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Abstract—Cryptographic implementations are subject to phys-
ical attacks. Private circuits II is a proven protection against a
strong attacker, able to read and write on a finite number of
chosen internal nodes. In practice, side-channel analyses and
fault injections are less accurate: typically, classical injection
techniques (clock and power glitches, electromagnetic pulses,
etc.) can be reproducible, but they do not allow to choose the
targeted nodes (the situation is different for software dual-rail
with precharge logic, such as [1], [2], where (0, 1) ↔ (1, 0)
bitflips are easier to achieve, since the computation is fully
sequentialized [3]). So, a priori, private circuits II should be
a secure protection against such classical fault injection attacks.

In this paper, we provide the first implementation of private
circuits II in FPGA, secure against read and/or reset of one
internal wire chosen by the attacker. Our implementation is a
manually coded netlist which instantiates LUT6 2 (with dual
outputs, as required for private circuits II). Our design is a
SIMON block cipher programmed in a Spartan 6 Xilinx FPGA.
It features a throughput of 142 Mbit/s. We perform a security
analysis, and notice that some exploitable ciphertexts can be
outputted despite the countermeasure. Our analysis reveals that
correlated faults exist because LUT6 2 outputs are produced
almost simultaneously. In particular, the critical path actually
consists in a dual-rail pair, which is consistently faulted together.
If this pair is late with respect to the clock rising edge, then the
previous value can be latched instead of the new one. Such fault
behaves like a toggle ((01)2 becomes (10)2 or vice-versa) of licit
values. They propagate to the ciphertext which becomes by the
same token susceptible to a differential fault attack. Nonetheless,
we emphasize that such faults require a steady fault injection
setup: otherwise, multiple critical paths are violated, resulting in
non-exploitable (fully zeroized) ciphertexts.

Index Terms—Private circuits II; Fault injection attack; Cor-
related faults on dual LUT6 2 outputs; Fault effect analysis with
ChipScope.

I. INTRODUCTION

Cryptographic keys are safeguarded in secure hardware de-
vices. Now, implementation-level attacks threaten the security
of such sensitive devices. Those attacks can be classified
in two categories: passive and active. Passive attacks are
also known as side-channel attacks, and consist in collecting
physical measurements leaked through the boundary of a
device. Such leakage contains information about the internal
variables handled by the device, which can be sufficient to
extract secret keys. Active attacks rely on perturbations to
force the device malfunction. Depending on the way the errors
propagate within the device, the faulted output might reveal
information about the keys.
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Obviously, it is important to protect devices against such
attacks. It is admittedly hard to completely prevent them, let
alone because of the overhead incurred by countermeasures.
Thus tradeoffs between security and cost must be devised. The
ideal situation is when a security parameter allows to quantify
the achieved security level.

Private circuits is the most acknowledged way to provably
instantiate a countermeasure with clear and meaningful se-
curity parameter(s). Actually, private circuits appeared in the
literature in two steps, namely private circuits I (PC-I, [4]) and
private circuits II (PC-II, [5]). The aim of PC-I is to protect
only against passive attacks. The attacker is assumed to be
able to read k wires within a digital circuit, thereby collecting
k bits of information per clock cycle. PC-I is a constructive
method which shows how to design a circuit which resists the
eavesdropping by such attacker. The rationale is to entangle
random bits with the design so as to have any tuple of k
wires be independent from the (unmasked) sensitive values.
Now, attackers can also be active, and attempt to modify wires
in the circuits. This is the motivation for PC-II: this time,
a design method to resist against an attacker who is able to
read k chosen wires and overwrite t chosen wires is proposed.
The write operation might be of two types: only reset, or set
to an arbitrary chosen value. The pair (k, t) is the security
parameter of PC-II; whatever this pair, PC-II is able to generate
an implementation which is provably secure. The PC-II style
adds redundancy to the netlist in such a way that any change
to 1, . . . , t wires will cause an erasure of data after passing
through a logic gate. For instance, when t = 1, the redundancy
is the same as dual-rail with precharge logics [6, Chap. 7],
where bit 0 (resp. 1) is encoded as (01)2 (resp. (10)2), whilst
(00)2 and (11)2 are illicit values used by PC-II as possible
erased values.

Today, circuits are difficult to probe due to several reasons:
first of all, the number of metal layers is huge (> 10) for
the latest CMOS technologies. Accordingly, chip designers
take proactive protection of sensitive signals by burying them,
which makes them less accessible by a probing station. Be-
sides, backside probing is also chancy because it is hard to
know (at a resolution of a few tens of nanometers) what
can be probed blindly through the silicon wafer. Additionally,
backside probing requires costly equipments (called Focused
Ion Beam stations), which are expensive and feature a non-
negligible risk of permanently damaging the circuit [7]. Sec-
ond, some technological protections (sensors of circuit lid
opening, shields, etc.) attempt to detect probing attacks.

But there are different ways than probing to perform side-



channel and perturbation attacks. Typically, state-of-the-art lab
equipments allow to collect side-channel information without
contacting the device. Power analyses only need an external
monitoring of the amount of current flowing through the cir-
cuit, while electromagnetic analyses can be conducted even far
away from the circuit. Fault injection attacks like overclocking
or underfeeding do not allow to predict exactly their effect:
the faults can be injected at multiple unpredictable locations
inside the chip. Although slightly more local, electromagnetic
pulse injection has also a coarse area of influence.

In this context, it is interesting to evaluate the suitability
of PC-I and PC-II countermeasures against such macroscopic
(by opposition to the microscopic scale of probing attacks)
attacks. In theory, protecting against an attacker who can probe
one wire is sufficient to protect against a first-order attacker,
who exploits only the aggregated and noisy leakage from parts
or totality of the chip. The same argument applies to active
attacks: a protection which resists arbitrary access to carefully
selected (6 t) wires can, all the more, protect against an
attacker who is less accurate in the injected faults of same
multiplicity (6 t).

But the study is still worthwhile. For instance, due to im-
plementation constraints, some requirements of private circuits
design style are hard to meet. This has already been demon-
strated on PC-I implementations, where gates are assumed to
evaluate in a precise order. However, it is known that unless
every gate is made synchronous, glitches can occur which
break the correct evaluation order requirement [8].

Contributions: In this paper, we specifically focus on
the practical evaluation of PC-II. Our contributions are three-
fold. First of all, we implement for the first time a block
cipher using PC-II, using security parameters k = t = 1. This
choice for the security parameters implies the use of random
bits in each gate (since k > 0 for PC-I), and an encoding
of each bit of the PC-I netlist as a dual-rail (since t = 1,
value 0 / 1 in PC-I becomes (01)2 / (10)2 in PC-II). Second,
we identify a weakness in our security assumption, which
creates an exploitable vulnerability. Shortly, as PC-II is built
on top of PC-I, PC-II inherits implementation constraints from
PC-I; in particular, to avoid glitches, PC-II must be mapped
such that dual-rail signals are balanced. We leverage on the
dual outputs of LUT6 2 in FPGA to meet this constraint.
However, such implementation opens the door to correlated
faults, whereby both outputs of a LUT6 2 are faulted together.
This negates the attacker model (t = 1 < 2). However, our a
priori security analysis convinced us that it was apparently
difficult to obtain correlated faults of multiplicity two in
the practical setting of overclocking, underfeeding, or strong
electromagnetic (EM) fields injection. Third, we demonstrate
an analysis and an attack platform where we can assess
experimentally the likelihood of correlated faults to happen
and to propagate successfully to the output of the cipher,
using overclocking, underfeeding, and EM injection, and with
the assistance of an internal FPGA debugger (ChipScope Pro
feature of Xilinx). In practice, for 50% of the plaintexts,
we manage to generate an exploitable faulted ciphertext with

carefully tuned fault injection parameters.
Outline of the paper: The rest of the paper is structured

as follows. Section II tackles the private circuits II principle
and implementation results in FPGA. Security analysis of PC-
II is conducted in Sec. III. Fault injection results are given
and discussed in Section IV. Finally, Section V concludes the
paper and opens some perspectives.

II. PRIVATE CIRCUITS I & II IN FPGA

A. PC-I in FPGA, for k = 1

A private circuit I with security parameter k guarantees
that any tuple of k wires does not convey any information
about a sensitive value. There are several possible protections
in the literature, for instance private circuits [4] or stateful
private circuits [9]. In the sequel, we focus on the later. Private
circuit I implements a notion of Boolean sharing: every bit
is represented as a tuple of (2k + 1) wires, such that the bit
value can be recovered by XORing together the (2k+1) wires
values. In the seminal paper [4], a proof of concept is shown
based on a netlist which instantiates only few primitives:
• memory elements (typically a DFF), and combinational

functions, namely:
• an “inverter” (INV) gate,
• an “exclusive-or” (XOR) gate and
• an “and” (AND) gate.

The protection consists in replacing those instances by masked
gates. Therefore, PC-I can be seen as a transformation from
netlist to netlist. The mapping between the unprotected gates
(DFF, INV, XOR and AND) and the PC-I version for k = 1 is
given in Fig. 1 (a) and (b). Every bit a is thus transformed into
a triple (a1, a2, a3), and we notice that the secure evaluation
of the PC-I AND gate requires 3 random bits, denoted as
z1,2, z1,3 and z2,3. The netlist transformation is straightforward
because the PC-I transformation is compositional.

It can be seen in Fig. 1 (b) that we devote one full LUT6
(represented as red box – see Fig. 2(a)) to each gate, despite
they have only one or two inputs. The reason is that we want to
avoid synthesis optimizations which would (statically) reorder
the gates. Obviously, this method is costly in terms of area, but
it is guaranteed to be secure. Moreover, this netlist allows us to
quickly implement PC-II (as discussed in next section II-B).
The configuration of the LUT6 for XOR and AND can be
found in Tab. I.

We notice that optimization of PC-I (which is out of the
scope of our work) has been carried out in the literature in
two directions. First of all, Park and Tyagi have improved
the mapping of PC-I in FPGA by a better clusterization,
without compromising the security [10], [11]. Glitch-free im-
plementations have also been demonstrated recently [12], [8].
A convergence between PC-I and threshold implementation (a
glitch-tolerant netlist style [13]) has been noticed recently [14].
Second, Rivain and Prouff [15] have adapted PC-I from the
hardware case, which involves Boolean gates (they call PC-
I the “ISW” scheme), to the software case, which involves
machine words (like bytes). Their work has given rise to



Figure 1. Gates protection in PC-I (with security parameter k = 1) and PC-II (with security parameters k = t = 1)
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Figure 2. Mapping of Boolean functions, (a) in LUT6 as for PC-I, and (b)
in LUT6 2 as for PC-II

Table I
CONFIGURATION FOR PC-I AND PC-II XOR AND AND GATES
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many applications, such as masked evaluation of substitution
boxes [15], [16], and conversion algorithms between Boolean
and arithmetic masking [17].

B. PC-II in FPGA, for k = t = 1

As already mentioned in the introduction, PC-II is a further
refinement which enhances PC-I with fault resistance capabil-
ity. The constructive method presented in the original paper [5]

assumes several fault models: a predetermined number t of
wires can be selected and either reset or set to chosen value,
and so at each clock period.

We restrict to the case where the attacker is able to change
the value of t = 1 wire. In this case, the PC-II protection
consists in turning the PC-I circuit into a dual-rail equivalent.
This means that:

• each wire x becomes a pair (x, x′), where x′ is the
opposite of x (that is, x′ = ¬x), and that

• each gate is turned into a dual-rail instance (called a
gadget in [5]), as illustrated in Fig. 1(c), where green
boxes are LUT6 2 (cf. Fig. 2(b)).

The resistance against one fault arises from this argument:
if one bit of a value (x, x′) is corrupted, then the new pair
becomes either (0, 0) or (1, 1). Now, in both cases, the final
faulted value can be obtained irrespective x is equal to 0 or 1.

The PC-II gates are designed to be infective: should one
input be invalid (that is, either (0, 0) or (1, 1)), the gates
propagate an invalid (0, 0) value. This behavior of PC-II gates
ensures an avalanche of zeroization, thereby preventing the
attacker from collecting relevant faulted values at the end of
the computation1

In Xilinx terminology, a LUT6 2 computes simultaneously
two outputs named O6 and O5. The configuration of the
LUT6 2 is encoded as a 64-bit integer called INIT [19].
Outputs O6 (resp. O5) execute the function whose truth table
is given by the 32 upper (resp. lower) bits of INIT. We
assign O6 to the true bit x of the dual-rail pair (x, x′) while
O5 is its complementary x′. Despite LUT6 2 has 6 inputs,
four are needed for the PC-II gates. Specifically, the inputs
are I0, I1, I2 and I3, whereas inputs I4 and I5 are fixed

1In the original paper on PC-II [5], authors describe in Tab. 2 a cascade
gadget that artificially spreads the (0, 0) value over the whole datapath. For
the purpose of fault resistance, this is useless, as (0, 0) propagate naturally
through computing gates. But in order to have a very datapath-wide check, a
simple computation of Hamming weight would be enough [18], [3, §3.1].



Table II
EXAMPLE OF DERIVATION OF THE INIT VALUE FOR THE PC-II AND

GATE PROGRAMMED IN A LUT6 2

a a′ b b′ y y′

I3 I2 I1 I0 O6 O5

0 1 0 1 0 (INIT[37]) 1 (INIT[5])
0 1 1 0 0 (INIT[38]) 1 (INIT[6])
1 0 0 1 0 (INIT[41]) 1 (INIT[9])
1 0 1 0 1 (INIT[42]) 0 (INIT[10])
x x x x 0 0

Table III
SYNTHESIS RESULTS FOR SIMON 96/96

Unprotected PC-I PC-II
Max. frequency (MHz) 141 77 77

overhead: ./. −45% −45%
Registers 96 (<1%) 288 (<1%) 576 (<1%)

overhead: ./. +200% +500%
LUTs 1063 (1%) 3786 (4%) 5227 (5%)

overhead: ./. +256% +392%
(LUT6, LUT6 2) (391, 0) (2690, 0) (98, 2592)

to 0 and 1. The exact configuration of PC-II gates is given
in Tab. I. Their construction is detailed in Tab. II for PC-
II AND gate. Apart from licit values, which correspond to
(a, a′) ∈ {(0, 1), (1, 0)} and (b, b′) ∈ {(0, 1), (1, 0)}, other
values are mapped to (y, y′) = (0, 0). Such mapping is similar
to that of WDDL noEE [20].

Remarkably, our implementation of PC-I and PC-II consist
in the same netlists, let apart the configuration of the LUT
masks (INIT values reported in Tab. I).

C. SIMON 96/96 in Private Circuits II

Private circuits are many times larger than their unprotected
equivalent. Thus, we considered a lightweight block cipher,
namely SIMON [21]. Interestingly, few studies concern secure
implementation of SIMON (we found only a regular masking
in [22]). We initially intended to implement SIMON [21] in
its 128-bit version. But the overhead of private circuit is huge
Thus a version of size of 96-bit for both plaintext and key was
implemented on Xilinx Spartan 6 on the SASEBO-W board
for the experiment. We notice that SIMON is particularly
appropriate for an implementation in private circuits, because
it is made only of XOR and AND.

D. Synthesis results for PC-I and PC-II in Xilinx Spartan 6

The synthesis targets a Xilinx Spartan 6 LX150 FPGA
constrained to run at clock frequency of 24 MHz (very
conservative value). The synthesis results are given in Tab. III.
In this table, the red numbers represent the occupied ratio
on the FPGA. It clearly appears that the required resources
increase when the circuit is implemented in PC-I, and further
increase when upgraded to PC-II. Actually, the core resources
to implement SIMON are the same for PC-I and PC-II.

Nonetheless, extra logic is required for the interface of PC-I
and PC-II to the environment. Now, PC-I requires a wrapper
to turn every variable a into a triple (a1, a2, a3). On top
of this wrapper, PC-II needs a conversion between single
to dual-rail. So, every bit a is now encoded as a tuple of
6 elements ((a1, a

′
1), (a2, a

′
2), (a3, a

′
3)). The values of the

mask are generated thanks to a linear feedback shift register
(LFSR) which yields a vector of size sufficient to feed the
necessarily random bits. The LFSR is chosen for a quick
implementation and evaluation but we are aware that a good
PRNG/TRNG must be used for a real application. These
numbers are computed thanks to a polynomial defined by
a parameter according to the version of the SIMON. The
throughput of SIMON in PC-{I,II} is 96 bit/52 clk ×77 · 106
clk/s ≈ 142 Mbit/s.

III. SECURITY ANALYSIS OF PC-II WITH k = t = 1

Obviously, our implementation is secure within the PC-II
model with security parameters k = t = 1, i.e.:
• probing any wire does not disclose any information, and
• modifying any wire can neither be exploited.

Now, we aim to evaluate the resistance of PC-II against fault
injection attacks.

A. Setup time violations

Any synchronous circuit must meet timing constraints: the
combinational gates must have finished their evaluation before
sequential gates can sample the result they computed. One
can thus define a maximal operating speed for synchronous
circuits. Of course, their operation is nominal only within
certain environmental conditions, typically in terms of voltage
and temperature.

Fault injection attacks consist in displacing the environmen-
tal conditions outside of the comfort zone for the circuit. This
can be done permanently or transiently. For instance, a strong
EM field varying quickly in the vicinity of the FPGA under
test can locally create a voltage drop, thereby slowing down
combinational gates. As the clock frequency is fixed, the setup
time of combinational gates is violated. Symmetrically, the
attacker can tamper with the clock, so as to accelerate it. The
effect is similar: incomplete computations are sampled in the
sequential gates (the DFFs).

If the field of the EM pulse is decreased, then the delays
in the combinational paths are reduced. The borderline case
is when only one bit in the datapath is faulted. Such situation
can be modeled as a single bit-flip error.

B. Timing faults on PC-II with t = 1

In PC-II circuits, a single bit-flip is harmless: indeed, PC-II
resists against t = 1 fault.

Now, we argued that EM injection or overclock-
ing/underfeeding are inaccurate faulting methods. Thus, it
can be expected that if the stress is slightly increased, the
second fault (e.g., bit-flip) will occur on a wire unrelated to
the critical path. Hopefully, PC-II is able to withstand such
double independent attacks: indeed, two unrelated LUT6 2



gates will output (0, 0) (recall Tab. II), thus zeroizing the rest
of the computation (cryptographic computations have a fast
diffusion).

Now, in practice, we notice that in dual-rail circuits, the
second critical path is actual (very often) the very matching
pair of the critical path. Indeed, in a pair (x, x′) of PC-II wires,
the timings are almost balanced.

As argued in Sec. II, the two nets from a same pair pass
through the same LUT6 2, hence have (approximate) balanced
timing. More precisely, it is known that balanced routing is
hard to achieve in FPGA, because lack of control over the
tools and lack of information about the internal structure and
delays.

A previous work showed that having the pair of wires pass
through the same LUT (by exploiting their dual outputs) can
significantly reduce the unbalance [23]. Indeed, the “graph”
for both wires is the same. Now, unbalances remain as
the intra-LUT and LUT-to-LUT delays can vary. Accurate
balancing can be achieved with third party tools, such as
RapidSmith [24].

Still, for our argumentation, it is sufficient to know that
dual-rail pairs have similar delays. Hence they are very likely
to be faulted simultaneously upon setup time violations.

Such intrinsic problem of dual-rail circuits is illustrated
in Fig. 3. It shows on its top an excerpt from a circuit,
where nets (x0, x

′
0) are produced by a LUT6 2. The “combi”

cloud is typically a series of gates such at those given in
Fig. 1(c). The routing between these nets is assumed different:
the value x0 arrives faster than x′0 to the DFFs. This is
represented in the simulation (a) of Fig. 3. We stress here
that, because in PC-II logic, gates are self-synchronizing, the
only timing discrepancy of signals (x0, x

′
0) when reaching

their sampling DFF (x1, x
′
1) is caused by a timing unbalanced

of the routing between the last LUT6 2 in the logic cone
(i.e., the “combi” cloud in Fig. 3) and the corresponding DFF.
If, due to stress (underpowering, overclocking, or EM glitch),
the combinational gates are made slower, then it can happen
that the slowest net x′0 does not reach its corresponding DFF
timely. Hence the value of the DFF is (x1, x

′
1) = (0, 0) (see

Fig. 3(b)), as intended in the PC-II countermeasure for one
bit faults. Now, if the stress is further increased, both x0
and x′0 will be violated, which results in (x1, x

′
1) sampling a

valid value, namely the previous value of (x0, x′0). Indeed, we
recall that in a properly implemented PC-II netlist, there are no
glitches, hence gates evaluate only when they have their final
value (no intermediate values are computed). So, the situation
represented in Fig. 3(c) causes a fault which overcomes PC-
II countermeasure (with t = k = 1), at least if the previous
value of (x0, x

′
0) is the complement of the new one, which

happens in average with probability 1/2. We also mention
that, contrary to some secure logic styles such as [25], there
is no precharge between evaluations in PC-II. This is why the
previous value of a combinational gate is always a licit value.
Moreover, if the routing between x0 and x1 has the same
duration as the routing between x′0 and x′1, then the situation
depicted in Fig. 3(b) never happens, and only licit faults are
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produced, as in Fig. 3(c).

IV. EVALUATION USING FAULTS

A. Experiment setup

We chose to evaluate PC-II against those faults: underfeed-
ing, overclocking, and electromagnetic glitching. Regarding
the underfeeding, only a simple power supply is necessary:
it has a resolution of 500 µV. The fault is generated by
gradually decreasing the supply voltage of the device under
test (DUT) until faults occur. The same procedure is used
for overclocking. We gradually increase the clock of the
DUT until faults occur. Our setup (signal generator) allows
to tune finely the frequency (resolution of 1 ps). Eventually,
an amplifier allows us to injection EM faults. The full setup
is presented in Fig. 4.

We notice that when faults are injected carelessly, the
ciphertext is indeed fully zeroized. This validates practically
our implementation and the principle of infection by pairs of
zeros of PC-II. Now, in the rest of this section, our aim is to
check the vulnerabilities identified in the previous section III.
This requires to fault only one path (namely, the critical path),
hence we geared our fault injection experiments towards the



most gentle stress as possible, so as to avoid faults with too
high a multiplicity.

B. Internal and online debug of fault effects

For experiments, we found it useful to target the design to
Spartan 6: indeed, Spartan 6 FPGA is packaged in frontside
(FG). Therefore it is easier to perform EM injection on
Spartan 6 FPGA than others FPGA which are packaged in
backside (FF).

The traditional method to characterize faults is indirect: an
exhaustive study of faults within a model is done (as in the dif-
ferential fault analysis, or DFA, of Piret and Quisquater [26],
[27]). Here, in order to extract directly the fault models, we
implement the Integrated Logic Analyzer (ILA). We checked
that the insertion of the analyzer does not impact the maximal
working frequency of the DUT.

The implemented ILA has the following properties:

• ILA probes 96× 4 nodes, i.e., the internal SIMON state,
the dual-rail state2, the key and the corresponding dual-
rail key;

• ILA dump is triggered by the start signal of the SIMON
encryption;

• ILA dumps 64 states after being triggered;
• ILA frequency is the same as the DUT frequency;
• ILA uses 17 of the 268 available BRAM blocks of the

Spartan 6 FPGA and JTAG boundary scan chain to store
dumped values;

• ILA can operate at a higher frequency than the DUT
(checked).

It is non-intrusive, in that it is plugged on the design without
interfering with it. We requested ILA to record and then
dump the consecutive values of the state of SIMON. ILA is
controlled by ChipScope Pro debugger interface. In the sequel,
ChipScope allows to dump the execution traces, and to save it
under a WLF3 file. Then we use Mentor Graphics ModelSim
to open and analyze the WLF traces (those will be shown in
Fig. 5 and 6).

C. Results

1) Power supply fault: The first injection is to modify
the power supply of the DUT (SIMON 96/96). The nominal
value of power supply of FPGA is 1.00 V. By decreasing
this value, we observe that under 0.68 V, the circuit produces
incorrect results. However, around 0.68− 0.67 V, the value of
the ciphertext is different from zero. Then under 0.67 V, the
ciphertext computed by SIMON is zero.

2) Overclocking:

2To help the debug, we integrated the demasking (a1, a2, a3) 7→ a =
a1⊕ a2⊕ a3 in the design, for each bit a of the datapath. This is not secure
from a side-channel point of view, but does not impact our experiments which
are rather concerned by fault injection attacks.

3WLF is short for Waveform Log Format; it is the ModelSim default format
for simulation results.

Table IV
STATE AND DUAL-STATE DIFFERENCES AT THE THIRD ROUND.

BLUE MEANS “VALID” ERROR, SUCH AS (0, 1)→ (1, 0), WHEREAS
GREEN MEANS “SINGLE BIT RESET” ERROR, SUCH AS (0, 1)→ (0, 0).

(DATA EXTRACTED FROM FIG. 6).

f (MHz) State (96-bit word)
24 0xf64be72c5773b48da3938c84

80 0xf64be7285773b48da3938c84

83 0xf64bc7085773b48da3938c84

f (MHz) Dual-rail state (192-bit word)
24 0xaa69659aa96a59a5666a6a5a9a6595a6995a965a95a59565

80 0xaa69659aa96a5995666a6a5a9a6595a6995a965a95a59565

83 0xaa69659aa12a0095666a6a5a9a6595a6995a921a95a59565

a) Overclocking with fixed plaintext: We increase the
clock frequency of the SIMON block cipher from 24 MHz
until the ciphertext gets erroneous. We choose a plain-
text pt = 0x2072616c6c69702065687420 and a key
k = 0x0d0c0b0a0908050403020100. The resulting
WLF waveforms as dumped by ChipScope are joined, and
are represented in Fig. 5. Three acquisitions are taken:

1) the first one for f = 24 MHz (in green),
2) the second one for f = 80 MHz (in pink), and
3) the last one for f = 83 MHz (in red).

The correct ciphertext is 0x602807a462b469063d8ff082.
The three computations trigger at the same time. In Fig. 5,
the scale is given round by round (it is not a time scale).

At 80 MHz, we observe in Fig. 5, that a fault is created
in the circuit. We recall that the synthesis report (Tab. III)
announced a maximal frequency of 77 MHz, but the FPGA
still functions normally until < 80 MHz. Nonetheless, at
80 MHz, the computed ciphertext is different from 0: it
is 0x37dd3ac20989b9360ebef34a. By carrying on in-
creasing the frequency value of frequency until 83 MHz,
the ciphertext stays at 0x37dd3ac20989b9360ebef34a.
Then, over 83 MHz, the ciphertext becomes 0 (as should
happen in theory with PC-II netlists).

An explanation why at f = 80 MHz the ciphertext is not
full-zero can be seen by doing a zoom on Fig. 5: we find that
at the third round, the state starts to be incorrect.

For the reader’s convenience, the state value is also given
in Tab. IV. At the round three, the value of the valid state is
0xf64be72c5773b48da3938c84. For f = 80 MHz, the
corrupted state is 0xf64be7285773b48da3938c84. The
nibble c is changed in 8 at the eighth position of the state.
In dual-rail, this corresponds to value a being changed to 9.
Now, a represents (1010)2, namely the two bits (1, 0) and
(1, 0), whereas 9 means (1001)2 in binary, which is a valid
case in LUT6 2 truth table (recall Tab. II). Thus, this exemple
illustrates the replacement of a licit value by another one, as
in Fig. 3(c). So, on the critical path, there exists one LUT6 2
where a pair of dual-rail wires (1, 0) was changed in (0, 1), a
valid value in dual-rail. Consequently the SIMON computes
with a valid false state and it is possible to attack the circuit
thanks to a DFA.



SIMON starts

SIMON ends

52 rounds

Figure 5. One experimental results of SIMON running at 24 MHz, and overclocked at 80 MHz and 83 MHz

Figure 6. Zoom on Fig. 5, where we identify the first round (namely round #3) where a fault occurs

For f = 83 MHz, the first error in the state also oc-
curs at third round. There, the faulted state takes the value
0xf64bc7085773b48da3938c84. The nibbles e, 2 and c
at positions respectively 5, 7 and 8 become c, 0 and 8. In dual-
rail, the numbers 1, 2, 0 are encoded in binary as (0001)2,
(0010)2, (0000)2. Those faults are single bit-flips. Thus, faulty
states appear, and so a zeroization wave propagates. As can
be seen in Fig. 5, the state reaches the value of zero at the
round 11.

It is noteworthy that fault injections, if successful, can still
be exploited despite the implementation is masked. Indeed,
irrespective of the masking and the implementation details,
a fault propagates until the output. The interested reader is
referred to this paper [28] for more details.

b) Overclocking with varying plaintexts: By changing
the plaintext, the clock frequency when the circuit starts to
be faulty changes, but remains around 80 MHz. Indeed, it
is a well known fact that the critical path is data-dependent.
In Fig. 7, we present the effect of overclocking PC-II with
30 plaintexts. The experiment is performed using 1000 steps
of 0.01 MHz. In total, the DUT frequency is changed from
75 MHz to 85 MHz. The red color in the Fig. 7 means that no
fault occurred. The blue color means that the PC-II circuit is
faulted with a non-zero ciphertext. Eventually, the green color
means that the PC-II circuit is faulted with an output fully
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Figure 7. Effect of overclocking on 30 plaintexts for different frequencies

zeroized. We notice that, there is around 50% (16/30 plaintexts
faulted with non-zeroization output) of probability to created
an exploitable (not fully zero) fault, in a range of about 4 MHz
(that is, between 79 and 83 MHz). In the other 50%, the (0, 0)
values generated by the PC-II countermeasure absorb potential
harmful (0, 1)↔ (1, 0) faults. Still, with roughly a probability
of 1/2, bypassing PC-II is possible provided the fault injection



is controlled precisely enough.
We raised the clock frequency much beyond 85 MHz.

Interestingly, the result remains zeroized for all the bits. One
could have imagined that for a high enough frequency, only
valid bits from the previous state are sampled. But apparently,
there is consistently at least one gate which transitions, hence
with output equal to (0, 0). In the extreme case, the clock
would be so fast that the previous state would be sampled
verbatim. But this would have no effect, since the round
counter would also stall during this fast clock period. At
least, this situation is harmless if the computation path and
the control logic are both implemented in PC-II. If only the
computation is implemented in PC-II and the logic in regular
(faster) logic, then it would be possible to skip [29] or add [30]
rounds.

3) Electromagnetic injections: The SIMON 96/96 in PC-
II under EM injections behaves similarly as in the case of
overclocking.

D. Discussion

The faults obtained by overclocking and EM injection are
similar on our platform. We can deduce that we caused delay
faults. When the injected field is very strong, EM injection can
also cause sampling faults [31], where the DFFs are perturbed
while they sample, precisely by having the EM pulse happen
timely with the clock rising edge. Such fault model would not
allow correlated faults, hence would not harm private circuits
II. But the global timing faults are harmful: it is thus important,
for the faults to be exploitable, to exercise only gentle stress:
overclocking must have an effect, but not too strong, otherwise
too many timing violations occur, amongst them zeroization
can occur and wash the licit faulted values. EM injection must
not cause DFF malfunctions, only increase the delay in gates,
hopefully touching first the critical path.

V. CONCLUSION AND PERSPECTIVES

This paper has shown the possibility to collect erroneous
outputs from cryptographic circuits protected by the private
circuits II countermeasure, allowing different sorts of attacks,
such as the differential fault analysis.

We notice that ChipScope (or equivalently SignalTap in
Altera) is a nice tool to investigate the effects of faults on
circuits. We leverage on this tool, apparently for the first time,
to determine exactly the fault models for overclocking.

As a perspective, we intend to take advantage of the
zeroization process to test other attack paths, such as fault
sensibility analysis [32] (the stress level at which a fault occurs
is data dependent). Let us remark that safe errors are a priori
not possible, since in hardware, even values which do not
impact the computation value at the logic level are protected.
For instance, a multiplexer with the non-selected input at the
invalid zero value will propagate an invalid zero value all the
same. Obviously, the fault attacks we present applies to other
protected circuits, namely dual-rail circuits (WDDL, MDPL,
etc.).

Besides, a recent paper [14] has shown similarities between
PC-II and threshold implementation, a logic sytle which is the-
oretically designed to withstand glicthes. Practical validation
would definitely make sense.
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