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Abstract. We present in this article a stochastic queuing model for the road traffic. The model is based on the M/G/c/c
state dependent queuing model, and is inspired from the deterministic Godunov scheme for the road traffic simulation. We
first propose a variant of M/G/c/c state dependent model that works with density-flow fundamental diagrams rather than
density-speed relationships. We then extend this model in order to consider upstream traffic demand as well as downstream
traffic supply. Finally, we show how to model a whole road by concatenating road sections as in the deterministic Godunov
scheme.
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INTRODUCTION

The dynamics of traffic flows in road networks is complex, and is submitted to stochastic disturbances. Congestion

is a phenomenon that arises on local as well as large areas, whenever traffic demand exceeds traffic supply. As usual

in road traffic models and in associated numerical schemes, a link of the network is modelled as a sequence of road

sections, for which fundamental diagrams (laws on capacity) are given (estimated). As the sequence of sections is in

series, if any section is not performing optimally, the whole link will not be operating efficiently. Deterministic traffic

models taking into account these dynamics are very known. We base here on the LWR first order model [8, 10], for

which numerical schemes have been performed since decades; see for example [7, 2]. In the Godunov scheme [7],

as well as in the cell-transmission model (CTM) [2], traffic demand and supply functions are defined and used. The

demand/supply framework provides a comprehensive foundation for first-order node models. Flow interactions in

these models typically result from limited inflow capacities of the downstream links. Recently, this framework has

been supplemented with richer features such as conflicts within the node [13]. In [9], the authors presented a dynamic

network loading model that yields queue length distributions. It is a discretized, stochastic instance of the Kinematic

wave model (KWM), whereas the stochastic CTMs constitute stochastic instances of discretized KWMs.

We propose here a stochastic traffic model based on the queuing model of [11, 12] and on the Godunov scheme [6, 7]

of the LWR traffic model [8, 10]. We first rewrite the M/G/c/c state dependent queuing model [11, 12] on a road

section, by considering density-flow fundamental diagrams rather than density-speed ones. By this, we consider the

traffic demand and supply functions for the section, and derive a model for a road with a downstream supply. Finally,

we present a model of two road sections in tandem. The model we present here can also be used to the analysis of travel

times through road traffic networks (derive probability distributions, reliability indices, etc), as in [5, 4, 3], where an

algebraic deterministic approach is used.

A SHORT REVIEW IN M/G/C/C SYSTEMS

We give in this section a short review on the M/G/c/c state dependent queuing model [11, 12]. A link of a road

network is modelled with c servers set in parallel, where c is the maximum number of cars that can move on the road.

The velocity of cars is assumed to be dependent on the number n of cars on the road, according to a non-increasing

density-speed relashionship. For example, in the linear case, one have V (n) = c−n+1, where V denotes the car-speed

(velocity). The arrival process of cars into the link is assumed to be Poisson with rate λ , while the service rate of

the c servers depend on the number of cars on the road. A normalized service rate f (n) is considered, and is taken

f (n) =V (n)/V (1)≤ 1. In the linear case, for example, we have f (n) = (c−n+1)/c. We notice here that V (1) is the

speed corresponding to one car in the road (ie. the free speed).



The stationary probability distribution Pn =P(N = n) of the number of customers N in the M/G/c/c state dependent

model, is given as follows.

P0 =

(

1+
c

∑
n=1

(λ L/V (1))n

∏n
i=1 i f (i)

)−1

, Pn =
(λ L/V (1))n

∏n
i=1 i f (i)

P0, n = 1, ..,c. (1)

where L is the length of the road section.

From Pn, other important performance measures can be easily derived. The blocking probability Pc =
(λ L/vn)

c/∏c
i=1 i f (i) P0. The throughput θ = λ (1−Pc). The expected number of cars in the section N̄ = ∑c

n=1 nPn.

The expected service time W = N̄/θ .

ROAD SECTION MODEL

We slightly modifiy the M/G/c/c model of MacGregory Smith, by defining the normalized service rate as the ratio of

the flow by the maximum flow, rather than the speed by the free speed. This modification will permit us to consider

the demand and supply functions of a road section, and then to use them in the case where tow (or many) sections are

set in tandem.

FIGURE 1. One road section.

In this section, we present the M/G/c/c state dependent queuing model on one road section, for which we consider

a triangular fundamental traffic diagram.

Q(ρ) = min(v f ρ ,w(ρ j −ρ)),

where ρ ,Q(ρ),v f ,w, and ρ j denote respectively the car-density in the road section, the car-flow, the free speed, the

backward wave speed, and the jam-density. The demand and the supply functions ∆(ρ) and Σ(ρ) respectively are then

given as follows.

∆(ρ) = min(v f ρ ,qmax), Σ(ρ) = min(qmax,w(ρ j −ρ)),

where qmax = ρ j/(1/v f + 1/w).
The service rate µn of the road section, depends on the number n of cars in the road, and is given by the car-flow on

the section.

µn = min(v f ρ ,w(ρ j −ρ)) = min

(

v f

n

L
,w

(

c− n

L

))

.

The normalized service rate is then fixed to

qn =
qn

qmax
=

min(v f ρ ,w(ρ j −ρ))

qmax
=

min(v f
n
L
,w( c−n

L
))

qmax
.

The stationary probability distribution of the number of cars on the road section is then given as follows.

pn =
(λ qmax)

n( L
v f
)nc( L

w
)n−nc

∏
nc
i=1 i2 ∏

n−nc
i=nc+1 i(c− i)

p0, with p0 =

(

1+
c

∑
n=1

(λ qmax)
n( L

v f
)nc( L

w
)n−nc

∏
nc
i=1 i2 ∏

n−nc
i=nc+1 i(c− i)

)−1

, (2)

where ncr = ρcrL is the number of cars corresponding to the critical car-density.



A ROAD SECTION WITH A DOWNSTREAM SUPPLY

We model here a road section with a state dependent M/G/c/c queuing model, as in the last section, but we consider

here that the service is constrained by the flow supply of the downstream section. We assume that the flow supply

of the downstream section is stochastic and that the stationary probability distribution of the cars in the downstream

(fictive) section is given.

FIGURE 2. Two links in tandem.

We use the same notations as above, but with an additional index indicating the road section: 1 for section 1 and 2

for the downstream section (section 2). We assume triangular fundamental diagrams for the two sections.

The car-flow outgoing from section 1 and entering to section 2 is assumed to be given by the minimum between the

traffic demand on section 1 and the traffic supply of section 2.

q12 = min(∆1(ρ1),Σ2(ρ2)) = min

(

v f 1

n1

L1

,qmax
1 ,qmax

2 ,w2

(

c2 − n2

L2

))

.

Therefore, the normalized service rate f (n1,n2) of section 1 is given as follows.

f (n1,n2) =
q12

qmax
1

= min

(

v f 1
n1

L1

,qmax
1 ,qmax

2 ,w2

(

c2 − n2

L2

))

/qmax
1 .

We have here, an M/G/c/c system on section 1 (with c1 servers), parameterized by the traffic supply downstream

of the section (the number of cars in section 2). Again, following MacGregor Smith model, the stationary probability

distribution of the number of cars on section 1, parameterized by the number of cars on section 2, is given by

Pn1|n2
= P(N1 = n1 | N2 = n2) =

(λ qmax
1 )n1

∏
n1
i=1 f (i,n2)i

P0|n2
, with P0|n2

=

(

1+
c1

∑
n1=1

(λ qmax
1 )n1

∏
n1
i=1 f (i,n2)i

)−1

. (3)

Then, the stationary distribution of the cars on section 1 is obtained as follows.

Pn1
= P(N1 = n1) =

c2

∑
n2=0

Pn1|n2
=

c2

∑
n2=0

(λ qmax
1 )n1

∏
n1
i=1 f (i,n2)i

P0|n2
. (4)

TWO SECTIONS IN TANDEM

We consider two sections in tandem, where the flow supply of the second section is constrained by a fictive third

section, as in Figure 3. As above, we assume that the boundary condition (flow supply) is given and known. That is,

the stationary probability distribution of the number of cars in the fictive (third) section is given.

FIGURE 3. Three links in tandem.

As above, the question is to determine the stationary probability distribution of the number of cars in the two sections

P(N1 = n1,N2 = n2), which we denote by P(n1,n2). To do that, we proceed in two steps. We first consider the second



section, constrained by the supply of the third one. We do the same reasoning as the previous section, we obtain the

stationary probability distribution of the number of cars in section 2 as follows.

P
(2)
n2

= P(N2 = n2) =
c3

∑
n3=0

(λ qmax
2 )n2

∏
n2
i=1 f (i,n3)i

P
(2)
0 , with P

(2)
0 =

(

1+
c2

∑
n2=1

c3

∑
n3=0

(λ qmax
2 )n2

∏
n2
i=1 f (i,n3)i

)−1

. (5)

In the second step, we consider the first section constrained by the supply of the second section, which is now

known. We obtain the following.

P(n1,n2) = P(N2 = n2)P(N1 = n1 | N2 = n2) = P
(2)
n2

Pn1|n2
, (6)

where P
(2)
n2

is given by (5) and Pn1|n2
is given by (3).

In Figure 4, we derived the stationary probability distribution of the number of cars in a road section, for the

two cases of self-supplied section (formula 2) and downstream supplied section (formula 4). The parameters for the

considered section and for the downstream section are given as follows.

Section L (km) v (km/h) w (km/h) ρ j (veh/km) qmax (veh/h) ρcr (veh/km) c (veh)

1 0.1 100 50 180 6000 60 18

2 0.1 50 25 180 3000 60 18
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FIGURE 4. Stationary probability distribution of the number of cars (the traffic state). On the left side, the case of self-supplied
section. On the right side, the case of downstream supplied section.

REFERENCES

1. P . Bedell and J. MacGregor Smith, Topological arrangements of m/g/c/k, m/g/c/c queues in transportation and material
handling systems, Comput. Oper. Res., 2800-2819, November 2012.

2. C. F. Daganzo, The cell transmission model, Transportation Research Part B, 269 - 287, 1994.
3. N. Farhi, Modélisation minplus et commande du trafic de villes régulières. PhD thesis, University of Paris 1. 2008.
4. N. Farhi, H. Haj-Salem and J-P. Lebacque, Algebraic approach for performance bound calculus on Transportation networks.

Transportation Research Record. Vol 2334. pp. 10-20. 2014.
5. N. Farhi, H. Haj-Salem and J-P. Lebacque, Upper bounds for the travel time on linear traffic systems. 17th meeting of the

EWGT. 2014.
6. S. K. Godunov, A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations, Math.

Sbornik, vol. 47, pp. 271-306, 1959.
7. J-P. Lebacque, The Godunov scheme and what it means for first order traffic flow models, in J.-B. Lesort (ed.), Proceedings of

the 13th International Symposium on Transportation and Traffic Theory, Pergamon, Lyon, France. 1996.
8. J. Lighthill and J. B. Whitham. On kinematic waves ii: A theory of traffic flow on long, crowded roads. Proc. Royal Society,

A229:281-345, 1955.
9. C . Osorio, G . Flotterod and M . Bierlaire, Dynamic network loading: a differentiable model that derives link state distributions.

Transportation Research Part B: Methodological, 2011.

10. Richards, P.I., Shock waves on the highway, Operations Research 4, 42âĂŞ51. 1956.
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