve the following backward problem:
zt + (xαz)x = Φ in (0, T )× (0, L),

z(T, x) = 0 in (0, L),

z(t, L) = 0 in (0, T ).

(105)

We define a solution of (105) in the following way:

z(t, x) = −
∫ T−t

0

(x1−α + (1− α)(T − t− r))
α

1−α

xα
Φ(T − r, (x1−α

+ (1− α)(T − t− r))
1

1−α )dr.

One readily verifies that z verifies (96) and (97). What is not clear is whether z ∈ Sα((0, T ) ×
(0, L)). One has for every t and x

|z(t, x)| 6 C(T, L)||Φ||∞
xα

,

which implies that z ∈ L1((0, T )× (0, L)). Since Φ ∈ C∞0 ((0, T )× (0, L) and z verifies (105) in
D′((0, T )× (0, L), as soon as (xαz)x ∈ L1((0, T )× (0, L), we have zt ∈ L1((0, T )× (0, L). Let us
compute

(xαz)x(t, x) = −
∫ T−t

0

αx−α(x1−α + (1− α)(T − t− r))
2α−1
1−α )Φ(T − r, (x1−α

+ (1− α)(T − t− r))
1

1−α )dr −
∫ T−t

0

x−α(x1−α + (1− α)(T − t− r))
2α

1−α )

Φx(T − r, (x1−α + (1− α)(T − t− r))
1

1−α )dr.
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For α > 1/2 we have

| −
∫ T−t

0

αx−α(x1−α + (1− α)(T − t− r))
2α−1
1−α )Φ(T − r, (x1−α + (1− α)(T − t

− r))
1

1−α )dr| 6 C(T, L)||Φ||∞x−α,

and for α 6 1/2 we have

| −
∫ T−t

0

αx−α(x1−α + (1− α)(T − t− r))
2α−1
1−α )Φ(T − r, (x1−α + (1− α)(T − t

− r))
1

1−α )dr| 6 C(T, L)||Φ||∞xα−1.

We also have

| −
∫ T−t

0

x−α(x1−α + (1− α)(T − t− r))
2α

1−αΦx(T − r, (x1−α + (1− α)(T − tr))
1

1−α )dr|

6 C(T, L)||Φx||∞x−α,

so that (xαz)x ∈ L1(0, T ). We deduce that in both cases (xαz)x ∈ L1((0, T )×(0, L)). We deduce
that z ∈ Sα((0, T )× (0, L)) as wanted, and the desired result follows.
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[20] M. Léautaud, Uniform controllability of scalar conservation laws in the vanishing viscosity limit, SIAM, J.
Control Optim. 50, 1661-1699, 2012.

[21] Lissy, P., A link between the cost of fast controls for the 1-D heat equation and the uniform controllability
of a 1-D transport-diffusion equation. C. R. Math. Acad. Sci. Paris 350 (2012), no. 11-12, 591-595.

[22] Lissy, P., An application of a conjecture due to Ervedoza and Zuazua concerning the observability of the heat
equation in small time to a conjecture due to Coron and Guerrero concerning the uniform controllability
of a convection-diffusion equation in the vanishing viscosity limit , Systems and Control Letters 69 (2014),
98-102.

[23] Lissy, P., On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space
Dimension SIAM J. Control Optim., 52(4), 2651-2676.

[24] Lissy, P., Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations,
and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation, J.
Differential Equations 259 (2015), no. 10, 5331-5352.

[25] L. Lorch and M. E. Muldoon, Monotonic sequences related to zeros of Bessel functions, Numer. Algor. (2008)
49:221–233.

[26] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Springer Berlin,
1972.

[27] F. W. J. Olver, Asymptotics and special functions, New York, Academic Press, 1974.

[28] Koosis P., The logarithmic integral I & II, Cambridge Studies in Advanced Mathematics 12 (1988) & Cam-
bridge Studies in Advanced Mathematics 21 (1992), Cambridge University Press, Cambridge.

[29] G. Metafune and D. Pallara, Trace Formulas for Some Singular Differential Operators and Applications,
Math. Nachr. 211 (2000), 127-157.

[30] Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, 1966.

[31] H. Tanabe, Equations of evolution, Pitman, London, 1979; English transl., Iwanami, Tokyo, 1975.

[32] G. Tenenbaum and M. Tucsnak, New blow-up rates for fast controls of Schrodinger and heat equations. J.
Differential Equations 243 (2007), no. 1, 70-100.

[33] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, England,
1958.

18


	Introduction
	Preliminaries
	Functional setting
	Spectral analysis
	Well-posedness of the boundary control problem (1)

	Proof of the Theorems 1.1 and 1.2
	Convergence of the cost of null controllability in large time
	Explosion of the cost of null controllability in small time

	Bessel functions
	 The Transport equation

