
HAL Id: hal-01240226
https://hal.science/hal-01240226

Submitted on 10 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware property checker for run-time Hardware
Trojan detection

Xuan Thuy Ngo, Jean-Luc Danger, Sylvain Guilley, Zakaria Najm, Olivier
Emery

To cite this version:
Xuan Thuy Ngo, Jean-Luc Danger, Sylvain Guilley, Zakaria Najm, Olivier Emery. Hardware property
checker for run-time Hardware Trojan detection. Euromicro Conference on Digital System Design
(DSD) 2015, Aug 2015, Trondheim, Norway. �10.1109/ECCTD.2015.7300085�. �hal-01240226�

https://hal.science/hal-01240226
https://hal.archives-ouvertes.fr


Hardware Property Checker for Run-Time
Hardware Trojan Detection

Xuan Thuy Ngo∗, Jean-Luc Danger∗†, Sylvain Guilley∗†, Zakaria Najm∗ and Olivier Emery†
∗ Institut MINES-TELECOM, TELECOM ParisTech, CNRS LTCI (UMR 5141), 75 634 PARIS Cedex 13, FRANCE.
† Secure-IC S.A.S., ZAC des Champs Blancs, 15, rue Claude Chappe – Bât. B, 35 510 Cesson-Sévigné, FRANCE.

Abstract—Nowadays, Hardware Trojans (HTs) become a real
threat because of IC design and fabrication outsourcing trend.
In the state of the art, many efforts were devoted to counter
this threat, especially at netlist level. However, some clever HTs
are actually a combination between a hardware and a software
vulnerability, which, together, allow an exploitation. In this paper,
we intend to detect such advanced HT, by resorting to a run-time
detection. This method consists in identifying some high-level
and critical behavioral invariants, and by checking them during
the circuit operation. The assertion and Property Specification
Language (PSL) is used to describe the properties to be checked.
Then, a Hardware Property Checker (HPC) is created and
integrated in the IC in order to verify these properties in run-
time. We discuss how to define the critical properties for HPC.
We also explain how this method is complementary with others,
especially how the Hardware Checker can itself be protected
against a tampering attempt. A case of study on LEON processor
was performed to demonstrate the feasibility of this detection
technique.

Index Terms—Hardware Trojans (HT), Run-time detection,
Hardware Property Checker (HPC), Assertions, Property Spec-
ification Language (PSL).

I. INTRODUCTION

Nowadays, more and more semiconductor companies out-
source their IC designs and fabrication steps because of their
high cost and complexity. Nevertheless, this trend opens the
door for a dangerous attack named Hardware Trojan (HT)
insertion. A HT is a malicious module inserted in the original
Integrated Circuit (IC) during at design or fabrication stage. A
properly inserted HT can effectuate various dangerous tasks
like Denial of Service, leakage of sensible data via circuit
outputs, etc [9]. A HT can be globally seen as a composition
of two parts: a trigger, which reads the target circuit state,
and a payload, which writes on the target circuit state (to run
its malicious function). Once inserted, we cannot remove a
HT. Therefore HT has become a hot topic in the hardware
security field. Because of its dangerous nature, many works
have investigated detection methods.

In the state of the art (Fig. 1), there are two main protection
approaches against HT: detection and prevention.

In the prevention technique, the goal is to modify the
original circuit to either assist another protection technique or
obfuscate the original logic part. The obfuscation technique

Xuan Thuy Ngo is the corresponding author. This project has been funded
by the French Government, under grant FUI #14 HOMERE 959 (Hardware
trOjans : Menaces et robustEsse des ciRcuits intEgrés).

HT Protection

Post Production
Detection

Supportive
Design Design

Secure
Production

Trusted	
Destructive Non−Destructive

Optical Run−Time Test−Time

Side Channel
Analysis

Testing
Logic

Prevention

Fig. 1. Hardware trojan protection techniques

ensures that attacker dont have enough information to insert
an efficient HT [12], [4].

Detection methods encompass optical, test-time or run-
time approaches. In deep sub-micron CMOS processes, the
optical method uses destructive reverse engineering techniques
to find out the HT [13]. The test-time detection is based
on several techniques like hardware software co-design [6],
reconfigurable logic [1], logic testing [3] and side-channel
analysis [2].

Regarding the run-time method, Huffmire et al. specify
legal memory access policies for FPGA-based embedded
systems [8]. The policies are synthesized into a reconfigurable
hardware module that decides the legality of every memory
access request generated from a datapath module. This work
was further developed into a method of generating hardware-
based security checkers to detect processor malicious inclu-
sions at runtime [5]. Security-relevant invariants of a proces-
sor’s architectural specification are described on corresponding
circuits of the processor’s design using Property Specification
Language assertions. Security checkers are then automatically
generated as synthesizable hardware to verify linear temporal
logic properties of expected behaviors.

In this paper, we also focus on the run-time checker ap-
proach, which is recently used for faults detection, to detect
the HT during the IC operation. The goal is to create a
synthesizable assertions module Hardware Property Checker
(HPC) which verifies the permitted and prohibited behaviors
of IC at run-time. In the previous works [5], authors concen-
trated rather on PSL to HDL conversion tool rather than HT
detection. In this article, we show how to define the completed



properties list which will be checked by the HPC for HT
detection. Moreover we propose three original approaches to
protect HPC itself against HT.

The rest of this paper is structured as follows. Sec. II gives
the summary of assertions, Property Specification Language
(PSL) and how the HPC can be inserted in the design flow.
Sec. III discusses about how to define the sensitive properties
that will be checked by HPC for HT detection. Sec. V
proposes some approaches for HPC protection against HT
attack. Finally we conclude in Sec. VI.

II. HARDWARE PROPERTY CHECKER

A. Assertion and Property Specification Language

Assertions have been used by chip designers for many years
to aid in the evaluation of functional correctness, and so-called
assertion-based verification is common in the processor design
industry today.

Hardware assertions differ from software assertions in an
important way, because hardware languages are primarily
based on constructs that execute in parallel, whereas most
software languages describe execution that is fundamentally
sequential. In general, a software assertion is checked when
the program execution arrives at the assertion point, but a
hardware assertion is continuously evaluated, in parallel with
the rest of the system’s execution.

Before the advent of hardware verification, assertions had
long been used to verify the correctness of software programs,
and the idea has been around for even longer. The assertion
concept was introduced by Goldstine and von Neumann in
1947, according to Jones. PSL evolved from a language called
Sugar, developed by IBM. Sugar, used for model-checking,
was so-named because it featured a great deal of “syntactic
sugar,” so that temporal logic formulas could be written in a
way that is more easily understood. The initial standardization
effort was led by Accellera, and PSL was standardized by
IEEE in 2005; the most recent version was approved in 2010
under number 1850-2010. PSL is a language for the formal
specification of hardware. It is used to describe properties
that are required to hold in the design under verification.
PSL provides a means to write specifications that are both
easy to read and mathematically precise. It is intended to
be used for functional specification on the one hand and as
input to functional verification tools on the other. Thus, a
PSL specification is an executable specification of a hardware
design.

B. Hardware Property Checker

As discussed in the previous section, the assertions or PSL
allows to check the permitted and prohibited circuit properties.
And in many HT insertion examples [10], [9], attackers try
to modify the behaviour or violate the property of the target
circuit1. Therefore, assertions are an adapted approach for HT
detection. The main idea is to find out the critical properties of
the target circuit which can detect potentially the HT payload.

1Exceptions are kill-switches, which merely destroy the targetted chip.

RTL level

Simulation

Simulation &
Assertions

Simulation

Yes

Implementation

8

9

Circuit

Specification and abstract

Assertion 

insertion

Assertion

No

Yes No

No

Yes

1

3

4

5

6

2
Property list

Convertion
7

HPC Creation→

Fig. 2. Design Flow with Hardware Property Checker

Then, a hardware module, that we called Hardware Property
Checker (HPC), is synthesized which checks dynamically
these IC properties at run-time. The Figure 2 presents the
modified design flow for HPC integration. It is composed of
the following steps:

1) Define the specification of the target circuit.
2) Transfer to RTL level.
3) Simulate the RTL of target circuit.
4) Define the critical properties list based on target circuit

specification.
5) Create the corresponding assertions for these properties

using PSL.
6) Simulate these assertions.
7) Convert these assertions to a synthesizable HDL module

and create HPC.
8) Simulate the HPC.
9) Implement the target circuit and HPC.

This technique is based on one main feature: the properties
conversion into the synthesizable module HPC. In the state
of the art, there are several works on the run-time checker
for acceptance of properties for faults detection at run-time.
Example are the construction of “Testers” [11] for dynamic
verification or “SynPSL” [7] which translates logic formulas
into equivalent synthesizable HDL entities. Recently, in [5],
Bilzor et al. propose a tool, named “psl2hdl” which trans-
lates directly PSL syntax into equivalent HDL entities. But
they focus on the psl2hdl tool development and give just
a small example for HT detection. In this paper, we apply
these tools to generate the HPC for HT detection purpose. We
also explain how to define the complete Hardware Property
Checker for HT detection and propose some protection for
HPC against HT attack.



III. PROPERTIES DEFINITION FOR HPC

The goal of HPC is to verify critical properties. Any HT
which violates these properties will be detected. However,
how we can define these properties? These properties can be
found thanks to two approaches: Using circuit specification
or studing the existing HTs in the state of the art.

A. Properties Definition with IC Specification

Any IC comes with a technical specification and docu-
mentation which defines its purposes and constraints. So it
is the main source of the properties definition needed for
HT detection. The technical documentation must be studied
carefully in order to identify every implicit/explicit properties.
For example on a processor, these properties can be related
to:

• Supervisor / user mode.
• Memory access conditions.
• Instruction pipeline specification.
• On-chip buses rules.
• etc.
From one circuit to another, there can be different proper-

ties. A complete study must be investigated for a given circuit
in order to define all sensitive properties. These sensitive
properties will also depend on the expected security level.

B. Properties Definition with HT list

In this approach, we list all existing HTs. We study all
information about their trigger and payload parts. Then we find
how the target circuit will be affected by these HTs. After that,
we define the corresponding properties to detect these HTs. It
can be formalized as:

• Studying the state of the art of HT trojan insertion.
For example, many HT insertions can be found on the
website www.trust-hub.org for different target circuits.

• Keeping the HTs which infect/modify the target circuit.
• Defining the corresponding properties using the target

circuit documentation and HT architecture.
Note that test techniques can not verify these properites

which will be active after HT activation. Therefore runtime
checker is preferable.

IV. EXAMPLE OF HC ON LEON PROCESSOR

In this section, we demonstrate an example of Hardware
Checker construction. The target circuit is the LEON Pro-
cessor. It is a 32-bit processor with SPARC V8 instruction
set. It has a 7-stage pipeline with separated instruction and
data caches. More information about this processor can be
found on the link http://www.gaisler.com/index.php/products/
processors/leon3. In this experiment, we decided to implement
a HC to check some properties in the Integer Unit of LEON
Processor. Using the approach discussed in III-A, the following
properties will be checked:

• Supervisor Mode: The user/supervisor mode is changed
to supervisor when there is a trap or when there is a reset.

IP Max Frequency (MHz) Nb of LUT Nb of Registers
Original LEON 154 6841 2553

LEON + HC 154 6849 2553

TABLE I
LEON AND HC SYNTHESIS ON VIRTEX 5LX30 XILINX FPGA

• WRPSR instruction: This is a privileged instruction that
can be only executed when the processor is in supervisor
mode.

• Illegal instructions: Illegal instructions can not be exe-
cuted in the processor.

These properties are found in the SPARC Architecture Man-
ual V8 at this URL: http://www.gaisler.com/doc/sparcv8.pdf.
The following PSL codes are inserted on the LEON processor
to verify these properties.

// supervisor property check
-- PSL property su_enable_1 is

always (rst -> sregs.s);
-- PSL property su_enable_2 is

always (sregs.et ->sregs.s);
// WRSPR instruction check

-- PSL property PSR_write is
always ((op_sig = FMT2)
and ((op3_sig = WRPSR)
and (sregs.s =’0’)) -> priv_inst);

// Illegal instructions check
-- PSL property illegal_inst_test is

always((op2_sig = "001") or
(op2_sig = "101") -> inllegal_inst);

Then the HC corresponding to these PSL codes are in-
stantiated. This HC is synthesized so that to evaluate its
overhead. The Tab. I presents the synthesized results of LEON
with and without HC on Virtex 5LX30 Xilinx FPGA. The
synthesis shows that the HC is implemented using 8 LUTs.
It represents only 0.11% of LEON processor, which is very
small comparing to the protected circuit. However, this HC
might detect many HTHs trying to alter or modify the Integer
Unit.

V. HARDWARE PROPERTY CHECKER PROTECTION

The HPC allows to detect HTs which are inserted at RTL
level before HPC integration. But it is vulnerable against an
attacker who inserts a HT at netlist or layout level. This is
logical because he has access to the original layout and also
the HPC. And an intelligent attacker, who reverses successfully
the HPC, can always insert an HT which bypass the properties
on the Checker. Or worse, he can even insert a HT attacking
directly the HPC. This is the main problem of any runtime
detection technique: How can we protect the checker itself
against HT insertions?. In this subsection, we give some
suggestions for HPC protection.



1) Using the 3-D circuit: A “three dimensional integrated
circuit” (3-D IC) is an integrated circuit manufactured by
stacking silicon wafers and/or dies and interconnecting them
vertically using through-silicon vias (TSVs). So that they be-
have as a single device to achieve performance improvements
at reduced power and smaller footprint than conventional
two dimensional processes. This integration technique can be
applied for HPC protection using the following steps:

• Create the HPC for a target circuit.
• Separate the HPC from the target circuit.
• Create the 3-D circuit for the target circuit and HPC with

the following constraints: the target circuit and HPC are
placed on different dies.

• Manufacture separately the target circuit and the HPC
dies.

• Assembly the target circuit and the HPC.

2) Reconfigurable Hardware Property Checker: One of
solution for HPC protection is creating a reconfigurable HPC.
It consist in inserting a small reconfigurable FPGA on the
target circuit. Then this FPGA will be used to implement the
HPC. It could be possible because of the HPC size. Generally,
HPC size is much smaller than the target circuit. For example
in [5], a HPC containing 10 sensitive properties has 0.03%
of overhead for an OpenRisc processor. And a complete HPC
may have an overhead between 1% to 5%. So the utilization
of an FPGA for HPC, in this case, is much smaller than for
the whole target circuit. With this approach, we can configure
dynamically HPC. Another advantage is the ability to verify
properties sequentially and also new properties can be checked
even after HPC deployment. This solution is flexible, but does
not allow to check the properties in parallel. The next solution
permits parallel and static verifications.

3) Encoded Circuit Method for HPC Protection: The “En-
coded Circuit”, proposed in [4], is a prevention method against
HT insertion. This technique encodes and masks all internal
registers (including control and data registers) with a Linear
Complementary Pair (LCP) of codes C and D. It ensures
that any HT connected to strictly less than dtrigger registers
(dtrigger is the dual distance of D code used as security
parameter) will be ineffective. And a HT which modifies less
than dpayload bits (dpayload is the minimal distance of C) will
create a wrong codeword. The main drawback of this method
is the overhead of ×6 for a circuit checker of [5]. But it can be
perfectly adapted for HPC protection with following reasons:

• According to [5], the runtime checker for each property
is mainly composed of one or some flip-flops. Now the
main idea of the encoded circuit is to encode and mask all
registers. Therefore, we can use encoded circuit method
to encode and mask all flip-flops of HPC.

• The encoded circuit has an important overhead of ×6.
But an complete HPC for OpenRisc has an extra logic
between 1% to 5% [5]. Then the HPC protection with
encoded circuit has an overhead between 6% to 30%. It
is an acceptable price for the security.

Each proposition approach has its own advantages and
drawbacks. Their applications will be dependent for the target
circuit and the security level. In some cases, a combination of
these approaches could be used to ensure the IC security.

VI. CONCLUSIONS

HT insertion has become a serious issue with the global-
ization of semiconductor industry. In this paper, we propose
an technique to detect the HT at run-time. This method
consists in identifying some high-level and critical behavioral
invariants, and by checking them during the circuit operation.
Such method is validated by the “assertion” approach which
is frequently used to check IC operation at simulation phase.
Then, a Hardware Property Checker is created and integrated
in the IC to verify these properties at run-time. We discuss
how to define the complete list for the sensitive properties
against HT insertion using the IC specification and existing
HTs. A case of study on LEON processor shows the feasibility
of this technique. We also propose to detect HPC using
three different approaches: 3-D circuit, configurable HPC and
“encoded circuit” protection.

REFERENCES

[1] Miron Abramovici and Paul Bradley. Integrated circuit security: new
threats and solutions. In Frederick T. Sheldon, Greg Peterson, Axel W.
Krings, Robert K. Abercrombie, and Ali Mili, editors, CSIIRW, page 55.
ACM, 2009.

[2] Dakshi Agrawal, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and
Berk Sunar. Trojan Detection using IC Fingerprinting. In Proceedings
of the 2007 IEEE Symposium on Security and Privacy, SP ’07, pages
296–310, Washington, DC, USA, 2007. IEEE Computer Society.

[3] M. Banga and M.S. Hsiao. ODETTE: A non-scan design-for-test
methodology for Trojan detection in ICs. In Hardware-Oriented Security
and Trust (HOST), 2011 IEEE International Symposium on, pages 18–
23, June 2011.

[4] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, Zakaria Najm, and
Xuan Thuy Ngo. Linear Complementary Dual Code Improvement
to Strengthen Encoded Circuit Against Hardware Trojan Horses. In
2015 IEEE International Symposium on Hardware-Oriented Security
and Trust, HOST 2015, McLean, VA, USA, May 5-7 2015.

[5] Michael Bilzor, Ted Huffmire, Cynthia E. Irvine, and Timothy E. Levin.
Evaluating security requirements in a general-purpose processor by com-
bining assertion checkers with code coverage. In Hardware-Oriented
Security and Trust (HOST), 2012 IEEE International Symposium on,
pages 49–54, June 2012.

[6] Gedare Bloom, Bhagirath Narahari, and Rahul Simha. Os support
for detecting trojan circuit attacks. In Proceedings of the 2009 IEEE
International Workshop on Hardware-Oriented Security and Trust, HST
’09, pages 100–103, Washington, DC, USA, 2009. IEEE Computer
Society.

[7] Florian Eibensteiner, Rainer Findenig, and Markus Pfaff. Synpsl:
Behavioral synthesis of psl assertions. In Roberto Moreno-Diaz, Franz
Pichler, and Alexis Quesada-Arencibia, editors, Computer Aided Systems
Theory - EUROCAST 2009, volume 5717 of Lecture Notes in Computer
Science, pages 69–74. Springer Berlin Heidelberg, 2009.

[8] Ted Huffmire, Timothy E. Levin, Thuy D. Nguyen, Cynthia E. Irvine,
Brett Brotherton, Gang Wang, Timothy Sherwood, and Ryan Kastner.
Security primitives for reconfigurable hardware-based systems. TRETS,
3(2):10, 2010.

[9] Yier Jin, Nathan Kupp, and Yiorgos Makris. Experiences in Hardware
Trojan Design and Implementation. In Proceedings of the 2009 IEEE In-
ternational Workshop on Hardware-Oriented Security and Trust, HOST
’09, pages 50–57, Washington, DC, USA, 2009. IEEE Computer Society.



[10] Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang
Jiang, and Yuanyuan Zhou. Designing and implementing malicious
hardware. In Proceedings of the 1st Usenix Workshop on Large-Scale
Exploits and Emergent Threats, LEET’08, pages 5:1–5:8, Berkeley, CA,
USA, 2008. USENIX Association.

[11] Amir Pnueli and Aleksandr Zaks. PSL Model Checking and Run-time
Verification via Testers. In Proceedings of the 14th International Con-
ference on Formal Methods, FM’06, pages 573–586, Berlin, Heidelberg,
2006. Springer-Verlag.

[12] Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov. EPIC: Ending
Piracy of Integrated Circuits. In DATE, pages 1069–1074. IEEE, 2008.

[13] Randy Torrance and Dick James. The State-of-the-Art in IC Reverse
Engineering. In CHES, volume 5747 of LNCS, pages 363–381. Springer,
September 6-9 2009. Lausanne, Switzerland.


