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Outputs analysis and dual immersion method

for chaotic systems.

K.A.A. Langueh, O. Datcu, J-P Barbot, G. Zheng and K. Busawon ∗

December 5, 2015

Abstract

When secure data transmission is implemented through chaotic
systems, the choice of the output is a preliminary problem. In this
paper, the quality of the transmitted information is analysed with
respect to the observability concept, for each potential output. More-
over, in order to overcome observability loss, a dual immersion tech-
nique is proposed.The use of high order sliding mode observer on a
well known Lorenz system, allows to highlight the well founded of the
proposed analysis and method.
Keywords: Chaotic systems, Observability, Singularity, Immersion,
Secure data transmission.

1 Introduction

Since the works of Pecora and Caroll [19], it is well known that two chaotic
systems can be synchronized. Following this fact, many authors have pro-
posed secure data transmission schemes (see for example [5, 1, 17]) based
on the synchronization of chaotic systems. Nevertheless, the output choice

∗K.A.A Langueh is with QUARTZ Laboratory EA 7393, ENSEA, 6 Avenue du Pon-
ceau, 95014 Cergy-Pontoise, O. Datcu is with Politehnica University of Bucharest, Faculty
of Electronics, Telecommunications, and Information Technology and QUARTZ Labora-
tory, IPGP, ENSEA, 6 Avenue du Ponceau, 95014 Cergy-Pontoise, J-P. Barbot is with
QUARTZ Laboratory EA 7393, ENSEA, 6 Avenue du Ponceau, 95014 Cergy-Pontoise,
EPI Non-A, INRIA. G. Zheng is with EPI Non-A INRIA, Lille, Nord-Europe and K.
Busawon is with Northumbria University, Newcastle, UK.

1



with respect to the synchronization, at the best of our knowledge, is less
analyzed (see for example [13, 9]). In [18] Marels and Nijmeijer draw the
link between unidirectional synchronization and observation. This allows to
use the control system theory to analyze the synchronization of chaotic sys-
tems. Nevertheless, as chaotic systems are always nonlinear systems, linear
control system theory can’t be directly applied to such systems. This is due
to the fact, for example, basic properties as stability, controllability and ob-
servability are generally local for nonlinear systems. It is the reason why in
[11] local observability concepts and criteria are introduced. These lead to
determine an observability singularity set [9]. This set is only constituted of
‘forbidden’ states (i.e. state which are unobservable). In this paper, starting
from the results introduced in [11] and other recent works [13, 9] an analysis
of the “best” output for secure data transmission is realized on the basic
Lorenz circuit. It is important to mention that the observability analysis
with respect to the output choice is only a preliminary step in the design of
data secure transmission scheme. After that, many other problems occur,
such as the choice of the ciphering method, the input choice,the method for
retrieving information (see for example [6, 12]),... Moreover, when an output
is chosen, it may exist an observability singularity set, which leads to lose
information in some part of the state space. Hereafter it is proposed a solu-
tion, based on the immersion technique, to overcome this problem under very
weak conditions. It is important to mention that, since the work of [22, 21],
the immersion technique was extensively used in the observer design context.
Nevertheless, this is usually used to recover the linearity property by diffeo-
morphism and output injection [3, 4, 24, 23], but generally with only a local
diffeomorphism. In the majority of the mentioned papers, immersion was
accomplished by adding a dynamic by means of output integration [3]. The
stability of such extra dynamics can be problematic and an elegant solution
is proposed in [23]. Nevertheless the problem of observability singularity was
not tackled. A dual immersion technique using only extra differentiations is
proposed in this paper. This method is close to the one proposed in [2], in
another context. Moreover, for stability arguments it is chosen, in this paper,
to impose exponentially stable dynamics instead of constant dynamics. The
proposed approach is feasible thanks to the finite time differentiators as for
example the one proposed in [7] (but for this method, the delay appears due
to the data acquisition frame) or High Order Sliding Mode (HOSM) [15, 8].

The paper is organized as follows: in the next section some observability
concepts, symbolic observability index and observability singularity defini-
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tions are recalled and the problem statement is explained in the framework
of Lorenz system. In section III, the dual immersion method is presented.
After that, some recalls on HOSM differentiator are given in section IV. In
section V, simulation examples, with respect to Lorenz system, are given.
The paper ends with some conclusions and perspectives.

2 Some recalls and problem statement

Consider the following autonomous system:

ẋ = f(x)

y = h(x) (1)

where x ∈ R
n is the state, and y ∈ R is the output. f and h are supposed

to be C∞ vector fields. Rougthly speaking, in [11] in order to determine if
or not the system (1) is observable (weakly locally observable) Hermann and
Krener have introduced the following condition:

Proposition 1 The system (1) is weakly locally observable if

Rank{dO(∞)} = n (2)

where

dO(∞)|x0 =





















dh
...

dLn−1
f h
...

dLn+k
f h
...





















|x0

(3)

In (3) Li
fh =

∂Li−1

f
h

∂x
f is the usual Lie derivative and dLi

fh =
(

∂Li
f
h

∂x1
,
∂Li

f
h

∂x2
, ...,

∂Li
f
h

∂xn

)

is the associated 1-form.

Remark 1 If the system (1) is linear, then the weakly locally observability
implies the classical global observability. Moreover, due to the Cayley Hamil-
ton theorem, it is sufficient to compute the n first rows of dO(∞) (denoted
dO(n)).
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Starting, from this linear argument and the fact that it is natural to design an
observer of the same dimension that the original system in [20] the concept
of regularly weakly locally observability was introduced. Roughly speaking,
only the n− 1 output derivatives are considered for recovering all the state.
This leads to the following condition:

Proposition 2 The system (1) is regularly weakly locally observable if

Rank{dO(n)} = n (4)

with

dO(n)|x0 =







dh
...

dLn−1
f h







|x0

(5)

Since dO(n)|x0 is only of full rank n around x0, this implies that there might
exist some x̄ ∈ R

n such that rank dO(n)|x̄ < n. Due to this fact, let us define
the following observability singularity set:

Sn = {x ∈ R
n : rank {dO(n)|x} < n} (6)

In this case, for the purpose of removing the singularities in O(n)|x defined
in (6), it is necessary to increase the dimension of (5) by involving more
derivatives of the output. This will be the purpose of the next section, but
before, an example of the output choice is given hereafter.

Example 1 Let us consider the Lorenz system

ẋ1 = σ(x2 − x1)

ẋ2 = rx1 − x2 − x1x3 (7)

ẋ3 = −bx3 + x1x2

Where x = [x1, x2, x3]
T ∈ R

3 is the state. Moreover, the parameter are cho-
sen as follow σ = 10, r = 28 and b = 8

3
.

Case 1: The output y = x1

For this output dO(3)|x is equal to

dO(3)|x =





1 0 0
−σ σ 0

σ(r + σ − x3) −σ(σ + 1) −σx1





|x

(8)

4



−20
−15

−10
−5

0
5

10
15

20

−30

−20

−10

0

10

20

30

0

10

20

30

40

50

Figure 1: Lorenz attractor and the map S3

and then
S3 = {x ∈ R

3 : x1 = 0}

On the figure 1 it is shown that the set of observability singularity intersect
the strange attractor. In fact the observability property is lost because only
two derivatives of the output y = x1 are considered. Nevertheless, if the third
derivative is also considered dO(4)|x becomes:

dO(4)|x =









1 0 0
−σ σ 0

σ(r + σ − x3) −σ(σ + 1) −σx1
A B C









|x

(9)

where A = −σ[σ2 + rσ(2σ+1) + 2x1x2 − (2σ+ b+ 1)x3], B = σ[σ2 + σ(r+
1) + 1− x2

1 − σx3] and C = σ[(2σ + b+ 1)x1 − σx2]. Then, the observability
singularity set is:

S4 = {x ∈ R
3 : x1 = x2 = 0}

this set does not intersect the strange attractor, see figure 2. Moreover, it is
important to note that on S4, the system (7) is stable and consequently its
behaviour is not chaotic.
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Figure 2: Laurenz attractor and the line S4

Case 2: The output y = x2

In the same way as the case 1, it is obtained

S3 = {x ∈ R3 : 2x2x
2
1 − brx1 + rσx2 − σx2x3 = 0}

Case 3: The output y = x3

Finally, for the third case, it is obtained

S3 = {x ∈ R3 : 2σx2
2 − 2rx2

1 + 2 ∗ x2
1x3 = 0}

Comparing the set of observability singularities, for the sake of simplicity and
space in the next only the firs case is considered.

The previous example, case 1, has shown that, even if the O(3) contains
singularities, i.e. its rank is not equal to 3 for some x ∈ R

n, it is still
possible to obtain a higher dimensional map: O(4) which will not contain
singularity on the strange attractor. Thus it may be interesting to design
an observer of greater dimension than 3 which is equivalent to use a state
space representation greater than 3. More precisely, (9) was obtained from
the following injective function:

O(4) =
(

y, ẏ, ÿ, y(3)
)T

(10)
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Remark 2 By extension O(n + k) is defined as follow:

O(n+ k) =
(

y, ẏ, ÿ, ..., y(n+k)
)T

(11)

Setting z = O(4), the extended dynamics becomes

ż =
∂O(4)

∂x
f(x)|x =









z2
z3
z4

L3
fh(x)









for which a traditional high-gain observer [10] (or sliding mode observer [15])
can be easily designed to estimate z, noted as ẑ. Then, one can obtain the
estimation of x, denoted x̂ by:

x̂ = argmin
x̂∈Rn

||ẑ − φ(x̂)||

which can be seen as an optimization problem. For the above optimization
framework, the essential point is that the Jacobian of O(4) is a matrix of 4 by
3, thus non square, and this will cause difficulties when applying numerical
methods to solve this optimization problem.

Motivated by this consideration, for a given O(n + k) defined in (11),
hereafter, it is proposed to find a diffeomorphism φ by increasing the original
state space. In the literature, this technique is called immersion and many
authors use this immersion technique in order to obtain a specific normal form
[23]. Most often, the immersion is realized by means of output integration.
In this paper, it will be realized by a dual method which will be presented
in the next section.

3 Dual immersion technique

3.1 Preliminary results

For a given dO(n) containing the singularities belonging to Sn, this section
will propose a constructive way to deduce an injective function O(n + k)
defined in (11) by increasing the output derivative order. Then the following
result is trivial.
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Lemma 1 Consider the observability singularity set Sn defined in (6), then
the generated set Sn+i for i ≥ 1 via differentiation is always included in
Sn+i−1, i.e.

Sn+i ⊆ Sn+i−1

Proof. For i ≥ 0, the following equation

O(n + i) =

[

O(n+ i− 1)
Ln+i1
f h

]

is verified, hence

rank{dO(n+ i)} ≥ rank{dO(n+ i− 1)}

which implies that
Sn+i ⊆ Sn+i−1

Before presenting the dual immersion technique, the following assuption
is reclame

Assumption 1 It is assumed that system (1) is globally observable for x ∈
R

n, or at least observable in the domain of interest D, i.e. there exists a least
an integer k ∈ Z+ such that

rank{dO(n+ k)} = n (12)

for all x ∈ R
n, or at least for all x ∈ D, where O(n + k) is defined in (11).

With the above assumption, we can state the following result.

Lemma 2 For system (1), if Assumption 1 is satisfied, then there exists at
least an integer k ∈ Z+ such that the following inclusion is satisfied:

∅ = Sn+k ⊆ · · · ⊆ Sn+1 ⊆ Sn

on Rn, or at least in D. Moreover, z = O(n+ k) is such that rank{dO(n+
k)} = n, on Rn, or at least in D.

Proof. The above result is a direct consequence of the previous lemma.
The above results show that one can reduce the observability singularity

set by just increasing the number of the derivative of the output. Conse-
quently, one can find at least an integer k ∈ Z+ such that z = O(n + k)
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has a Jacobian of rank n on Rn, or at least in D. However, its Jacobian is
not square ( a matrix of (n + k) × n). In what follows, we will propose a
constructive way to calculate a new diffeomorphism φ(x, ξ) from the deduced
O(n + k) in Lemma 2 via the technique of dual immersion, whose Jacobian
dφ(x) will be square and invertible, at least on D.

3.2 Dual immersion approach

Consider again system (1), and suppose that we have already found a least
integer k ∈ Z+ such that z = O(n + k) is a global injective function. Then
let us present the following procedure to compute a global (or at least in D)
diffeomorphism φ(x, ξ) (where ξ ∈ R

k will be defined hereafter).
Dual immersion algorithm

1. Initialization: Set z1 = φ1(x) = y ;

2. Compute zj = φj(x) = y(j−1) until a singularity of observability appears

in the row dL
(j−1)
f h;

3. Define φj = y(j−1)+ξ1 where ξ1 is an additional state, with the following
dynamics:

ξ̇1 = −ǫ1ξ1 (13)

initialized at ξ1 = 0.

4. • If L
(j+1)
f h is not considered in (11), define φi,j+1 = L

(j)
f h− ǫ1ξ1

• If L
(j+1)
f h is considered in (11), define φi,j+1 = L

(j)
f h − ǫ1ξ1 + ξ2,

with
ξ̇2 = −ǫ2ξ2 + ǫ̇1ξ1 − ǫ21ξ1

5. repeat the operation until the last line of (11) is reached. The resulting
matrix d{φ} becomes a square matrix and if there exist ǫj such that
the matrix is regular for all x then the algorithm 3.2 converges.

This algorithm gives

Theorem 1 For system (1), if Assumption 1 is satisfied and Algorithm 3.2
converges then φ(x, ξ) with ξ ∈ R

k is a global, or at least on D, diffeomor-
phism. Moreover, the Jacobian of the generated φ(x, ξ) via the dual immer-
sion satisfies:
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rankdφ(x, ξ) = n+ k

for all x ∈ R
n, or at least in D.

Proof. The proof follows from the algorithm, and assumption 1 is a necessary
condition for the convergence of algorithm 3.2.

Roughly speaking, the dual immersion algorithm works as follow: con-
sidering that for the order r = n + 1, O(r) generates an ”acceptable” (see
[9] for chaotic systems) observability singularity set Sr and the singularity
problem arrives in the last line of O(n), it is possible to define a new change
of coordinate z = φ(x, ξ) as follows: zj = y(j−1) until j = n−1 (i.e. until such

a problem of observability singularity appears in the row dL
(n−1)
f h). and for

j = n, zj are assigned equal to y(j−1) + ξ1 where ξ1 is an extra state, which
verifies the following dynamics:

ξ̇1 = −ǫ1ξ1 (14)

initialized at ξ1 = 0. Finaly for j = n+1, zj are assigned equal to y(j)+ ξ̇1 =
żn.

Remark 3 From the stability and the initialization of the dynamics (14) it
is not necessary to simulate this dynamic in the observer design because it
is equivalent of adding zero at y(j−1). In [2] the proposed solution consists to
adding a constant in order to be able to design a High gain observer in the
original coordinates.

4 Recalls on high-order sliding-mode

In this paper, the proposed method is based on the so-called real-time exact
robust HOSM differentiator [15, 16], which is recalled in the following.

Consider a signal y(t) ∈ Ck (at least k times differentiable), let us suppose
(y, · · · , y(k)) = (z1, · · · , zk+1). The HOSM robust differentiator proposed in

10



[15] takes the following form:

˙̂z1 = −λ0M
1

k |ẑ1 − y|
k

k+1 sign(ẑ1 − y) + ẑ2

˙̂z2 = −λ1M
1

k−1 |ẑ2 − v1|
k−1

k sign(ẑ2 − v1) + ẑ3
...
˙̂zk = −λk−1M

1

2 |ẑk − vk−1|
1

2 sign(ẑk − vk−1) + ẑk+1

˙̂zk+1 = −λkMsign(ẑk+1 − vk)

where M is chosen to be bigger than the k-th derivative of y(t), λi are posi-
tive design parameters, and the adjustment of those parameters is described
in detail in [15]. Define the observation errors as: ei = zi − ẑi, thus the
observation errors dynamics is given by:

e1 = ẑ1 − y

e2 = ė1 = λ0M
1

k |e1|
k

k+1sign(e1)
...

ek = ėk−1 = λk−1M
1

2 |ek−1|
1

2 sign(ek−1)

ek+1 = ėk = λkMsign(ek)

It has been proven in [14] that there exists t0 such that ∀t > t0 we have

ei = zi − ẑi = 0 for 1 ≤ i ≤ k + 1

In the next section, a Lorenz example case 1 will be simulated and com-
mented.

5 Lorenz example and immersion.

Consider again the system (7) with y = x1, with initial conditions x1(0) 6= 0,
x2(0) 6= 0 and x3(0) 6= 0. It was shown, in the second section that S4 =
{x ∈ R3 : x1 = x2 = 0} and that this set of observability singularity is not
on the strange attractor, thus as D (the considered domain) is the strange
attractor, then it is possible to use the dual immersion method.
Then O(n + k)

φ(x) = [y, ẏ, ÿ,
...
y ]T
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has a regular Jacobian on D. So, the immersion is implemented as follows:

z = φ(x, ξ) =









y

ẏ

ÿ + ξ
...
y + ξ̇









with ξ̇ = −εξ and ξ(0) = 0 as initial condition. Then dφ(x, ξ) is a square
matrix:

dφ(x, ξ) =









1 0 0 0
−σ σ 0 0

σ(r + σ − x3) −σ(σ + 1) −σx1 1
A B C −ε









with A = −σ[σ2 + rσ(2σ + 1) + 2x1x2 − (2σ + b+ 1)x3], B = σ[σ2 + σ(r +
1) + 1− x2

1 − σx3] and C = σ[(2σ + b+ 1)x1 − σx2].
The ε parameter is chosen such that dφ(x, ξ) 6= 0 (i.e. εx1 6= (2σ+ b+1)x1−
σx2) on D. Thus, as no derivative of ε is considered in this exemple, this
parameter is chosen as follows:
ε is equal to 104 if det{dφ̄(x, ε)|ε=104} 6= 0 else ε = 10, this ensuring that
det{dφ̄(x, ε) is equal to zero only if x1 = x2 = 0.

As the HOSM observer gives ẑ = z in finite time, the estimated of x is
also obtain in finite time as follows:

x = φ−1(z)|ε =








z1
σz1+z2

σ
[

x3
ξ

]

=

[

−σy 1
σ[(2σ + b+ 1)y − σx2] −ε

]−1 [
L1

L2

]









with L1 = ÿ + (σ + 1)ẏ − σ(r − 1)y and L2 =
...
y − [σ2 + σ(r − 1) + 1]ẏ +

[σ2(r − σ − 1) + σr]y + (σy + ẏ)y2

The simulation was done with initial conditions chosen randomly in [0, 1]
for the system and the observer, moreover on the HOSM observer the paramer
M is equal to 106. In Fig. 3, the exact values of is obtained after 1s.
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Figure 3: The stat x3 and its estimate x̂3

6 Conclusion

In this paper an analysis of the observability, with respect to different out-
puts, was done. After that, a dual immersion method was proposed, in order
to overcome some problems due to observability singularity set. This method
is based on an immersion with a stable fictitious dynamics initialized at the
equilibrium point. The inversion of the obtained diffeomorphism is not, gen-
erally, as simple as that in the Lorenz system with x1 as output. In a future
work, a numerical solution of the inverse diffeomorphism will be investigated
by taking into account the particular structure of the obtained diffeomor-
phism.
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