
HAL Id: hal-01240228
https://hal.science/hal-01240228v1

Submitted on 8 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear complementary dual code improvement to
strengthen encoded circuit against hardware Trojan

horses
Xuan Thuy Ngo, Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, Zakaria

Najm

To cite this version:
Xuan Thuy Ngo, Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, Zakaria Najm. Linear comple-
mentary dual code improvement to strengthen encoded circuit against hardware Trojan horses. IEEE
International Symposium on Hardware Oriented Security and Trust (HOST) 2015, May 2015, McLean,
United States. �10.1109/HST.2015.7140242�. �hal-01240228�

https://hal.science/hal-01240228v1
https://hal.archives-ouvertes.fr

Linear Complementary Dual Code Improvement to
Strengthen Encoded Circuit Against Hardware

Trojan Horses
Xuan Thuy Ngo∗, Shivam Bhasin∗,‡, Jean-Luc Danger∗†, Sylvain Guilley∗†, Zakaria Najm∗

∗ Institut MINES-TELECOM, TELECOM ParisTech, CNRS LTCI (UMR 5141).
† Secure-IC S.A.S., 80 avenue des Buttes de Coësmes, 35 700 Rennes, FRANCE.

‡ Temasek Laboratories, NTU, Singapore.

Abstract—Hardware Trojan Horses (HTH) are a serious threat
to semiconductor industry with significant economic impact. We
introduced in [10] a method called “encoded circuit”, which both
prevents and detects HTH. We achieved this goal using Linear
Complementary Dual (LCD) codes. In this paper, we achieve
a lower overhead and a better tunability by using a Linear
Complementary Pair (LCP) of codes, which are not necessarily
dual. LCP have two security parameters dTrigger and dPayload, such
that the knowledge of strictly less than dTrigger bits of the encoded
state reveals no information about the actual state; in addition,
any HTH which modifies strictly less than dPayload bits of encoded
state, will produce an invalid codeword. The application on an
8-bit processor shows the improvement of the new LCP codes.
We also show that it is possible to fully automate CAD flow to
generate encoded circuits with LCP codes. Finally we encode a
SIMON cryptographic co-processor and test its resistance against
physical attacks like Side-Channel Analysis (SCA) and Fault
Injection Analysis (FIA).

Index Terms—Encoding, Hardware Trojan Horses (HTH),
Side-channel attack, Fault injection attack, Probing attack, Lin-
ear Complementary Dual (LCD) codes, Linear Complementary
Pair (LCP) of codes, Minimal distance, Dual distance.

I. INTRODUCTION

Nowadays, more and more semiconductor companies out-
source their IC designs and fabrication steps because of their
high cost and complexity. Nevertheless, this trend opens the
door for a dangerous attack named Hardware Trojan Horses
(HTH) insertion. A HTH is a malicious module inserted in the
original Integrated Circuit (IC) during at design or fabrication
stage. One inserted, HTH can effectuate various dangerous
task like Denial of Service, leakage of sensible data via circuit
outputs, etc [9]. A HTH can be globally seen as a composition
of two parts:
• Trigger: which reads the target circuit state (to trigger

its malicious function).
• Payload: which writes on the target circuit state (to run

its malicious function).
Once inserted, one cannot remove a HTH, therefore HTH has
become a hot topic in the hardware security field.

Xuan Thuy Ngo is the corresponding author. This project has been funded
by the French Government, under grant FUI #14 HOMERE 959 (Hardware
trOjans : Menaces et robustEsse des ciRcuits intEgrés).

One prominent research direction to fight against HTH
relies on detection. Detection is based on several techniques
like hardware software co-design [5], reconfigurable logic [1],
logic testing [3] and side-channel analysis [2]. But each
detection method has its own limitations. For example, logic
testing cannot cover all possible test vectors when the IC is
complex. The side-channel analysis needs a golden model to
build the reference. A standard technique to obtain a golden
model is still an open question.

Because of the limitations in detection techniques, preven-
tion methods have emerged as an alternate research axis to
fight against HTH. HTH prevention consists in altering the
original circuit in order to thwart HTH insertion. In the state of
the art, there are a few works on the HTH prevention method.
Chakraborty et al. [6] initially presented a prevention method
which obfuscates the state machine of the IC registers. But
the presented technique protects only the control part, while
the data-sensitive part remains attackable. In ODETTE [3],
Authors are more intended to raise the HTH activity for a
better detectability than a proactive prevention. In [11], authors
propose the method named “EPIC” which encodes the combi-
national logic part. EPIC is based on “security by obscurity”
hence probing can be done after configuration to recover the
key. This EPIC method is static therefore an attacker can
create a HTH which learns the key and subsequently gets
activated, hence bypassing the EPIC method. Recently in [10],
we propose a prevention technique named “encoded circuit”.
This technique, based on the paper of Ishai, Sahai and Wagner
presented at CRYPTO 2003 [8], encodes and masks all internal
registers (including control and data registers) with a Linear
Complementary Dual (LCD) code. It ensures that any HTH
connected to strictly less than d registers (d is the minimal
distance of chosen code used as security parameter) will be
ineffective.

In this paper, we study the performance of the “encoded
circuit” method using a Linear Complementary Pair (LCP) of
codes. This is a generalization of LCD, with two different
security parameters: dTrigger and dPayload. These parameters are
the dual distance of code D and minimal distance of code C
used to encode the random mask and the IC sensitive data
respectively. The parameter dTrigger is used to foil the HTH
“Trigger” part. It ensures that HTH, if connected to strictly

Original circuit

merging
Combinational

merging
Combinational

Encoded circuit

Combi

6=?

alarm

RNG

Combi

Combi Combi
k k

O
ri
gi
n
al

S
ta
te outputs

inputs

k n

n z
x

n− kn− k
E
n
co
d
ed

S
ta
te

KH

random numbers

encoder
Random Random

decoder

n

J

in
p
u
ts

Decoder
J

k ou
tp
u
ts

y

Decoder Encoder
G

Fig. 1. Architecture of “Encoded Circuit”, exemplified on a canonical Moore
machine [10].

less than dTrigger registers will not be effective. The parameter
dPayload is used to impede the HTH “Payload” part. It ensures
that HTH, which tries to modify strictly less than dPayload
registers, will create a wrong codeword. These two parameters
give us a larger possible choice for different applications hence
reducing the overhead comparing with the previous method
based on LCD [10]. Next, we propose a fully automated design
flow to encode any digital circuit. The presented design flow
uses the standard CMOS process and can be used by any
hardware designers who have little knowledge of security.
Furthermore we analyze the effectiveness of encoded circuits
against physical attacks (side-channel and faults attacks). This
analysis is performed on an encoded SIMON [4] crypto-
processor implemented on an FPGA.

The rest of this paper is structured as follows. Sec. II
gives the summary of “encoded circuit method” and the
definition of the two new security parameters. Sec. III shows
the construction of the new LCP codes. Sec. IV details the
automated design flow used to encode ICs. Sec. V presents
some case studies and also the improvement of the new LCP
codes comparing with LCD used in [10]. Sec. VI evaluates the
security of the method against other physical attacks. Finally
we conclude in Sec. VII.

II. SECURITY PARAMETERS

A. Encoded Circuit Principle

The “encoded circuit” method, presented in [10] is based on
the following observation: all ICs are composed of 2 distinct
parts: combinational and sequential part. The sequential
part, including data and control registers or flipflops, are easier
to recognize on the IC layout and netlist because of their
bigger size in comparison with combinational logic gates.
Therefore, it is easier for an attacker to connect the HTH to
the sequential part. Based on this observation, we propose to
encode and mask all sequential registers with a LCD code [10].
The principle of this method is presented in the Fig. 1.

A linear Boolean code C (with generator matrix G) of size
k and length n is used to encode an original state x of k bits.
Then the encoded state is masked with the random number

y, which serves as a pool of entropy, to obtain an encoded
and masked state z=xG ⊕ yH. The mask y is also encoded
by a code D (with generator matrix H) of size (n − k) and
length n. Any HTH, which probes the state z, will not be
effective. In order to retrieve x and y from z, C and D must be
supplementary. G, H , J and K are respectively the generating
matrix of encoding and decoding of C and D. They allow to
protect all sequential part (including control and data) of ICs
against HTH. Then using the “flatten” option for synthesizing
the encoded circuit, compiler tools will optimize/merge the
combinational part of original circuit with the coding logic
part thus obfuscating also the IC combinational part [10].

B. Proposed Security Parameters

In the “encoded circuit” method, we use the security pa-
rameter d which is at the same time the dual distance of D
and the minimal distance of C. This parameter ensures that
any HTH connected to strictly less than d bits of z will not
be effective. We notice that C and D = C⊥ are Quadratic
Residue codes (QR).

In this article, we propose a generalization of LCD codes,
namely LCP codes. A pair of codes C and D are LCP if they
are complementary. We define the minimal distance of C and
the dual distance of D as 2 distinct security parameters dPayload
and dTrigger. Clearly, if C and D are LCP and dual, then they
are LCD, with dPayload = dTrigger.

A characterization of the two parameters of LCP codes is
the following:

• dTrigger: insures that HTH, which probes dTrigger − 1 (or
less) bits of the encoded & masked state z, does not
disclose any information on x.

• dPayload: insures that HTH, which modifies dPayload − 1
(or less) bits of the encoded & masked state z, cannot
produce a valid codeword.

This is feasible, as stated in the following properties.

Property II.1. The encoding of x as z = xG ⊕ yH , where
y is a uniformly distributed mask in Fn−k2 does not reveal
any information on x provided up to dTrigger − 1 bits of z are
known, if and only if D is of dual distance dTrigger.

Property II.2. Let us consider the encoding of x as z =
xG ⊕ yH , where y is a uniformly distributed mask in Fn−k2 .
Any fault on z of Hamming weight strictly smaller than dPayload

can be detected, if and only if C is of minimal distance dPayload.

Now, how to determine the parameters dTrigger and dPayload?
The rationale is the following: large HTH can be detected by
various means (optical inspection of the chip, SCA, etc.). So,
the minimal size of a HTH that would be difficult to identify
is captured by distances dTrigger and dPayload. A stealthy HTH
below those distances would have uncontrollable trigger and
would certainly be captured red-handed when executing its
payload.

III. CONSTRUCTION OF LCP CODES

A. LCP Codes Properties

For the construction of LCP codes, we need to create
two space vectors C and D (seen as linear codes) that are
supplementary, i.e., C ⊕ D = Fn2 , with those additional
constraints:

1) D must be of dual distance dTrigger;
2) C must be of minimal distance dPayload.
In our application, C is used to encode original state of k

bits therefore the dimension of C is k and the dimension of D
is n− k. So, for a given k, we search for the smallest n ≥ k
such that:

1) there exists a code D of parameters [n, n − k] and of
dual distance dTrigger, i.e., there exists a code C ′ = D⊥

of parameters [n, k, dTrigger],
2) there exists a code C of parameters [n, k, dPayload].
We write the generating matrix G of C in a systematic form

G =
(
Ik M

)
, where M is a k×n−k matrix. Similarly, we

write the generating matrix H of D as H =
(
N In−k

)
,

where N is a (n− k)× k matrix.

Proposition 1. The three following statements are equivalent:

1) The matrix
(
G
H

)
=

(
Ik M
N In−k

)
is invertible;

2) The matrix Ik ⊕MN is invertible.
3) The matrix In−k ⊕NM is invertible.

Corollary 1. When it is invertible (see Proposition 1), the

inverse of matrix
(
Ik M
N In−k

)
is given by:(

Ik M
N In−k

)−1
=

(
(Ik ⊕MN)−1 M(In−k ⊕NM)−1

N(Ik ⊕MN)−1 (In−k ⊕NM)−1

)
.

Remark 1. If N =MT, then GHT = 0, which is equivalent
to say that each LCP code is a LCD code.

B. Algorithmic Construction of LCP Codes

This section presents an LCP codes construction example
for dTrigger > dPayload based on the properties presented in
Sec. III-A. The different steps of LCP construction are:
• Choose the shortest best known linear code (BKLC),

termed C ′, of dimension k and minimal distance at least
dTrigger. This can be done by known constructions (see
MAGMA [12]). Nota bene: in listing 1, C ′ is Cp.

• Call D the code C ′⊥, and complement D with k vectors
ei, for 1 ≤ i ≤ n where ei are the canonical basis vectors
of Fn2 , so as to get the basis of a new code C.

• Generate matrix H of code D.
• Generate matrix G of C. This code C has the required

parameters [n, k, dPayload].
• Generate the decoding matrices J and K.

In terms of matrices, this construction consists in writing
the generating matrix of D as H =

(
N In−k

)
, and in

choosing G =
(
Ik M

)
for the generating matrix of C.

When C and D form a LCP, Ik ⊕MN and In−k ⊕NM are
invertible (by Proposition 1).

The Magma script (see listing. 1) shows the computation of
C, D codes and also the generating matrix G, H , J and K
for an initial state x of 37 bits, dTrigger = 13 and dPayload = 10.

k := 3 7 ; / / Can be adap ted
d T r i g g e r := 1 3 ; / / Can be adap ted
d Pay load := 1 0 ; / / Can be adap ted

Cp := BestLengthLinearCode (GF (2) , k , d T r i g g e r) ;
n := Length (Cp) ;
D := StandardForm (Dual (Cp)) ;
H := GeneratorMatrix (D) ;
N := ColumnSubmatrix (H, n−k +1 , k) ;
H := HorizontalJoin (N, IdentityMatrix (GF (2) , n−k)) ;
D := LinearCode (H) ;

repeat
repeat M := RandomMatrix (GF (2) , k , n−k) ;
until Rank (IdentityMatrix (GF (2) , n−k) + N∗M)
eq n−k ; / / I t em 3) o f P r o p o s i t i o n 1 .
G := HorizontalJoin (IdentityMatrix (GF (2) , k) , M) ;
C := LinearCode (G) ;
until MinimumWeight (C) ge d Pay load ;

Dimension (C meet D) ; / / Must be z e r o
Dimension (C + D) ; / / Must be e q u a l t o n

/ / A p p l i c a t i o n o f C o r o l l a r y 1 .
Inv1 := (IdentityMatrix (GF (2) , k) + M∗N)ˆ−1;
Inv2 := (IdentityMatrix (GF (2) , n−k) + N∗M)ˆ−1;
J := VerticalJoin (Inv1 , N∗ Inv1) ;
K := VerticalJoin (M∗ Inv2 , Inv2) ;
VerticalJoin (G, H) ∗ HorizontalJoin (J , K)
eq IdentityMatrix (GF (2) , n) ; / / S a n i t y check

Listing 1. Generation of matrices G, H , J , K

For the case where dTrigger < dPayload, we compute directly
C code by choosing the shortest best known linear code
(BKLC) C ′ = C of dimension k and minimal distance at
least dPayload. Then we calculate D code with the parameters
[n, n− k, dTrigger] using the supplementary of C.

IV. AUTOMATED DESIGN FLOW FOR ENCODED CIRCUIT

We briefly described the theory of encoded circuits in pre-
vious section. The method to encode a standard digital circuit
is straightforward, which makes it easy to automate. The
fully automated design flow for encoding a given hardware
to protect against HTH insertion is shown in the Fig. 2. The
flow can be divided into six distinct steps which are as follows:

a) Logic Synthesis: This step is native to any design flow.
The user synthesizes a HDL description of the design with a
synthesis script (in TCL), which constraints the tool to flatten
the netlist (ex. “ungroup -flatten -all” in Encounter
RC from Cadence). This steps ensures that we enter into
the paradigm of the Moore machine such that all sequential
elements are gathered into a global state. Next, we check that
the design is coded in a way such that there is no logic from the
clock and reset inputs till the flip-flops. Last, the synthesizer
is constrained not to use flip-flops that “compute”, e.g., flip-
flops with an enable or two inputs (it is usual to find these
gates in standard cell libraries, because they are dedicated to
the test of the circuit). So, we use only non-test flip-flops
which can be enforced by the “set_attribute avoid
true libcell libcell_location” TCL constraint in

Fig. 2. Design flow for encoding method integration.

Cadence Encounter Compiler. Besides, we make sure the
design has no latches in it. The synthesis exports the netlist
as design.v.

b) Split Design: This is the first step of modified design
flow: We identify and separate the sequential part of the
design from the combinational part. For the sequential part,
it is also important to keep the initial value at reset for each
flip-flop. In our tools, we found it convenient to simply use
regular expressions to identify the flip-flop gates. Namely, their
name matches HS65_LS_FDR* (the DFF name in the target
technology). The final wildcard comprises the various loads.
The number of DFF is k, and their initial state is denoted
as x0 ∈ Fk2 . For the combinational part of the circuit, it is
sufficient to remove all the flip-flops, followed by addition of
a from_seq input and a to_seq output bus (of bitwidth k).
The automation is achieved with Python. This step generates
two files: design_comb.v and design_seq.v.

c) Add Combinational Code: In this step, the user inputs
the security parameters dTrigger and dPayload. Using the value k
derived from the previous step, the script generates HDL code
for matrices G, H , J and K for a suitable n. Next the file
design_comb.v is connected with the HDL of matrices G,
H , J and K as shown in Fig. 1. The connection between matri-
ces and the combinational circuit is done automatically using a
Python script. This step generates design_comb_coded.v
at the output and the hierarchical structure of the file is kept
intact at this stage. Also, at this stage, the Random Number
Generator (RNG) which produces (n − k) bits of random
numbers at every clock period, is considered as a black-box.

d) Encode Sequential Part: The input of this step is
design_seq.v. This step comprises of regeneration of with
data input / output as a bus of bitwidth n, and programmed
with encoded initial state x0G at reset. In other words, k flip-
flops in the uncoded state are replaced by n flip-flops in the
encoded state, keeping the equivalent state at reset.

e) Synthesize Encoded Design: This step takes netlists
design_comb_coded.v, design_seq_coded.v along
with a RNG description rng.v and a wrapper circuit
design_coded_wrapper.v as inputs. The function of the
wrapper circuit is to connect the combinational and sequential
part of the encoded circuit, while keeping the same interface
as original design. All the files are fed to a logic synthesizer
to generate a flattened netlist of the encoded design i.e.
design_coded_flat.v.

f) Place & Route: The rest of the design flow is same as
the standard design flow. In this step, the designer gives the
synthesized netlist design_coded_flat.v. The design is
then placed and routed to generate the final layout (GDSII).

V. CASE STUDIES

A. 8 Bits Processor

In this section, we encode practical circuits using the
proposed design flow and compare with the code used in [10].
In order to compare the new code with the once used in [10],
we use the same target circuit, namely the nanoprocessor.
This is a 8-bit processor without pipeline which requires 3
clock cycle to execute every instruction [13]. It has 16 basic
instructions, and operates using an external 256 byte memory.
The unprotected processor gives the following after synthe-
sis 37 sequential cells (flip-flops) and 199 combinational
gates. Then we applied 2 new LCP codes [81,37,17,12] and
[81,37,17,8], whose parameters are interpreted as:
• 81 is the length of codeword (n),
• 37 is the length of initial state (k),
• 17 is dTrigger,
• 12 and 8 are two values of dPayload.

The results are presented in Tab. I. We can notice that with
the new code, we can reduce the overhead from 9717 (old
code [10]) to 7377/7324 µm2 (new codes) with the same
dTrigger parameter. We also noticed that the area is reduced
from 7377 to 7324 µm2 by reducing the dPayload from 12
to 8 in the new codes. So with a smaller dPayload, we can
reduce the overhead of encoded method. Another new code
example ([49,37,5,3]) for the nanoprocessor is also proposed.
The overhead of this code is < 3×. It could be acceptable for
certain applications.

B. SIMON Cryptographic Coprocessor

In our second study, we use a lightweight crypto-processor
SIMON. This cipherblock use a 32-bits plaintext and 64-bits
of key and compute 32-bit ciphertext after 32 rounds. The
unprotected SIMON gives the following after synthesis:
• 109 sequential cells (flip-flops),
• 300 combinational gates.

Thus we have k = 109 for the original SIMON netlist.
It is interesting to compare “encoded circuits” (this paper)

with “private circuits” [8]. Private circuits have an overhead
quadratic with dTrigger. For example, for dTrigger = 2 (i.e.,

TABLE I
SYNTHESIS RESULTS OF ENCODED CIRCUIT METHOD, AND SECURITY

PARAMETERS FOR THE NANOPROCESSOR.

IC (Code) Gates Area (µm2) n k dTrigger dPayload

Original ([37,37,1,1]†) 199 1181 37 37 1
Encoded ([86,42,17]) 1410 9717 86 37 17[Prev. work: LCD codes [10]]

Encoded ([73,37,17,12]) 1159 7377 81 37 17 12[This work: LCP codes]
Encoded ([73,37,17,8]) 1151 7324 81 37 17 8[This work: LCP codes]
Encoded ([49,37,5,3]) 433 3137 49 37 5 3[This work: LCP codes]

†: Notice that the [37, 37, 1, 1] code is the identity function (i.e., no encoding is used).

TABLE II
SYNTHESIS RESULTS OF ENCODED CIRCUIT METHOD, AND SECURITY

PARAMETERS FOR THE SIMON CO-PROCESSOR.

IC (Code) Gates Area (µm2) n k dTrigger dPayload

Original ([109,109,1]) 300 1919 109 109 1

Encoded ([110,109,2,1]) 560 3567 110 109 2 1[This work: LCP codes]
Encoded ([140,109,10,6]) 3107 20239 140 109 10 6[This work: LCP codes]
Encoded ([123,109,5,3]) 2348 15249 123 109 5 3[This work: LCP codes]

resistance to a single probe attack), the overhead is 39.7×
in area (results obtained on Virtex5 FPGA). For the sake of
comparison, we coded SIMON with LCP codes such that
dTrigger = 2 and dPayload = 1. Table II shows that the overhead
is only 1.9×, for the same level of security, using LCP.

In addition, Tab. II also presents the results of two LCP
codes [140,109,10,6] and [123,109,5,3] on SIMON. This
application shows that the encoding method can be used
for very different ICs. These encoded SIMON circuits are
also implemented on the FPGA to evaluate their performance
against physical attacks. The analyses against physical attacks
are presented in the following section.

VI. SECURITY EVALUATION

In this section, we evaluate the encoded circuit method
performance against other physical attacks as Probing Attack,
Side-Channel Attack and Fault-Injection Attack.

A. Probing Attack

As encoded circuits are based on private circuits, they
directly address the threat of probing attack. Probing attacks
(front-side or back-side [7]) use tiny probes to monitor the
inputs/outputs of internal blocks to directly recover sensitive
data. By encoding all internal sequential logic parts and by
masking encoded data with random numbers, this prevention
method can also protect IC against probing attack with less
than dTrigger − 1 probes.

B. Side Channel Attack (SCA)

SCA extracts sensitive information from a circuit using
the power consumption, electromagnetic leakage or delay
analysis. We applied SCA on the encoded SIMON circuit

0 10 20 30 40 45 50

0.01

0.02

0.03

0.04

0.05

0.06

Sample

N
IC

V

Original SIMON

Encoded SIMON [123,109,5,3] without RNG

Encoded SIMON [123,109,5,3] with RNG

Encoded SIMON [140,109,10,6] with RNG

Fig. 3. NICV for encoded SIMON circuit

(as in Tab. I). The platform setup is a Sasebo GII FPGA
Board (which contains a Virtex-5 FPGA) running at 24 MHz,
Langer RFU 5− 2 EM probe. For each design we acquired
200.000 traces with random plaintexts.

Next we use leakage detection techniques to check traces for
any first-order leakage. We precisely compute the Normalized
Inter Class Variance (NICV) with respect to the plaintext
in the traces. NICV is computed as: NICV = Var[E[T |X]]

Var[T] ,
where T denotes side-channel traces and X represent a chosen
nibble of plaintext. The Fig. 3 shows four NICV computations
for one key byte of four different designs: uncoded SIMON,
encoded SIMON [123,109,5,3] with RNG deactivated, en-
coded SIMON [123,109,5,3] with RNG activated and encoded
SIMON [140,109,10,6] with RNG activated. By observing
the results, we notice the following conclusions. First of all,
encoded circuit without RNG should not be used, as the side-
channel leakage is amplified. This is because during encoding
we transform the code linearly without confusion, thus any
linear distinguisher can detect the leakage. Secondly, encoded
circuit with RNG do reduce side-channel leakage to an extent.
The gain in SCA resistance is bounded due to limited entropy.
Finally, as we increase dTrigger from 5 to 10, we increase the
entropy and therefore reduce the side-channel leakage.

We also compute the inverse security gain i.e. the ratio be-
tween the NICV maximum value of encoded SIMON circuits
with the one of original SIMON circuit. The inverse security
gain w.r.t to original SIMON is 3.7 for encoded SIMON
[123,109,5,3] without RNG, 0.0996 for encoded SIMON
[123,109,5,3] with RNG and 0.085 for SIMON [123,109,10,6]
with RNG. The results shows that the Signal Noise Ratio
(SNR) reduces significantly with the encoded circuit and
dTrigger can be used as the security parameter of side-channel
attacks.

C. Fault Injection Attack

As stated earlier, encoded circuits can also be used to
detect Fault Injection Attacks (FIA). This can be done by
decoding and verifying the random numbers injected to mask
the encoded circuit. Precisely, decoding can be done using the

0 2000 4000 6000 8000 10000

1

2

3

4

Time

P
o
w
e
r

Trigger Signal

Alarm Signal

Fig. 4. Global fault injection for one SIMON cipher computation

0 2 4 6 8 10

2

4

6

8

10

Fault Number

D
e
t
e
c
t
io
n
N
u
m
b
e
r

Fig. 5. EM FIA: Number of Detection = F(Number of Fault)

matrix K and the compared as shown in Fig. 1. If the input and
output random differ, an “alarm” signal is raised and recovery
mechanism like global reset is launched.

To evaluate this aspect of encoded circuit, we implemented
the encoded SIMON [123,109,5,3] on the Sasebo-W FPGA
board and UART for external communications. Then we
perform global and local FIA on this board. The global FIA
is done by varying the circuit frequency to inject the faults.
The Fig. 4 presents the screenshot of “alarm” signal for one
SIMON cipher computation. In this case, “alarm” signal is
triggered whenever there is a fault. The results show that
encoded circuit can detect the global FIA. Moreover, faults
in individual rounds are detected separately.

For local FIA, we used electromagnetic injection (EMI). For
the best evaluation of the encoded circuit against local FIA,
we separate the location of each block on FPGA. The encoded
SIMON is isolated from UART block and RNG block. Then
we inject a single electromagnetic signal on the encoded
SIMON. It insures that we will fault only encoded SIMON.
We inject faults using an electromagnetic pulse of width of
1.5 ns. The EM pulse is injected from the beginning to the
end of SIMON computation with a step of 1 ns. So in total,
we perform 2560 steps. For each step, we perform 10 EMI. In
each experiment, SIMON computes with the same plaintext
and key. The Fig. 5 represents the number of detection in
function versus the number of produced faults. We can notice
that encoded SIMON can detect almost all produced faults.
There are a few case, where the number of detection is smaller
than the number of produced faults. This reduction is due to
the setup modification between each FIA (setup instability).
For 2560 delay steps EMI, there are statistically 2557 cases
where the number of detection is equal to the number of faults.
So these first experiments demonstrate that encoded circuit
method can detect FIA even with a high-cost FIA technique
(EMI FIA).

VII. CONCLUSIONS

In this paper, we propose Linear Complementary Pair (LCP)
of codes to encode the IC hence preventing HTHs insertion.
They are based on two quantifiable security metrics: dTrigger
and dPayload. Here dTrigger defines the minimum number of
connections required to insert an effective HTH and dPayload
defines the minimum number of state that HTH needs to
modify, to be (hopefully) undetected.

The paper presents the definition and the construction of
the new LCP codes and also their application on 2 circuits: a
nanoprocessor and a SIMON cryptographic co-processor. The
results shows that we reduce the overhead of encoded circuit
from ≈ 10× to ≈ 7× with the new LCP codes comparing with
LCD codes [10]. By adjusting the two security parameters,
we can further reduce the overhead. Several experiments are
performed to demonstrate the effectiveness of encoded circuit
method against side-channel attack and fault injection attacks.
This method reduces significantly the leakage on side-channel
and allows to detect reliably both global and local fault
injection attack.

REFERENCES

[1] Miron Abramovici and Paul Bradley. Integrated circuit security: new
threats and solutions. In Frederick T. Sheldon, Greg Peterson, Axel W.
Krings, Robert K. Abercrombie, and Ali Mili, editors, CSIIRW, page 55.
ACM, 2009.

[2] Dakshi Agrawal, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and
Berk Sunar. Trojan Detection using IC Fingerprinting. In Proceedings
of the 2007 IEEE Symposium on Security and Privacy, SP ’07, pages
296–310, Washington, DC, USA, 2007. IEEE Computer Society.

[3] M. Banga and M. S. Hsiao. ODETTE : A Non-Scan Design-for-Test
Methodology for Trojan Detection in ICs. In HOST, IEEE, pages 18–23,
2011.

[4] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers. The SIMON and SPECK Families
of Lightweight Block Ciphers. Cryptology ePrint Archive, Report
2013/404, 2013. http://eprint.iacr.org/2013/404.

[5] Gedare Bloom, Bhagirath Narahari, and Rahul Simha. OS Support for
Detecting Trojan Circuit Attacks. In Mohammad Tehranipoor and Jim
Plusquellic, editors, HOST, pages 100–103. IEEE Comp. Soc., 2009.

[6] R. S. Chakraborty and S. Bhunia. Security against hardware trojan
through a novel application of design obfuscation. In ICCAD, IEEE,
pages 113–116, 2009.

[7] Clemens Helfmeier, Dmitry Nedospasov, Christopher Tarnovsky,
Jan Starbug Krissler, Christian Boit, and Jean-Pierre Seifert. Breaking
and entering through the silicon. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM Conference on Computer and
Communications Security, pages 733–744. ACM, 2013.

[8] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO, volume 2729 of Lecture
Notes in Computer Science, pages 463–481. Springer, August 17–21
2003. Santa Barbara, CA, USA.

[9] Yier Jin, Nathan Kupp, and Yiorgos Makris. Experiences in hardware
trojan design and implementation. In Proceedings of the 2009 IEEE
International Workshop on Hardware-Oriented Security and Trust, HST
’09, pages 50–57, Washington, DC, USA, 2009. IEEE Computer Soc.

[10] Xuan Thuy Ngo, Sylvain Guilley, Shivam Bhasin, Jean-Luc Danger, and
Zakaria Najm. Encoding the state of integrated circuits: A proactive and
reactive protection against hardware trojans horses. WESS ’14, pages
7:1–7:10, New York, NY, USA, 2014. ACM.

[11] Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov. EPIC: Ending
Piracy of Integrated Circuits. In DATE, pages 1069–1074. IEEE, 2008.

[12] University of Sydney. Magma Computational Algebra System. http:
//magma.maths.usyd.edu.au/magma/, Accessed on 2014-08-22.

[13] M.J. Wirthlin, B.L. Hutchings, and K.L. Gilson. The Nano Processor:
a low resource reconfigurable processor. In IEEE Workshop on FPGAs
for Custom Computing Machines, 1994, pages 23–30, Apr 1994.

http://eprint.iacr.org/2013/404
http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/

	Introduction
	Security Parameters
	Encoded Circuit Principle
	Proposed Security Parameters

	Construction of LCP Codes
	LCP Codes Properties
	Algorithmic Construction of LCP Codes

	Automated Design Flow for Encoded Circuit
	Case studies
	8 Bits Processor
	SIMON Cryptographic Coprocessor

	Security Evaluation
	Probing Attack
	Side Channel Attack (SCA)
	Fault Injection Attack

	Conclusions
	References

