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Partial chiral symmetry-breaking as a route to spectrally isolated topological defect
states in two-dimensional artificial materials
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Bipartite quantum systems from the chiral universality classes admit topologically protected zero
modes at point defects. However, in two-dimensional systems these states can be difficult to separate
from compacton-like localized states that arise from flat bands, formed if the two sublattices support
a different number of sites within a unit cell. Here we identify a natural reduction of chiral symmetry,
obtained by coupling sites on the majority sublattice, which gives rise to spectrally isolated point-
defect states, topologically characterized as zero modes supported by the complementary minority
sublattice. We observe these states in a microwave realization of a dimerized Lieb lattice with next-
nearest neighbour coupling, and also demonstrate topological mode selection via sublattice-staggered
absorption.

Keywords: Topological materials, symmetries, defect states, flat bands, Dirac points, Lieb lattice, mode
selection

I. INTRODUCTION

Symmetry-protected zero modes are an ubiquitous fea-
ture of quantum systems exhibiting nontrivial topologi-
cal phases. In electronic systems, such phases appear
in normal-conducting systems with a chiral or modified
time-reversal symmetry, as well as in superconducting
systems where they are due to the charge-conjugation
symmetry and may open routes for topological quantum
computation [1–3]. Practical realizations of topological
modes also abound in artifical photonic materials [4],
where they enable robust unidirectional transport [5–8] in
analogy to the quantum hall effect and topological insu-
lators [9–15]. More generally, zero modes can be created
by topological defects and interfaces [16–21], and display
anomalous features [22–25] that can be exploited, e.g., for
topological mode selection [26]. In all these settings, the
topological considerations invoke a combination of sym-
metry with the dimensionality of the bulk and the defects
[27, 28]. In particular, a two-dimensional system con-
strained only by conventional time-reversal symmetry is
topologically trivial [29]. The corresponding zero modes,
spatially localized at line or point defects, are usually not
protected. To obtain nontrivial stationary features, these
implementations therefore have to break or modify time-
reversal symmetry or rely on system designs that display
an additional charge-conjugation or chiral symmetry.

Chiral symmetries are appealing as they emerge natu-
rally in bipartite lattices [30, 31] and place the systems
into the same universality class as represented by super-
conductors coupled to strong topological insulators [1–
3], meaning that they can support robust zero modes
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localized at point defects [28], which can carry a frac-
tional charge [32–36]. The anomalous behaviour of zero-
modes originally identified in the setting of continuum
and lattice field theories [37–39] then manifests itself in
a finite sublattice polarization [30, 31], while all finite-
energy states have an equal weight on both sublattices.
As an intriguing consequence, many bipartite lattices of
interest, such as the Lieb lattice presented in Fig. 1(a),
exhibit flat bands of zero modes supported by one of the
two sublattices (the majority sublattice, which contains
more sites per unit cell than the complementary minor-
ity sublattice). These flat bands provide a competing
source of (compacton-like) localized states that are de-
generate with any point-defect zero mode [40–47], and
also modify constraints on the number of band touchings
and Dirac points exhibited by the symmetric dispersive
bands of propagating states [30, 31, 42–44], as illustrated
in Fig. 1(c).

Here, we describe how one can spectrally isolate
the point-defect states arising in this setting from the
compacton-like states of the flat band. This can be
achieved by a well-defined reduction of the chiral sym-
metry on the majority sublattice, which detunes the
compacton-like states due to their finite sublattice polar-
ization (imbalanced weight on the sublattices). This sit-
uation, which we express as a partial chiral symmetry, is
realized most naturally in the context of two-dimensional
systems, where point-defect states residing on the minor-
ity sublattice can be formed when Dirac cones are lifted
[see Fig. 1(d)]. The hybridization of the point-defect
states with the compacton-like states can then be pre-
vented by breaking the chiral symmetry on the majority
sublattice, which moves the flat band away from the chi-
ral symmetry point in the spectrum, as seen in Fig. 1(e).
This leaves behind a spatially localized zero mode sup-
ported by the minority sublattice, on which the chiral
symmetry remains operational.
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FIG. 1. (a) Lieb lattice with dimerized couplings u, u′,
v, v′, and next-nearest-neighbour couplings w, w′, w′′, w′′′

that reduce the chiral symmetry. This lattice realizes a cen-
tered dimerization defect (gray zones). (b) Picture of the
experimental microwave realization of the dimerized Lieb lat-
tice. The white bar corresponds to 12 mm. (c-e) Dis-
persion relation of the infinite system. The localized zero
mode (with Re k− fixed to the M point, red dot) becomes
spectrally isolated as one passes from (c) uniform couplings
u = v = u′ = v′ = 1 over (d) dimerized couplings u =
v = 4/3, u′ = v′ = 2/3, gapping out the extended states,
to (e) additional next-nearest-neighbour couplings w = 0.4,
w′ = w′′′ = 0.2, w′′ = 0.1, gapping out the flat band. The
inset in (e) shows the vicinity of the M point.

We first develop a general description of this par-
tial chiral symmetry, and then focus on its concrete
experimental implementation in a dimerized microwave
Lieb lattice with next-nearest neighbor couplings [see
Fig. 1(b)]. We observe that the point-defect zero mode
displays the expected symmetry-protection against a re-
stricted class of disorder, while generic disorder only af-
fects it very weakly. As an application, we demonstrate
that the finite sublattice polarization of the point-defect
state can be exploited for mode selection, which we here
achieve by inducing absorption onto the majority sublat-
tice.

II. CONCEPT AND METHODS

A. Partial chiral symmetry

We first describe our main concept, the formation
and spectral isolation of stable defect states against a
background of flat bands, in the general context of two-
dimensional bipartite lattices [30, 31]. Such systems con-
sist of two sublattices (A sites and B sites) that are cou-
pled together to result in the following off-diagonal Bloch

Hamiltonian (see the Appendix for further details),

h(k) =

(
0 tAB(k)

tBA(k) 0

)
, Eϕ = hϕ, ϕ =

(
ϕA
ϕB

)
.

(1)

Here tAB(k) = t†BA(k) describes the coupling of the A
sites to the B sites, whose amplitudes are collected into
vectors ϕA and ϕB . The coupling term tAB(k) is thus
an nA × nB matrix whose dimensions are given by the
count of sublattice sites in the unit cell. We set nA ≥ nB
and identify the A and B sites with the majority and
minority sublattice, respectively. Generically, there are
then nA−nB zero modes for any wavevector k, given by
the solutions of tAB(k)ϕA = 0 while ϕB = 0. These dis-
persionless states constitute the sublattice-polarized flat
bands. They are complemented by 2nB dispersive bands
of extended states that occur in pairs of opposite ener-
gies, while the Bloch wavefunctions carry equal weight
on both sublattices. All of these features are intimately
linked to the chiral symmetry, τzh(k)τz = −h(k), where
the Pauli matrix τz acts in sublattice space; in particular,
only the zero modes display a finite sublattice polariza-
tion P = |ϕA|2 − |ϕB |2.

As k is varied over the Brillouin zone, the dispersive
bands can touch at E = 0, meaning that they cross
the flat band. This corresponds to situations where the
columns of tAB(k) become linearly dependent of each
other. We focus on scenarios where this happens at
discrete Dirac points k = kp (p integer). If a Dirac
point occurs at real k, one finds two additional zero
modes, obtained by the degeneracy of the finite-energy
states as k → kp. Exploiting that these states are
related by τz, they can be combined into a mode ϕ+

on the majority sublattice, as well as a mode ϕ− on
the minority sublattice—which then obeys ϕ−,A = 0,
tAB(kp)ϕ−,B = 0. We now aim to spatially confine and
spectrally isolate the state ϕ−.

In order to create, as a first step, spatially localized
variants of this mode, we have to consider situations
where the Dirac point is lifted, so that it lies in the com-
plex k-plane and describes evanescent zero modes. We
identify three important features of these modes: (i) they
appear in pairs of distinct wave vectors k±, (ii) they are
supported by opposite sublattices, and (iii) in a finite
geometry, only one of them can be compatible with the
boundary conditions. In detail, the mode ϕ+ localized
on the majority sublattice corresponds to the case of lin-
early dependent rows of tBA(k+), while the mode ϕ− lo-
calized on the minority sublattice corresponds to linearly
dependent rows of tAB(k−). As tBA(k) = [tAB(k∗)]†, the
complex wave vectors k+ and k− = k∗+ are distinct and
describe states that decay into opposite directions. In a
finite system, the mode ϕ+ is automatically compatible
with the boundary conditions if the system is terminated
on the majority sublattice, while for ϕ− this is the case
for termination on the minority sublattice—the sites just
beyond the boundary then lie on the sublattice where the
amplitude of the mode vanishes. This zero mode is then
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exponentially localized around a corner of the system,
and retains its finite sublattice polarization P = ±1.

To move this localized zero mode to an arbitrary po-
sition within the system, we can create a crossing of line
defects that join four regions, in which the mode decays
as one moves away from the resulting point defect, as il-
lustrated in Fig. 1(a). The matching conditions are then
automatically met if the interface is formed by the ap-
propriate sublattice.

Recall that this zero mode can still hybridize with the
flat band. The flat band can now be gapped out by in-
troducing symmetry-breaking terms tAA (but not tBB)
into Eq. (1), leading to a Bloch Hamiltonian of the form

h(k) =

(
tAA(k) tAB(k)
tBA(k) 0

)
. (2)

Note that this Bloch Hamiltonian fulfills

[τzh(k)τz]BB = [−h(k)]BB , (3)

which we take as the formal definition of a partial chiral
symmetry. While the final configuration does not ex-
hibit a global chiral symmetry, the symmetry is thus still
operational on the minority sublattice, and if the point-
defect mode was localized on this sublattice neither its
wavefunction nor its energy are affected. This then leaves
behind a spectrally isolated and spatially localized zero
mode supported by the minority sublattice.

B. Experimental realization for a Lieb lattice

The regular Lieb lattice [31] consists of a square sub-
lattice B, with additional sites A1 and A2 (forming the
A sublattice) placed into the unit cell [gray rectangle
in Fig. 1(a)] so that they subdivide each horizontal or
vertical edge. This regular lattice has recently been re-
alized in photonic lattices, allowing to directly observe
the compacton-like states [40, 41]. Figure 1(a) shows
a dimerized version of the Lieb lattice (with a central
defect obtained as discussed below), and Fig. 1(b) its
experimental implementation. This consists of an ar-
ray of 65 microwave cylindrical resonators (5 mm height,
8 mm diameter) made of ZrSnTiO (refractive index 6),
placed between two metallic plates [top plate not shown
in Fig. 1(b)].

The resonators possess a bare resonance at ν0 = 6.65
GHz, which is well isolated within a large frequency in-
terval, and are coupled via the evanescent field, with a
distance-dependence that has been characterized in de-
tail in Refs. [48, 49]. If we denote by Ψ0 the wavefunc-
tion associated to the resonance, the z-component of the
magnetic field reads (see [49], Eq. (4), for the complete
expression of the field) Bz(r, z) = B0 sin

(
π
hz
)

Ψ0(r) with

Ψ0(r) =

{
J0(γjr) inside,

αK0(γkr) outside,
(4)

where Ψ0(0) = 1. Here J0 and K0 are Bessel functions,
r is the distance from the center of the resonator, γj =√(

2πν0n
c

)2 − (πh)2, and γk =

√(
π
h

)2 − ( 2πν0c )2
(n de-

noting the refractive index). Recall that far from the ori-
gin, K0(x) is essentially approximated by exp(−x)/

√
x.

The coupling energy between two adjacent discs de-
pends on the disc separation d and can be described,
accordingly to Eq. (4), by a modified Bessel function

|K0(γkd/2)|2 [50]. As one infers from in Fig. 1(a,b), in
the Lieb lattice the dominant coupling is between near-
est neighbors (u, u′, v, v′), but next-nearest neighbor
couplings of sites on the A sublattice [represented by w,
w′, w′′ and w′′′ in Fig. 1(a)] are appreciable, while direct
couplings on the B sublattice are negligible.

Using a vectorial network analyzer, the reflected signal
S11 at position r1 is measured by adequately positioning
a movable loop-antenna. From the amplitude and phase
of S11 measured over a given frequency range, we have
direct access to the local density of states (LDOS)

ρ(r1, E) ∝ |S11(E)|2

〈|S11|2〉E
ϕ′11(E), (5)

where 〈. . .〉E indicates an average over the whole acces-
sible frequency spectrum, ϕ11 = Arg(S11) is the phase
of the reflected signal, and ϕ′11 denotes its derivative
with respect to the frequency. The density of states
(DOS) is obtained by averaging over all positions r1.
Moreover, our set-up allows us to visualize the wavefunc-
tion associated with each eigenfrequency. According to
the definition of the local density of states ρ(r1, E) =∑
n |Ψn(r1)|2δ(E − En), the resonance curve exhibits a

maximum whose value is related to the intensity of the
wavefunction at the specific position r1. The intensity
distribution for the wavefunction associated with each
individual eigenfrequency thus becomes directly accessi-
ble.

III. RESULTS

A. Detection of defect states

Figures 1(c-e) show the predicted evolution of the band
structure with the couplings, obtained by diagonaliz-
ing the corresponding Bloch Hamiltonian (see the Ap-
pendix for details). Figure 1(c) corresponds to the sit-
uation of a regular Lieb lattice with uniform couplings
u = v = u′ = v′ = 1 and w(i) = 0. The band struc-
ture consists of a flat band of states supported by the
A sublattice and two dispersive bands of extended states
touching at a conical Dirac point, positioned at the M
point K0 = (π, π). As shown on Fig. 1(d), by introduc-
ing dimerized couplings u = v = 4/3, u′ = v′ = 2/3,
a gap 2∆, with ∆2 = (u − u′)2 + (v − v′)2, opens up
between the dispersive bands, while the flat band and
the point-defect state remain fixed at zero energy. This
corresponds to a virtual Dirac point at k± = K0 ± iA,
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FIG. 2. Experimental results for the microwave realization of
the partial chiral dimerized Lieb lattice, with a defect state
localized in the corner (a-c) or in the center (d-f). (a,d) Den-
sity of states, with the point-defect zero mode shaded in light
gray and the flat band shaded in dark grey. (b,e) Spatial dis-
tribution of the zero mode. (c,f) Spatial distribution of the
flat band.

with A = [ln(u/u′), ln(v/v′)]. Additional next-nearest-
neighbour couplings w = 0.4, w′ = w′′′ = 0.2, w′′ = 0.1
make the flat band dispersive and move it to finite ener-
gies (|E| ≥ |w+w′′−w′−w′′′| ≡ ∆0), while also breaking
the symmetry of the dispersive bands, but do not affect
the defect state, as shown in Fig. 1(e). Without further
modification, this defect would be localized around the
top right corner of the system; as illustrated in Fig. 1(a),
the defect state can then be moved along the edges and
into the bulk by creating dimerization line defects sepa-
rating regions where the role of u and u′ or v and v′ are
interchanged.

Figure 2 shows the experimental results for configura-
tions where the point defect sits at the corner [Fig. 2(a-c)]
or at the center [Fig. 2(d-f)] of the system. Fig. 2(a) and
(d) show the corresponding density of states (DOS). In
agreement with the scenario proposed in this paper, the
next-nearest neighbor couplings break the symmetry of
the extended bands and isolate the zero mode (light gray
zone) from the original flat band (dark gray zone), which
now spreads over the whole system but remains mainly
confined to the A sublattice [Fig. 2(c), (f)]. As expected,
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FIG. 3. Results for disordered dimerized Lieb lattices with
a central defect state. (a,c) Experimental density of states,
with the point-defect state shaded in light gray. (b,d) Ex-
perimental spatial distribution of the zero mode. In (a,b)
the disorder fulfills the condition (6) while in (c,d) the dis-
order is generic. In both experiments the disorder strength
is W = 0.175. (e,f) Numerical results for generic disorder
(W = 0.1 blue circles, W = 0.25 red dots) with couplings of
the pristine system given by u = v = 4/3, u′ = v′ = 2/3,
w = 0.4, w′ = w′′′ = 0.2, w′′ = 0.1 [58]. Panel (e) shows the
energy levels En in ascending order, while panel (f) shows the
weights PB of the eigenstates on the B sublattice (the corre-
sponding sublattice polarization is P = 1− 2PB). The defect
state is again shaded in light gray.

the state associated with the spectrally isolated peak dis-
plays a spatially localized profile with intensity confined
to the B sublattice [Fig. 2(b),(e)].

B. Robustness against symmetry-preserving and
generic disorder

By construction, the created defect state is insensitive
to any disorder in the couplings w,w′, w′′, w′′′. Disorder
in the couplings u, u′, v, v′ modifies the wavefunction, but
does not affect its energy or sublattice polarization as
long as each plaquette fulfills the constraint

unmv
′
nmu

′
nm+1vn+1m = vnmu

′
nmunm+1v

′
n+1m, (6)

with couplings enumerated by the unit-cell index of the
corresponding A sites [see Fig. 1(a)]. In the continuum
limit, where the displacementA of the virtual Dirac point
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can be interpreted as an imaginary vectorpotential, this
condition amounts to a vanishing pseudomagnetic field
induced by the deformation, ∇×A = 0.

Figure 3(a) shows the experimental DOS of a dimerized
Lieb lattice with a central defect and disorder that re-
spects the constraint (6). The disordered positions were
generated on the level of the tight-binding model, where
the couplings u′nm ∈ [(1−W )u′, (1 +W )u′], vnm ∈ [(1−
W )v, (1+W )v], v′nm ∈ [(1−W )v′, (1+W )v′] were chosen
randomly from box distributions with W = 0.175, while
the couplings unm were determined from the constraint
(6). These couplings were then translated into a compati-
ble configuration of random displacements, which also in-
troduces disorder into the couplings w(i). The disks were
then placed accordingly. In comparison with Fig. 2(d),
we see that the disorder is sufficiently strong to mix the
extended states, but does not affect the energy of the zero
mode, which remains spectrally isolated. Furthermore,
the spatial distribution of this mode shown in Fig. 3(b)
exhibits the same localization as observed for the nondis-
ordered lattice in Fig. 2(e).

Encouragingly for practical applications, the defect
state remains well isolated and localized also for generic
disorder. In Fig. 3(c,d), this is confirmed experimentally
for disorder of the same strength W = 0.175, obtained
by generating displaced positions of the disks as before
but ignoring the constraint (6). As such disorder is still
correlated (displacing a disk modifies several couplings
systematically), we also carried out numerical calcula-
tions in which all couplings were randomly perturbed.
As shown in Fig. 3(e), the spectral isolation of the de-
fect state remains intact even at larger values of disor-
der; furthermore, the defect state remains predominantly
localized on the B sublattice, as shown in Fig. 3(f).

This robustness can be understood as an added bene-
fit from the spectral isolation and sublattice polarization
of the defect state, as this automatically suppresses its
sensitivity to generic coupling disorder in a perturbative
treatment. Due to the sublattice polarization, the dis-
order only contributes from the second order, where en-
ergy levels further repel. Condition (6) leaves only one
effective disorder freedom per plaquette, so that the rel-
evant matrix elements only become comparable to the
spectral isolation energy ∆0 when the disorder is size-
able (W & 0.5 under the conditions investigated here).
An equivalent amount of onsite disorder, which breaks
the original chiral symmetry, has a stronger effect on the
spectral isolation, but only weakly affects the sublattice
polarization as the matrix elements relevant for the lead-
ing order again vanish. The latter type of disorder is
small in all experiments.

C. Mode selection

The partial chiral symmetry remains intact if one in-
cludes a possibly inhomogeneous onsite potential on the
A sublattice. This includes the choice of an imaginary
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FIG. 4. (a) Picture of the experimental set-up realizing a
dimerized Lieb lattice with identical absorption on the A sites,
again configured to support a defect state at the center. (b)
Density of state of the regular system. (c) Density of state of
the disordered system [same configuration as in Fig. 3]. The
absorption suppresses the flat-band and extended states, but
does not suppress the defect state, which remains localized
(insets).

onsite potential that corresponds to absorption, in gener-
alization of non-hermitian PT -symmetric optics [51–57].
In absence of the next-nearest neighbour couplings, the
extended states remain sublattice-balanced for γ < 2∆
and decay according to ImE = −γ/2; the states from
the flat band decay twice as fast (ImE = −γ), while
the point-defect state stays pinned at E = 0 and thus
remains unaffected. In the presence of additional ampli-
fication, this corresponds to a topological mechanism of
mode selection for lasing [23, 24]. In our experiments, we
implement the absorption by placing elastomer patches
on the top of each A site [26], thus inducing a uniform
absorption on the A sublattice. The selection mecha-
nism can be clearly seen in Fig. 4 where two situations
are investigated. Fig. 4(a,b) shows the effect of the ab-
sorption on a dimerized Lieb lattice with central defect
[same configuration as in Fig. 2(d)], while Fig. 4(c) corre-
sponds to the disordered system shown in Fig. 3(a,b). In
both cases, the original flat band and the two dispersive
bands are considerably suppressed, while the zero mode
is not affected both spectrally as well as in its spatial
distribution. Therefore, absorption on the A sublattice
can be used to further enhance the spectral isolation of
the defect state.

IV. CONCLUSIONS

In summary, we showed that a partial breaking of chi-
ral symmetry can be employed to stabilize and isolate
point-defect zero modes in two-dimensional bipartite sys-
tems with flat bands. Remarkably, the point-defect zero
mode resides on the sublattice with the smaller number
of sites (the minority sublattice), and thus displays a sub-
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lattice polarization with an opposite sign to the flat-band
states, which reside on the majority sublattice. The flat
band states can then be removed by breaking the symme-
try on the majority sublattice, without any effects on the
point-defect zero mode. As we demonstrated experimen-
tally in a microwave realization of a dimerized Lieb lat-
tice with next-nearest neighbour couplings, the remain-
ing zero mode is spectrally isolated and spatially local-
ized. These features increase the robustness of the state,
which in this setting is useful for applications in photonic
mode shaping and guiding, including for arrays of cou-
pled waveguides where lattices are designed to govern the
propagation dynamics. The sublattice polarization also
provides a route to mode selection via loss imbalance,
which can be extended to laser settings where they sim-
plify the mode competition. In artificial two-dimensional
flat-band materials, the partial symmetry-breaking de-
scribed here provides a practical mechanism to design
robust defect states with a unique mode profile and con-
trollable spectral isolation.
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Appendix A: Conventional and partial chiral
symmetry in finite systems

In the main text we focus on Bloch Hamiltonians
and take care of boundary conditions by exploiting the
anomalous sublattice polarization of the evanescent zero-
mode Bloch waves. To prepare a more detailed discus-
sion of the Lieb lattice, we first describe the notions of
a conventional chiral and partial chiral symmetry in the
context of general (possibly finite and non-periodic) bi-
partite lattices.

Such systems still consist of two sublattices (A sites
and B sites). The chiral symmetry is realized when
these sublattices are coupled together to result in an off-
diagonal Hamiltonian, corresponding to real-space tight-
binding equations

Eψ = Hψ, H =

(
0 TAB

TBA 0

)
, ψ =

(
ψA
ψB

)
.

(A1)

Here TAB = T †BA describes the coupling of the A sites to
the B sites, whose amplitudes are collected in the vectors
ψA and ψB . The Hamiltonian possesses a chiral sym-
metry, τzHτz = −H, where the Pauli matrix τz acts in
sublattice space.

In a finite system with NA A sites and NB B sites, TAB
is an NA × NB-dimensional matrix. We set NA ≥ NB
and call the A and B sites the majority and minority sub-
lattice, respectively. Generically, the system then pos-
sesses NA − NB sublattice-polarized zero modes, given
by the solutions of the under-determined linear system
TBAψA = 0 while ψB = 0 [30, 31]. The chiral symme-
try enforces that the remaining 2NB states occur in pairs
with energy E and −E, and furthermore all possess equal
weight on both sublattices, |ψA|2 = |ψB |2 = 1/2, hence a
vanishing sublattice polarization |ψA|2 − |ψB |2 = ψ†τzψ.
The states in each pair are related by τz, corresponding
to a sign change of the amplitude on the minority sublat-
tice. Their vanishing sublattice polarization then follows
from the identity

ψ†(Hτz)ψ = −ψ†(τzH)ψ ⇒ Eψ†τzψ = −Eψ†τzψ.
(A2)

As we have shown in the main text, the presence of
real or virtual Dirac points allows to increase the zero-
mode count by two, with one mode ψ+ supported by the
A sublattice and the other mode ψ− supported by the
B sublattice. This occurs in the general setting when
columns of TAB are linearly dependent of each other.
The degeneracy of these modes can now again be lifted
by introducing terms TAA into the Hamiltonian,

H =

(
TAA TAB
TBA 0

)
. (A3)

This reduces the chiral symmetry to

[τzHτz]BB = [−H]BB , (A4)

which we again can take as the definition of a partial
chiral symmetry. This modification does not affect both
the energy as well as the wavefunction of the zero mode
ψ− on the B sublattice, but generically affects all other
states—the finite-energy states just as much as the zero
modes localized on the A sublattice, including ψ+.

Appendix B: Lieb lattice

We here give a detailed discussion of the formation
of the defect state in the dimerized Lieb lattice, first in
the tight-binding description and then in the continuum
limit.

1. Tight-binding description

The dimerized Lieb lattice with nearest-neighbour cou-
plings is reproduced in Fig. 5. In the tight-binding de-
scription, each site X = A1, A2 or B in a given unit cell
provides a basis state |Xn,m〉, with the cells enumerated
by a pair of integers n,m. The tight-binding Hamiltonian
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FIG. 5. (a) The top panel shows a finite Lieb lattice with dimerized couplings u, u′, v, v′, as well as next-nearest-neighbour
couplings w, w′, w′′, w′′′ that reduce the chiral symmetry. The circle highlights the site in the top right corner, around which
the defect state is localized if u > u′ and v > v′ (the site is then only coupled by the weak links). The middle row shows
the energy levels En (blue filled circles), in ascending order, and the weights PB (red filled circles) of the eigenstates on the B
sublattice, for u = v = 4/3, u′ = v′ = 2/3, w = 0.4, w′ = w′′′ = 0.2, w′′ = 0.1. The bottom panel shows the spatial distribution
of the isolated zero mode, which is only supported by the B sublattice (PB = 1). (b) The lattice with a vertical dimerization
line-defect (gray). Now the defect state is localized around the circled site at the top edge, where again all couplings are weak.
(c) The lattice with two dimerization line-defects (gray) that cross in the center of the system, again resulting in a site that
only has weak couplings. The defect state is now localized around this central site. (d) Results for the Lieb lattice without
dimerization, with u = v = u′ = v′ = 1 and w = w′ = w′′ = w′′′ = 0.5. The zero mode is now extended, and more fragile to
hybridization with the other states in the system.

is then given by

H =
∑
nm

[(
unm|Bn,m〉+ u′nm|Bn+1,m〉

)
〈A1;n,m|

+
(
vnm|Bn,m〉+ v′nm|Bn,m+1〉

)
〈A2;n,m|

+
(
wnm|A2;n,m〉+ w′nm|A2;n+1,m〉

+w′′nm|A2;n+1,m−1〉+ w′′′nm|A2;n,m−1〉
)

×〈A1;n,m|
]

+ h.c. (B1)

For the infinitely periodic system with unm = u etc.,
we can seek solutions in the form of a Bloch wave

|ψ(k)〉 =
∑

X=A1,A2,B

∑
nm

eik·(n,m)ϕX(k)|Xn,m〉, (B2)

which results in the Bloch eigenvalue problem Eϕ = hϕ,

h(k) = U(kx)|A1〉〈B|+ V (ky)|A2〉〈B|+W (k)|A1〉〈A2|
+h.c.,

|ϕ(k)〉 = ϕA1
(k)|A1〉+ ϕA2

(k)|A2〉+ ϕB(k)|B〉,
U(kx) = u+ u′eikx , V (ky) = v + v′eiky ,

W (k) = w + w′eikx + w′′eikx−iky + w′′′e−iky , (B3)

where we set the lattice constant a ≡ 1.
For the well-studied case of identical nearest-neighbour

couplings u = u′ = v = v′ and w(i) = 0, the corre-
sponding band structure consists of a flat band of states
|ϕ0(k)〉 ∝ V (−ky)|A1〉 − U(−kx)|A2〉 localized on the A
sublattice, and a conical dispersion relation

E2 = |U(kx)|2 + |V (ky)|2 (B4)

of extended states, with a Dirac point at the M point
K0 = (π, π) in the corner of the Brillouin zone. The
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two degenerate extended states at the Dirac point can
be combined into a sublattice-polarized states |ϕ+〉, lo-
calized on the A sublattice, and |ϕ−〉 = |B〉, where
the latter corresponds to a real-space wavefunction with
|ψ−〉 =

∑
nm(−1)nm|Bn,m〉. This state is compatible

with the boundary conditions in finite systems termi-
nated on the B sublattice, as used in the main text and
also shown in Fig. 5.

To see how this state becomes confined by a dimer-
ization pattern (alternating couplings u, u′ along the x
direction and v, v′ along the y direction), we first confirm
from Eq. (B4) that this opens a gap 2∆ for the extended
states, with ∆2 = E2(K0) = (u − u′)2 + (v − v′)2. The
state |ϕ−〉 still survives as a state with a complex wave
number k± = K0 ± i(lnu/u′, ln v/v′), according to the
analytical continuation of the Dirac point into the com-
plex plane. The corresponding real-space wavefunction

|ψ−〉 =
∑
nm

(−u/u′)n(−v/v′)m|Bn,m〉 (B5)

still vanishes on the A sublattice, while on the B sublat-
tice it now has an exponentially varying envelope. In a
rectangular finite system, this state remains compatible
with the boundary conditions if the system terminates
on the B sublattice, and then localizes around a corner
of the system. We choose an orientation so that this is
the top right corner (this corresponds to u > u′ > 0,
v > v′ > 0 and can always be achieved by a rotation of
the system and redefinition of the unit cell), as indicated
in Fig. 5(a).

To confirm that the state |ψ−〉 can be moved along the
edges and into the bulk, we consider line defects sepa-
rating regions where the role of u and u′ or v and v′ are
interchanged, see Fig. 5(b,c). Along a vertical line de-
fect, we encounter A sites that are coupled by u′ both
to the right and to the left, while along a horizontal line
defect they are coupled by v′ both to the bottom and to
the top. We denote by n = m = 0 the crossing point
of two such line defects, or the point where a single line
defect meets the upper or right boundary. This results
in a point-defect state with real-space wavefunction

|ψ−〉 =
∑
nm

(−u/u′)|n|(−v/v′)|m||Bn,m〉, (B6)

which now is exponentially localized into all directions.
Arbitrary next-to-nearest neighbour couplings w(i) be-
tween A1 and A2 sites break the symmetry of the ex-
tended bands and introduce a dispersion to the flat band,
which moves away to finite energies, as illustrated in Fig.
1 of the main text. However, as a consequence of the
partial chiral symmetry, the energy and wavefunction of
the point-defect state (B6) remains unchanged.

These statements are verified by the numerical results
in the middle and bottom row of Fig. 5. In each case, we
find a spectrally isolated zero mode that is localized on
the B sublattice, and exhibits the expected spatial profile
(B6).

a b c

FIG. 6. Disordered Lieb lattices in presence of disorder
with strength W = 0.25, represented in real space where
larger distances d correspond to weaker couplings t. As for
the experiment we use an exponential distance-dependence
t ∝ exp(−d/d0), but choose d0 to make the disorder more
visible. Panels (a,b) show configurations that obey the con-
straint (6) (generated as described in the main text), while
panel (c) shows a configuration with unconstrained disorder.

By construction, the point-defect state (B6) is insen-

sitive to any disorder in the couplings w
(i)
nm. From the

condition TABψB = 0, we can further verify that disor-
der in the couplings unm, u

′
nm, vnm, v

′
nm does not affect

the energy or sublattice polarization of the state as long
as each plaquette fulfills the constraint (6). Compatible
types of disorder include quasi-one-dimensional disorder
in which the hoppings unm, u

′
nm only depend on the unit-

cell index n while the hoppings vnm, v
′
nm only depend on

the unit-cell index m. As described in the main text, the
constraint also allows for much richer disorder configu-
rations, two of which are illustrated in Fig. 6(a,b), while
Fig. 6(c) shows a case of generic disorder.

While we focussed on the implementation of the point-
defect state in a photonic setting, we remark that is also
interesting to consider this system in an electronic con-
text. In the ground state the single-particle states are
then occupied according to the Pauli principle up to a
Fermi energy EF . From a simple counting argument [35],
we then find that a uniform charge density at finite filling
requires a half-population of the point-defect state. At
Fermi energy EF = 0±, the state thus serves as a frac-
tional charge ±1/2 against a uniform background density
on the minority sublattice. This resembles the situation
for a Z4 vortex in a dimerized square lattice (which does
not display a flat band) [35, 36].

2. Topological characterisation in the continuum
limit

An important paradigm of a dimerized system with
topologically protected point-defect zero modes is the
Su-Schrieffer Heeger (SSH) model [33], which consists of
a one-dimensional tight-binding chain with alternating
couplings

H =
∑
n

(u|An〉+ u′|An−1〉)〈Bn|+ h.c. (B7)

Here we give an interpretation of the dimerized Lieb
lattice as a two-dimensional generalization of the SSH
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model. This connection is most usefully established in
the continuum limit, which sheds further light on the
topological features of the system.

For the SSH model, the continuum limit is obtained
by a gauge transformation |A〉 → eikx/2|A〉, followed by
a gradient expansion in kx → π − i∂x. This results in a
massive Dirac Hamiltonian, the Jackiw-Rebbi model [32]
with

Eψ = Hψ, H = iv0σx∂x −mσy, ψ =

(
ψA(x)
ψB(x)

)
,

(B8)
where m = u′−u and v0 = (u+u′)/2. For constant mass
m, the dispersion relation is given by E2 = m2 + v20k

2
x.

When two regions of opposite mass are joined together,
m(x) = M sgnx with M > 0, one finds an exponentially
localized defect mode of the form ψA(x) = 0, ψB(x) ∝
exp(−|x|M/v0).

For the dimerized Lieb lattice, we obtain the contin-
uum limit from the Bloch Hamiltonian (B3) by per-
forming the gauge transformation |A1〉 → eikx/2|A1〉,
|A2〉 → eiky/2|A2〉 and expanding around k → K0 − i∇.
We then obtain a massive Dirac Hamiltonian

H = HX +HY +HXY , (B9)

HX = ivXλ4∂x −mXλ5, (B10)

HY = ivY λ6∂y −mY λ7, (B11)

HXY = mXY λ1 + iλ2(ṽX∂x + ṽY ∂y), (B12)

where λi are the Gell-Mann matrices. The effective ve-
locities are vX = (u + u′)/2 and vY = (v + v′)/2,
as well as ṽX = (−w − w′ + w′′ + w′′′)/2 and ṽY =
(w − w′ − w′′ + w′′′)/2, while the masses are given by
mX = u′ − u, mY = v′ − v, mXY = w − w′ + w′′ − w′′′.

This model recovers the low-energy part of the band
structure. In absence of the couplings w(i), we obtain a
flat band of zero modes on the majority sublattice, and
dispersive bands with E2 = m2

X + m2
Y + v2Xk

2
x + v2Y k

2
Y .

For the system with a vertical dimerization line-defect as
in Fig. 5(b), mX(x) = MX sgnx with MX = u− u′ > 0,
so that the sign of the mass changes at the interface. This
creates a conduction channel within the gap of extended
states, described by exponentially confined modes

|ψ〉 ∝ e−
MX
vX
|x|
e−ikyy

×
[
|B(x, y)〉+

imY − vY ky
E

|A2(x, y)〉
]
, (B13)

which form two symmetric bands with E2 = m2
Y + v2Y k

2
y.

The channel is thus described by a Jackiw-Rebbi model
for the transport along y.

Within this channel, an additional line defect parallel
to the x axis should therefore produce a point-defect zero-
mode that decays exponentially in all directions. We can
verify this directly. For a central dimerization defect as
in Fig. 5 (c), the effective masses are given by mX(x) =
MX sgnx and mY (y) = MY sgn y, with MX = u−u′ > 0
and MY = v − v′ > 0. While [HX ,HY ] 6= 0, we have
([HX ,HY ])BB = 0, so that the point-defect zero mode
on the minority sublattice can be obtained by separation
of variables,

|ψ−(x, y)〉 ∝ e−
MX
vX
|x|
e
−MY

vY
|y||B(x, y)〉. (B14)

This indeed corresponds to the continuum limit of the
tight-binding solution (B6). We can again verify directly
that this state is not affected by the symmetry-breaking
terms HXY .

Thus, within the continuum limit the point-defect state
can be associated with a nontrivial background mass
pattern in the system. Note that when this mass pat-
tern is smoothed out, the mass-gap order parameter
mX(r) + imY (r) has a non-trivial topology, with a fi-
nite winding number as one encircles the origin along a
closed loop. This observation establishes an additional
connection to systems with charge fractionalization [34].

We conclude by identifying the continuum interpreta-
tion of the constraint (6). In the tight-binding model, the
position of the virtual Dirac point can be written as k± =
K0± iA, where the displacement A = [ln(u/u′), ln(v/v′)]
can be interpreted as an imaginary pseudo vector poten-
tial (in analogy to the description of strained graphene).
We then can rewrite Eq. (6) as

Ay;n+1,m−Ay;n,m = Ax;n,m+1−Ax;n,m → ∂xAy = ∂yAx,
(B15)

therefore ∇ × A = 0. Thus, the constraint on the dis-
order can be naturally interpreted as the condition of a
vanishing deformation-induced pseudomagnetic field.
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[52] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6,
192 (2010).

[53] A. Regensburger, C. Bersch, M.-A. Miri, G. On-
ishchukov, D. N. Christodoulides, and U. Peschel, Nature
(London) 488, 167 (2012).

[54] L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B.
Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer,
Nat. Mater. 12, 108 (2013).

[55] T. Eichelkraut, R. Heilmann, S. Weimann, S. Stützer, F.
Dreisow, D. N. Christodoulides, S. Nolte, and A. Szameit,
Nat. Commun. 4, 2533 (2013).

[56] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang,
Science 346, 972 (2014).

[57] H. Hodaei, M.-A. Miri, M. Heinrich, D. N.
Christodoulides, and M. Khajavikhan, Science 346,
975 (2014).

[58] The numerical data are openly available at
https://dx.doi.org/10.17635/lancaster/researchdata/118


