Xuan Thuy Ngo

Sylvain Guilley

Shivam Bhasin

Jean-Luc Danger

Zakaria Najm

Encoding the State of Integrated Circuits: a Proactive and Reactive Protection against Hardware Trojans Horses

Keywords: C, 3 [Computer Systems Organization]: SPECIAL PURPOSE AND APPLICATION-BASED SYSTEMS-Real-time and embedded systems; C, 3 [Computer Systems Organization]: SPECIAL PURPOSE AND APPLICATION-BASED SYSTEMS-Smartcards

Hardware Trojan Horses (HTH) are a serious threat to semiconductor industry with significant economic impact. However, most of the research in HTH focuses on detection. We propose the concept of "encoded circuit", as a technique to protect HTH insertion. Encoded circuit is based on the theory of codes. It encodes the internal state with a chosen code of security parameter d, such that knowledge of less than d bits of the encoded state reveals no information about the actual state. This parameter stems from a similar notion introduced by Ishai, Sahai and Wagner at CRYPTO 2003 for the prevention of probing attacks. Usually d < 10 in probing attacks, whereas HTH are able to connect to more than 10 nets. In this paper, we discuss the theory behind "encoded circuits" and its practical demonstration on various HDL circuits.

INTRODUCTION

Globalisation and outsourcing have been a trend in the semiconductor industry to overcome increasing production cost. However,

The main axis of research on HTH focuses on detection of malicious hardware. A Trojan can be introduced at any design step right from the Register Transfer Level (RTL) source code to lithographic masks fabrication. The detection of HTH is based on several techniques like hardware software co-design [START_REF] Bloom | OS Support for Detecting Trojan Circuit Attacks[END_REF], reconfigurable logic [START_REF] Abramovici | Integrated circuit security: new threats and solutions[END_REF], logic testing [START_REF] Banga | ODETTE : A Non-Scan Design-for-Test Methodology for Trojan Detection in ICs[END_REF][START_REF] Jha | Randomization Based Probabilistic Approach to Detect Trojan Circuits[END_REF] and side-channel analysis [START_REF] Agrawal | Trojan Detection using IC Fingerprinting[END_REF].

The second and the less popular axis of HTH research is prevention techniques. Previous works on HTH prevention are mainly based on code obfuscation techniques [START_REF] Banga | ODETTE : A Non-Scan Design-for-Test Methodology for Trojan Detection in ICs[END_REF][START_REF] Subhra | Security against hardware trojan through a novel application of design obfuscation[END_REF]. In this paper, we propose the concept of "encoded circuits", a circuit obfuscation method using encoder/decoder to prevent HTH insertions. Encoded circuits are realised by encoding all internal registers (sequential part) of the target design with a binary code and followed by addition (XOR) of random masks in a supplementary code. Once the sequential part is encoded, the combinatorial part can be easily obfuscated by exploiting the "flatten" option of the netlist synthesis tool. It merges the logic part of encoder/decoder circuit with the combinational part of the target circuit. Thus, the state is totally encoded and the structure of original combimatorial part is totally lost when synthesized together with the enocder and decoder circuit. After encoding, the complexity of the design increases which obfuscates the real functionality of the IC.

Our technique is closely based on the private circuits of Ishai, Sahai and Wagner presented at CRYPTO 2003 [START_REF] Ishai | Private Circuits: Securing Hardware against Probing Attacks[END_REF]. Private circuits were proposed to protect against probing attacks which ensures no In this paper, we also use a security parameter d, which is the dual distance of code used to encode the IC. It ensures that HTH connected to less than d registers will not be effective. By choosing a bigger d, one can prevent IC from HTH insertion. In this paper, we provide the rationale behind the encoded circuits. We first describe the theoretical background of encoded circuits based on theory of codes. Thereafter, we detail the techniques to choose and generate codes for encoding a circuit. Practical application of encoded circuits is demonstrated on an 8-bit counter, an AES sbox as well as a simple microprocessor. The methodology to encode a simple microprocessor is also discussed. We show that the technique can be applied to any circuit to prevent HTH insertion.

The rest of this paper is structured as follows. Sec. 2 gives the stateof-the-art in HTH prevention and talks about the motivation of our work. Sec. 3 present the rationale behind encoded circuits followed by simple case studies in Sec. [START_REF] Bloom | OS Support for Detecting Trojan Circuit Attacks[END_REF]. Some other aspects of encoded circuits are discussed in Sec. 5. Finally we conclude in Sec. [START_REF] Banga | ODETTE : A Non-Scan Design-for-Test Methodology for Trojan Detection in ICs[END_REF], and give some perspectives. For a better readability, technical data appear in appendix.

PRELIMINARIES AND CONCEPT

A HTH can be globally seen as a composition of two part:

• Trigger: which reads the target circuit state (to trigger its malicious function).

• Payload: which writes on the target circuit state (to realise its malicious function).

A basic example explaining the principle of HTH is shown in Fig. 1. The trigger of the HTH is a basic OR gate and the payload is an AND gate. If S 1 = 0 and S 2 = 0, the HTH is activated, which disables the circuit clock CLK to stop the target circuit. One can observe from Fig. 1 that to compute the good trigger value, an attacker must have knowledge of the circuit. In a complex circuit, a trigger must be connected to a number of nets (or I/O pads) in order to be controllable and efficient. If the HTH depends on very few signals, then the HTH activation rate increases, which makes it detectable. Therefore HTH act as a "probing station" which is built into the circuit. In [START_REF] Ishai | Private Circuits: Securing Hardware against Probing Attacks[END_REF], Ishai et al. have dealt with a similar problem to propose private circuits It consists in encoding and masking all gates of the sensitive circuit.

It is a known fact, that registers are much easier to observe in an IC layout as compared to other standard gates [START_REF] Nohl | Cryptanalysis of the DECT Standard Cipher[END_REF], owing to their bigger size and prominent structure. Thanks to this observation, we propose to apply the concept of "private circuits" only on internal registers. This protection is initially designed to resist the theft of

ENCODED CIRCUITS

In this section, we detail the rationale of encoded circuits. We first describe the basic principle of encoded circuits. Next, we define security objective which determines the choice of codes for encoded circuits. This is followed by some examples and demonstration for construction of codes.

Basic Principle

The principle behind encoded circuit is very basic. Every IC is composed of two distinct kinds of logic cells: sequential (D-flipflop or register) and combinational. In practice, it is known that registers are easily recognisable, because they are much larger than combinational gates. For instance, in the 130 nm technology of STMicroelectronics, the size of a D-flip-flop (in short: DFF) varies from 30 to 50 µm 2 while INVERTER (IVLLX05), NOR (NR2LL) and NAND (ND2LL) size are respectively 4.03, 6.05, 6.05 µm 2 . A section of a layout is shown in Fig. 3 containing both combinatorial and sequential logic. The yellow blocks in Fig. 3 are DFF or sequential logic and the red blocks are combinatorial gates. We can easily notice that DFF are larger than combinatorial logic gates. DFF gates can be recognised directly in an IC. It can be seen Fig. that DFF stand out clearly from combinatorial logic. Another motivation for probing the DFF output is that the signals at DFF output are synchronised. Therefore, it is easier for an attacker to insert HTH using the inputs or outputs of these registers as activation conditions. This justifies why we concentrate mainly on the protection of sequential logic. By using the encoding system, we can transform the original data of all sequential logic cells to the encoded data, hence protecting them.

One can encode a circuit, with a state x (set of all sequential resources) of k bits, we need:

• a code C of length n, which is applied on x. For the sake of simplicity, we assume that C is a linear Boolean code.

• some random numbers y of (nk) bits, which serve as a pool of entropy to mask the encoded state. The masks are also encoded, by a code D, of size (nk) and dimension n. As a result, the encoded and masked state z is the exclusive-or of one code word of C and D each.

If C and D are supplementary, the encoded x and y can be retrieved from z. We denote by G and H the generator matrices of C and D.

It is thus required that the n × n square matrix G H be of full rank n.

The decoding logic allows to recover x from z. This operation is also a linear function, that maps elements of F n 2 to F k 2 (i.e. not injective). The decoding function generator matrix J has a simple expression if C and D are orthogonal. Indeed, in this case, H is the parity check matrix of code C, i.e., GH T = 0, or equivalently, HG T = 0, and there exists an orthogonal projection. It can be checked that J = G T (GG T) -1 . If z = xG ⊕ yH, then zG T = xGG T ⊕ yHG T = x(GG T), which simplifies to zG T (GG T) -1 = x.

Next, we can also check the random numbers which belong to the code D. If the state z is corrupted by some means, that would also impact x and y. Therefore, it is relevant to recover y from z, which can be done by a linear function of generator matrix K. If D = C ⊥ , there is also an orthogonal projection: K = H T (HH T) -1 .

The encoding / decoding functions are summarised in Fig. 5. Unless otherwise mentioned, we will assume in the sequel that C and D are orthogonal. We denote supplementary dual codes, such as C, "LCD" (for "Linear Complementary Dual"). This term has been coined by Massey in [START_REF] James | Linear codes with complementary duals[END_REF]. Notice that D is LCD if and only if C is also LCD. A good overview of the structure of encoded circuits is illustrated in Fig.

Security objective

We intend to apply the notion of private circuits, discussed by Ishai, Sahai and Wagner at CRYPTO 2003 (see [START_REF] Ishai | Private Circuits: Securing Hardware against Probing Attacks[END_REF]). They introduce a security metric d. Private circuits are designed to protect against probing attacks; such that probing < d probes reveals no information about the real data manipulated by the circuit. The complexity of this construction is quadratic in d. For a circuit with k gates, the size of the private circuit is of the order O(k • (d + 1) 2).

In our construction, we focus on the encoding of the k registers. A register is easy to protect as its transformation function is "iden-tity", which is linear. This is why linear codes are suitable in our case, which will further result in lower complexity of the protected circuit. Specifically, we also want to ensure that the knowledge of d-1 (or less) bits of the encoded & masked state z does not disclose any information on x. This is feasible, as stated in the following proposition.

Proposition 3.1. The encoding of x as z = xG⊕yH, where y is a uniformly distributed mask in F n-k 2 does not reveal any information on x provided up to d -1 bits of z are known, if and only if C is of minimal distance d.

Proof. The mask y is applied additively on the encoded state xG as yH. The property that is required is that any tuple of size strictly less than d be balanced. As y is assumed uniformly distributed in F n-k 2 , the distribution of any such tuple is unchanged (hence uniform) if and only if the code D is of dual distance d (or more). Now, the dual distance of a code is the minimal distance of its dual [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF]. Therefore, as C and D are dual, this is equivalent to require that C has minimal distance d.

The encoded circuit can also detect a fault injection attack (FIA). The fault can be introduced by a external setup or internal HTH. The detection of faults and protection against FIA is based on the following proposition. Proposition 3.2. Let us consider the encoding of x as z = xG ⊕ yH, where y is a uniformly distributed mask in F n-k 2 . Any fault on z of Hamming weight strictly smaller than d can be detected.

Proof. The state z is modified into z⊕ε, for some random ε ∈ F n 2 . By supplementarity of C and D, there exists a unique ordered pair (e, f)

∈ F k 2 × F n-k 2 such that ε = eG ⊕ f H.
A detection strategy consists in checking whether or not the mask has been altered, i.e., zK ? = y. This verification does not jeopardise the security model of Prop. 3.1 since x is not uncovered, only y. By linearity of the fault injection, the equality (z ⊕ ε)K = y happens if and only if εK = 0 ⇐⇒ f = 0, i.e., ε ∈ C. As ε = 0 is pointless (since without observable effect), harmful (since undetected) faults only happen if and only if ε ∈ C\{0}. In particular, a necessary condition for the fault to be undetected is that the Hamming weight of ε be greater than or equal to the minimal distance d of code C. Now, given that the minimal distance d of C is a security parameter, it is set as high as possible. Therefore, choosing a C LCD of greatest possible minimal distance simultaneously improves the resistance against HTH insertion and FIA. One specificity of our protection is that we expect to have the security parameter d quite large, for instance d ≈ 32. Indeed, our protection aims at preventing the attacker from inserting small HTH, that are stealthy, hence difficult to detect if inserted. However, a HTH that would connect to 32 DFFs (or more) would be easy to detect by various means, as discussed in the introduction, such as side-channel, visual inspection [START_REF] Bhasin | Hardware Trojan Horses in Cryptographic IP Cores[END_REF], etc.

We notice that a value of d around 32 is larger that the values d used in [START_REF] Ishai | Private Circuits: Securing Hardware against Probing Attacks[END_REF], where we recall that the objective is to refrain an attacker from probing the circuit. Usually, probing is delicate, and starting from a few probe tips (especially very close one from each other), it begins to be difficult to contact the wires without making short circuits. Therefore, our focus on registers is also motivated by the potential increase of security parameter d.

Encoding system examples

In this subsection, we show a small example of LCD code with k = 8. We consider a code C of parameters [START_REF] Grassl | Bounds on the minimum distance of linear codes and quantum codes[END_REF][START_REF] Agrawal | Trojan Detection using IC Fingerprinting[END_REF][START_REF] Abramovici | Integrated circuit security: new threats and solutions[END_REF], where 5 is the minimal dual-distance which is the security parameter d. It has shorter length than the shortest QR LCD code (a [17, 9, 5] code) with a dimension greater or equal to k = 8. The matrices G, H, and J are given in Appendix A. Such a family of codes prevent insertion of HTH that would connect to d -1 or 4 registers. For instance, it would deny the insertion of HTH such as our initial example (Fig. 1). But we concur that d = 5 is obviously a very small security parameter: most HTH would connect to more DFFs, in order make the triggering condition more furtive. Thus, we would prefer d ≈ 32, for instance.

There are two classical solutions to increase the code minimal distance:

1. At fixed k, increase n. However, this is not really scalable for small k, such as k = 8. Indeed, by the Singleton bound, a linear code of parameters

[n, k, d] satisfies n ≥ k + d -1.
2. At fixed d, increase k (which will cause n to grow too). It is possible to increase k by considering not only small groups of registers, e.g. bytes, but by merging registers. For instance, in a CPU, several registers can be masked altogether. This allows to grow k. In the sequel, we will assume that k is actually the number of all the registers of the circuit. So, if k d, the Singleton bound is more favourable.

In the next subsection, we exhibit constructs that allow reaching large values of d. (Notice however that our solution is far from the Singleton bound: n is closer to 2k than to k + d -1; but there is venue for finding LCD codes with larger rates k/n.)

Real constructions of LCD codes of large dimension

An important selection criterion is the existence of a bound on the minimal distance, that otherwise cannot be computed by testing all the possible Hamming distances between pairs of different code words since our codes can have lengths of the order of one to several hundreds [START_REF] Vardy | The intractability of computing the minimum distance of a code[END_REF].

For large dimensions k, there is no precomputed table (for instance, the tables of Grassl [START_REF] Grassl | Bounds on the minimum distance of linear codes and quantum codes[END_REF] are provided for k ≤ 256 for binary codes).

Fortunately, cyclic codes have a minoration on their minimal distance, via the BCH bound. The definition of a cyclic code is recalled below: Definition 3.1 (Cyclic code). A linear code C of length n over a finite field F q is cyclic if it is stable by any circular rotation.

In the sequel, we consider binary codes (q = 2). The condition for being LCD is rather simple and not difficult to achieve. Moreover, a potentially stronger lower bound on the minimum distance exists for the sub-class of quadratic-residue (QR) codes 1 , which can also be LCD.

We give here, for large k, our results based on QR codes, that is one option that works, but certainly not the best. But as we wanted to exhibit a proof-of-concept (PoC), this is good enough to serve our purpose. A QR code has for length a prime number and has a minimal distance d at least √ n. A binary QR code has length n congruent with ±1 modulo 8 and is LCD if the length is congruent with 1 modulo 8 [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF].

We implemented the constructions of codes in SAGE. We proceed in two steps: First algorithm (see listing. It can be seen that the code obtained with listing 2 has dimension greater than k. But in practice, this dimension is only slightly larger than k (a few more bits, if any). Those can, for instance, be fed as constant 0 along with the k bits that come from the state register. Or, still better, they can be fed by random numbers, which contributes to the overall noise of the countermeasure.

CASE STUDIES

The rationale behind encoded circuits was discussed in the previous sections. In this section, we show practical application of encoded circuits on some basic designs. As previously shown, the sequential part of a circuit can be well encoded using a LCD code. Nevertheless, it is still possible to insert a HTH. An attacker that can isolate all blocks of an encoded IC (i.e., combinational part, encoder data G, encoder noise H and decoder data J), can bypass the prevention by inserting a HTH which probes directly at the inputs of encoder block (or at the output of decoder block, etc.). This is all the more possible as the IC is synthesised (i.e., generated) hierarchically. Of course, if the combinational logic is linear (of k × k matrix L), then the encoded logic z → zJLG completely dissolves L into a new linear transformation of n × n matrix L = JLG. We demonstrate in this section that using a flattening option for the netlist synthesis, we manage to merge these blocks together (combinational part, encoder for data, encoder for noise and decoder for data). Therefore it becomes a challenge for an attacker to reverse the real functionality of the IC. In the rest, we firstly show that the netlist synthesis tool merges and optimises these blocks on a simple counter circuit and a highly non-linear circuit. The non-linear circuit is the Substitution Box of the Advanced Encryption Standard (AES).

Case Study I: 8-bit counter

For the first case, the goal is to demonstrate that the combinational logic part of a counter circuit will merge with logic parts of the encoder/decoder circuit. This will result in protection of the combinational logic. To demonstrate the principle, we choose a simple 8-bit counter as test circuit written in VHDL.

The encoded circuit is composed of 5 different parts:

1. Test circuit: 8-bit counter.

2. Encoder data circuit: matrix G of size 8 × 16 (Eq. (1)) is used to encode data.

3. Encoder noise circuit: matrix H of size 8 × 16 (Eq. (2)) is used to mask the encoded data.

4. Decoder data circuit: matrix J = G T (GG T) -1 of size 16 × 8 (Eq. (3)) is used to decode data.

5. XOR gates: n two-input XORs gates used to add noise to encoded data. --- -- --------------------------------- --------------------------------- --- -- --------------------------------- ---------------------------------total 126 1412.040 100.0

The choice of G, H and J are presented in App. A. In order to evaluate the proof-of-concept of coding circuit, we compare the encoded circuit with Hierarchical synthesis against Flattened synthesis. The technology used for the case study is STMicroelectronics CMOS 130 nm process. The synthesis is done using Cadence Encounter RTL Compiler. synthesis result are presented in Tab. 1.

From the synthesis result, we can make the following observations:

• There are some standard cells which have disappeared when we flatten the design, for example arithmetic gates (HALL, that are Half-Adders).

• The type and the number of others standard cells as AND, NAND, OR, MUX and INVERTER are also different between the two synthesis (114 for hierarchical synthesis and 126 for flatten synthesis).

• The area taken by hierarchical result is bigger than flatten result (1412 µm 2 vs 1426 µm 2).

Therefore we can conclude that Encounter Compiler merged the logic part of encoded circuit using the "flatten" option, making it difficult for the attacker to reverse-engineer the design from netlist and insert a meaningful HTH.

Case Study II: Substitution box

Next we repeat the same experiment with a highly non-linear circuit. The non-linear circuit used is the 8×8 Substitution Box (Sbox) of the AES.

The results are presented in Tab. 3 (App. B). Like before, the flattened netlist has different cell types. However, the area taken by hierarchical synthesis result is smaller than flatten synthesis result. This is because, in this case, the synthesizer has used bigger cells in the flattened netlist. The problem can be easily solved by constraining the synthesizers. Hence our method is applicable also on non-linear circuits.

Case Study III: Nanoprocessor

After applying the encoding method on two basic circuits, we also applied the technique on a simple microprocessor. We choose nanoprocessor [START_REF] Wirthlin | The Nano Processor: a low resource reconfigurable processor[END_REF], which is a 8-bit processor without pipeline and requires 3 clock cycle to execute every instruction. It has 16 basic instructions, and operates using an external 256 bytes memory.

The unprotected nanoprocessor gives the following after synthesis:

• 37 sequential cells (flip-flops),

• 208 combinational cells.

Thus we have k ≥ 37 for the nanoprocessor netlist. After searching various LCD codes suitable to our case, we found a Quadratic Residue (QR) code [73,37,[START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF] i.e. k = 37, n = 73 [START_REF] Carlet | Complementary Dual Codes for Counter-measures to Side-Channel Attacks[END_REF]. Since k = 37 equals number of flip-flops in nanoprocessor, this is the smallest code which can be applied. The minimal distance or the security parameter d of this code is 13, i.e. an attacker should connect to at least 13 DFF to implement an effective HTH. To achieve a larger minimal distance or security, the dimension must be increased. We found another QR code which is a LCD of dimensions Both these codes will result in a better protection at the cost of chip area. The process to apply the three codes is exactly the same.

Encoding Process

The encoding is done as following:

• We start with the flat netlist of nanoprocessor and extract the 37 flip-flops with their initial reset value. We make sure that these flip-flops have no logic on the clock and reset path.

• For the remaining combinational part of the circuit, we add a from_seq input and a to_seq output bus (of bitwidth k).

• Next for the given k, we find a suitable code to find n (see function get_length in Listing 1), and dump the behavioural code for those four matrix operations G, H, J and K (see function get_matrices in Listing 2).

• Next we connect the extracted combinatorial part of nanoprocessor with the HDL of matrices G, H, J, K and RNG as shown in Fig. 2 and keep the hierarchy.

• Thereafter k flip-flops in the uncoded state are replaced by n flip-flops in the encoded state, keeping the equivalent state at reset.

• At this stage, we combine the modified combinatorial and sequential part of the circuit using a wrapper circuit.

• Finally, we synthesise, place and route the encoded circuit.

This encoded method can be easily automated and integrated into a standard EDA flow. The result of synthesis for the encoded nanoprocessor is presented in Tab. 2. This table shows the total sequential gates, combinational gates, the area and security parameter d. Results are shown for the three QR codes. We can notice that the number of sequential gates increased from 37 to 73/86/89. It is logical because we encoded k flip-flops into n. The combinational logic part also increased due to the integration of G, H, K and J matrices. Pre-synthesis and post-synthesis simulations are performed to ensure that the encoded processor works correctly.

DISCUSSION

The encoder and the decoder blocks are product of matrices. As an example the computation of encoder matrix product c = xG is detailed in Alg. 1.

Algorithm 1 Vector-matrix product.

Require:

x ∈ F k 2 and G ∈ (F n 2) k , whose rows are denoted by G[i] ∈ F n 2 (for 1 ≤ i ≤ k) Ensure: c = xG ∈ F n 2 1: c ← 0 (a vector of n bits [i.e., a line, as opposed to a column]) 2: for i ∈ 1, k do 3: c ← c ⊕ x[i] ∧ G[i]          0 ∧ G[i] = 0 ∈ F n 2 and 1 ∧ G[i] = G[i] 4: end for 5: return c
For the nanoprocessor, we use different codes with n = 73/86/89 and k = 37/42/45 for a sequential information on 37 bits. In the latter two cases, n is much greater than k. If we choose a coding system where n is closer to k (i.e. n = 73), we can reduce significantly the overhead, but this is at the expense of robustness as security parameter d is much lower according to the Singleton bound (nk ≥ d -1). This brings us to a area-security trade-off which is a common issue in security engineering. Using another encoding system where G, H and J matrices are sparse, we could reduce significantly the overhead of this method. Some studies should be conducted to reduce the encoding complexity. For instance we can consider sparse matrices as for low-density parity check (LDPC) codes.

Protection Against Other Physical Attacks

Encoded circuits are mainly proposed to counter the problem of HTH insertion. Moreover, these circuits can find some other interesting applications in the field of physical security. As encoded circuits are based on private circuits, they directly address the threat of probing attack. Probing attacks use tiny probes to monitor the inputs/outputs of internal blocks to directly recover sensible data. By encoding all internal sequential logic part and by masking encoded data with random numbers, this prevention method can also protect IC against probing attack with less than d -1 probes. Some professional equipment (such as those proposed by GigaTest Labs, Lake Shore Cryotronics, Inc., Micromanipulator, KeithLink, J microTechnology, Inc., etc.) allow the adversary to place dozen of probes on a chip or a wafer. However, probing attacks are not easy to mount. The circuits are designed to be probed this way, using for instance "prober" pads (see Fig. 7 on the right). In order to attack our protection, an attacker must probe inner metal lines, which are much smaller than "prober" pads. For instance, the width of a metal 6 (uppermost layer) wire in a 0.13 µm technology (HCMOS9GP from STMicroelectronics) is about one-tenth of a "prober" pad, as sketched in Fig. 7. Also "prober" pads are not usually found in a critical circuits. Second, the probes are placed far from each other while the lines to probe might be located in great proximity of each other, thereby making any probing attempt very chancy.

Encoded circuits can also be potentially used to protect against Side Channel Attack (SCA). SCA is a passive but powerful attack which observes unintentional physical leakage to extract the secret key of cryptographic block. By using a LCD code with dual distance d, encoded circuit can be protected against monovariate SCA of orders 1, 2, to d -1. And the monovariate SCA of order d is the lowest degree attack to be practical [START_REF] Bhasin | Exploiting FPGA block memories for protected cryptographic implementations[END_REF].

As stated earlier, encoded circuits can also be used to detect Fault Injection Attacks (FIA). This can be done, thanks to the random numbers injected to mask the encoded circuit. Precisely, when we decode the encoded data, we can verify the random numbers used to mask circuit using the matrix K. A simple comparator, as shown in Fig. 2, is inserted to check whether the output random number zK are same as y i.e. one used to mask. If they differ, an "alarm" signal will be set to indicate that there has been a fault in the encoded registers. When this "alarm" is high, the circuit can launch a recovery mechanism, for instance to stop its operations, hence preventing an attacker from effectively exploiting faulted outputs. Practical robustness of encoded circuits against SCA, FIA and probing will be rigoursly dealt in future works.

Difference from Private Circuits

The proposed encoded circuits method prevents HTH insertion at two different levels. First, like private circuits [START_REF] Ishai | Private Circuits: Securing Hardware against Probing Attacks[END_REF], it prevents the HTH from retrieving any sensitive data by eavesdropping < d flipflops. This protection impedes the insertion of HTH trigger part. Moreover, for the HTH payload part, the proposed countermeasure also brings another aspect of active HTH detection. If some how the HTH is able to write a malicious value into the state, the encoded state can be checked for errors introduced by the HTH. For a HTH to be functional, its payload must also be encoded with the same code as the original circuit (i.e. C and D matrix).

Comparison with Previous Works

Preventing HTH insertion by encoding internal variables of a circuit have been partially dealt in few previous works. Chakraborty et al. [START_REF] Subhra | Security against hardware trojan through a novel application of design obfuscation[END_REF] initially presented a prevention method which obfuscates only the state machine of the IC. It is inspired by obfuscation methods [START_REF] Yousra | Active hardware metering for intellectual property protection and security[END_REF][START_REF] Subhra | Hardware protection and authentication through netlist level obfuscation[END_REF] initially intended to protect against IC counterfeiting. It partition the states into: an original state space and an isolation state space. The original state space can only be reached using a specific input pattern (ex. secret key). If a wrong input pattern is presented at the input, the IC locks itself in a non-reversible isolation state space. Presented technique protects only the control part, while the data-sensitive part remains attackable. Instead, encoded circuits protect both parts (control and data). Moreover in [START_REF] Subhra | Security against hardware trojan through a novel application of design obfuscation[END_REF], when the IC is well configured to reach the original state, it operates normally and cannot resist others physical attacks. Using encoded circuits, we can theoretically not only protect against HTH insertion attack but also against others physical attacks because of the use of random numbers.

Another prevention method, ODETTE [START_REF] Banga | ODETTE : A Non-Scan Design-for-Test Methodology for Trojan Detection in ICs[END_REF], is more intended to raise the HTH activity for a better detectability than a proactive prevention. Furthermore, each bit of the state is masked with one bit of secret. With our method, we provide a more flexible solution, where the number of "mask" bits can be chosen, thus allowing the designer to adjust the security level. In [START_REF] Roy | EPIC: Ending Piracy of Integrated Circuits[END_REF], authors propose the method named "EPIC" which encodes the combinational logic part whereas in our encoded circuit method, the sequential logic part is encoded. EPIC is based on "security by obscurity" hence probing can be done after configuration to recover the key. This EPIC method is static therefore an attacker can create a HTH which learns the key and subsequently gets activated, hence bypassing the EPIC method. Whereas, our "encoded circuit method" is dynamic because the circuit is encoded with a random mask hence avoiding key learning attacks.

CONCLUSION AND PERSPECTIVES

HTH insertion has become a serious issue with the globalization of semiconductor industry. In this paper, we propose "encoded circuits" to prevent the HTHs insertion. It is based on a quantifiable security metric d, similar to the one introduced for probing by Ishai, Sahai and Wagner at CRYPTO 2003, but adapted to HTH insertion prevention. Here d defines the minimum number of connections required to insert an effective HTH.

We studied the theory of codes and its rationale in "encoded circuits". Practical application from simple circuits like a counter to a full microprocessor are demonstrated. In this proof of concept, the area overhead for encoding a microprocessor was > 6×. This obfuscation method can also potentially prevent against side-channel attacks, fault injection attacks and probing attacks.

As a future work, better codes are to be found for increasing the security (minimal distance d) or decreasing the complexity. This implies two research directions (that can be combined). First of all, shorter codes (with smaller length n) could be imagined. For instance, such codes could result from avoiding the condition that C and D are dual. But in this case, the security property (see Proposition 3.1) would be different, and should be rederived. Also, the computation of the matrices J and K would be different. Second, long codes could be kept, but be chosen with sparse matrices. One possibility are low density parity check (LDPC) codes.

Tab. 3 compares the result of hierarchical and flatten syntheses when protecting an AES Sbox using the proposed encoder/decoder scheme. --- -- --- .128 CORE9GPLL --total 646 5557.386 Type Instances Area Area % ----------------------------------inverter 29 116.998 2.1 logic 617 5440.388 97.9 ----------------------------------total 646 5557.386 100.0

Figure 1 :

 1 Figure 1: An example of HTH

Figure 3 :

 3 Figure 3: Floorplan of an IC with D-flip-flops (in yellow).

Figure 4 :

 4 Figure 4: Layout of an ASIC with D-flip-flops [11] (in gray).

 2. n bits encoded and masked state: z = xG ⊕ yH nk bits k bits useful information: x mask:

Figure 5 :

 5 Figure 5: Principle of "circuit encoding"

Listing 1 :Listing 2 :Figure 6 :

 126 Figure 6: Case study of an 8-bit counter and an 8 × 8 Sbox

[

 89,45,17] and a shortened code derive from it i.e. [86,42,17] [12].

Figure 7 :

 7 Figure 7: Comparison between minimum sizes of the metal 1-6 wires and of the PROBERM6 cell from the CORX9GPLL standard cell library of STMicroelectronics HCMOS9GP technology.

 --total485 4692.007 100.

 1) finds the minimal length n suitable for a QR LCD code. A second algorithm (see listing. 2) computes the four generating matrices G, H, J and K.

	import math , itertools
	def is_prime (n):
	" " " C h e c k s w h e t h e r n i s p r i m e o r n o t " " "
	if n % 2 == 0 and n > 2:
	return False
	return all(n % i for i in \
	range (3, int(math.sqrt(n)) + 1, 2))
	def get_length (k):
	for dim in itertools .count(k, 1):
	for pm1 in [-1, +1]:
	n = 2 * dim + pm1
	if is_prime (n) and (n%8) == 1:
	print " Parameters of the "+\
	" shortest QR code for dimension "+\
	" >= {k}: [{n},{ dim },>={d}]". format (
	n=n,
	k=k,
	dim=dim ,
	d=int(math.ceil(math.sqrt(n))))
	return n

Table 1 :

 1 Synthesis results for the encoded 8-bit counter

		Hierarchical synthesis	Flatten synthesis
	Gate	Instances	Area	Library
	-			

Table 2 :

 2 Synthesis results of Nanoprocessor encoded circuit method, and security parameter.

	IC (Code)	Sequential gates k	Combinational	Area (µm 2)	Security parameter d
	Original (-)	37	199	1181	1
	Encoded ([73,37,13])	73	1001	6926	13
	Encoded ([86,42,17])	86	1410	9717	17
	Encoded ([89,45,17])	89	1754	11296	17

Table 3 :

 3 Synthesis results for encoded Sbox

		Hierarchical synthesis	Flatten synthesis
	Gate	Instances	Area	Library
	-			

* This project has been funded by the French Government, under grant FUI #14 HOMERE 959 (Hardware trOjans : Menaces et robustEsse des ciRcuits intEgrés).

APPENDIX A. EXAMPLE OF CODE GENERATOR MA-TRICES

The generator matrices G and H for codes C and D are given in Eq. (1) and (2). The matrices J and K to recover x and y from z = xG ⊕ yH are in Eq. (3) and (4) respectively.