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Abstract

In this work we consider the elasticity problem for two domains separated by a heterogeneous layer.
The layer has an ε−periodic structure, ε � 1, including a multiple micro-contact between the structural
components. The components are surrounded by cracks and can have rigid displacements. The contacts
are described by the Signorini and Tresca-friction conditions. In order to obtain preliminary estimates
modification of the Korn inequality for the ε−dependent periodic layer is performed.

An asymptotic analysis with respect to ε → 0 is provided and the limit problem is obtained, which
consists of the elasticity problem together with the transmission condition across the interface. The periodic
unfolding method is used to study the limit behavior.

1 Introduction

Contact problems for the domains with highly-oscillating boundaries were considered in different works (see
e.g. [12, 16, 17]) as well as problems on the domains including thin layer [2, 5, 14]. The elasticity problem for
a heterogeneous domain with a Tresca–type friction condition on a microstructure (involving inclusions and
cracks) was considered in [6] and Korn’s inequality for disconnected inclusions was obtained.

In this paper we are concerned with an elasticity problem in a domain containing a thin heterogeneous layer
of the small thickness ε. We consider the case in which the stiffness of the layer is also of the order ε. The
contact between structural components in the layer is described by the Tresca–friction contact conditions. Our
aim is to study the behavior of the solutions of the microscopic equations when ε tends to zero.

For the derivation of the limit problem we use the periodic unfolding method which was first introduced in
[3], later developed in [4] and was used for different types of problems, particularly, contact problem in [6] and
problems for the thin layers in [2].

However, additional difficulties arise in the proving uniform boundedness for the minimizing sequence of
the solutions. The idea consists in controlling the norm by the trace on the boundary of the domain and,
therefore, by the norm on the outside domain. Working this way we first obtain estimate for the Dirichlet
domain, through which an estimate of the trace is obtained and, therefore, norm on the structural components
of the layer. Two Korn’s inequalities are introduced: for the inclusions placed in the heterogeneous periodic
layer (based on the results from [6]) and for the connected part of the layer. The main result of the study is an
asymptotic model for the layer between elastic blocks.

The paper is organized as follows. Section 2 gives the geometric setting for the ε-periodic problem, including
the unit cell. In Section 3 we give inequalities related to the unfolding operator on the interface surfaces, then
establish a uniform Korn inequality for the perforated matrix domain. Then, two unilateral Korn inequlities
are proved with their applications to the oscillating inclusions and the matrix of the layer. Section 4 deals
with the convergence result. In Section 5 the problem for fixed ε is introduced. At last, in Section 6 the limit
problem is obtained and the case of the linearized contact conditions is considered.

1.1 Notations

• Let O be a bounded domain in R3 with a Lipschitz boundary. For any v ∈ H1(O;R3), the normal
component of a vector field v on the boundary of O is denoted vν = v|∂O · ν, while the tangential
component v|∂O − vνν is denoted vτ (ν is the outward unit normal vector to the boundary).

• Let S0 be a closed set in R3: a finite union of disjoint orientable surfaces of class C1. Then for every piece
of surface, we choose a continuous field of unit normal vector denoted ν.

• The strain tensor of a vector field v is denoted by e(v),

eij(v) =
1

2

( ∂vi
∂xj

+
∂vj
∂xi

)
(i, j) ∈ {1, 2, 3}2.

The kernel of e in a connected domain is the finite dimensional space of rigid motions denoted by R.

2 Geometric statement of the problem

In the Euclidean space R2 consider a connected domain ω with Lipschitz boundary and let L > 0 be a fixed
real number. Define:
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Ωb = ω × (−L, 0),
Ωa = ω × (0, L),
Σ = ω × {0},
Ω = Ωa ∪ Ωb ∪ Σ = ω × (−L,L).

To describe a structure with a layer introduce the notations:

Ωaε = ω × (ε, L),
ΩMε = ω × (0, ε),
Saε = ω × {ε}.

(2.1)

Here ε is a small parameter corresponding to the thickness of the layer.
The assemblage is fixed on Γ, which is a non-empty part of ∂Ωb (Γ is a set where the Dirichlet condition

will be prescribed). Furthermore, we assume that the external boundary of the layer ∂Σ× [0, ε] is traction free.

Y j

S0

S1

Sj

Y 0

Sb
Y

Sa
Y

Y 1

Figure 1: The unit cell Y

The layer ΩMε has periodic in-plane structure. The unit cell is
denoted Y

Y =
(
0, 1
)3 ⊂ R3, Yε = εY.

Additionally,

SbY = {y ∈ Y : y3 = 0} , SaY = {y ∈ Y : y3 = 1}

are the lower and upper boundaries of Y .
There are two kinds of cracks, the first ones S1, . . . , Sm (the

“closed cracks”) are the closed boundaries of open Lipschitzian
sets Y j , j ∈ {1, . . . ,m}. We assume that every Sj , j ∈ {1, . . . ,m},
has only one connected component and

⋃m
j=1 Y

j ⊂ Y . The other

cracks (the “open cracks”), which union is denoted by S0, are the

finite union of closed Lipschitz surfaces included in Y \
⋃m
j=1 Y

j

(see Figure 1).

We set

Y 0 = Y \
( m⋃
j=1

Y j ∪ S0
)

and we assume that there exists t0 > 0 such that

∀x′ ∈ S0, [x′ − t0ν(x′), x′ + t0ν(x′)] \ {x′} ⊂ Y 0.

Since the set of cracks

m⋃
j=0

Sj is a closed subset strictly included in Y , there exists η > 0 such that

∀x ∈
m⋃
j=0

Sj , dist(x, ∂Y ) ≥ η.

Denote
Y ′ = (0, 1)2.

Recall that in the periodic setting almost every point z ∈ R3 (resp. z′ ∈ R2) can be written as

z = [z]Y + {z}Y , [z]Y ∈ Z3, {z}Y ∈ Y,
(resp. z′ = [z′]Y ′ + {z′}Y ′ , [z′]Y ′ ∈ Z2, {z′}Y ′ ∈ Y

′).

Denote by

• Ξε =
{
ξ ∈ Z2 | ε(ξ + εY ′) ⊂ ω

}
, ΞMε = Ξε × {0},

• ω̂ε = interior
( ⋃
ξ∈Ξε

ε(ξ + Y ′)
)

, Ω̂Mε = interior
( ⋃
ξ∈ΞMε

ε(ξ + Y )
)

= ω̂ε × (0, ε),

• Λε = ω \ ω̂ε, ΛMε = ΩMε \ Ω̂Mε = Λε × (0, ε).
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The open subset of ΩMε contains the parts of cells intersecting the lateral boundary ∂ω × (0, ε).

For j = 1, . . . ,m introduce the set

Ωjε =
{
x ∈ Ω̂Mε | ε

{x
ε

}
Y
∈ Y j

}
.

The boundary ∂Ωjε is the set of “closed cracks” associated with Sj ,

∂Ωjε
.
= Sjε =

{
x ∈ Ω̂Mε | ε

{x
ε

}
Y
∈ Sj = ∂Y j

}
.

For j = 0 set

S0
ε =

{
x ∈ Ω̂Mε | ε

{x
ε

}
Y
∈ S0

}
and

Ω0
ε
.
= ΩMε \

( ⋃
j=1,...,m

Ωjε ∪ S0
ε

)
, Ω̂0

ε
.
= Ω0

ε ∩ Ω̂Mε .

The union of all the cracks is denoted by Sε

Sε =
⋃

j=0,1,...,m

Sjε .

We define the set Ωε and Ω∗ε as follows

Ωε
.
= Ω \ Sε Ω∗ε

.
= Ω \

( ⋃
j=1,...,m

Ωjε ∪ S0
ε

)
.

Note that from these definitions it is clear that there are no cracks in the part of the layer ΛMε .

For a function v defined on Ω∗ε, for simplicity, we denote its restriction to Ωjε by vj

vj
.
= v|Ωjε for j = 1, . . . ,m.

In the following, for any bounded set O and ϕ ∈ L1(O), MO(ϕ) denotes the mean value of ϕ over O, i.e.

MO(ϕ) =
1

|O|

∫
O
ϕdy.

3 Some inequalities related to unfolding and the geometric domain

3.1 The boundary-layer unfolding operator Tε, T bl,jε

Here we recall the definition and the properties of the boundary-layer unfolding operator (for more details
see [2]).

Definition 3.1. For ϕ Lebesgue-measurable on ΩMε (resp. on Ωjε, j = 1, . . . ,m), the unfolding operator Tε is
defined by

Tε(ϕ)(x′, y) =

{
ϕ
(
ε
[x′
ε

]
Y ′

+ εy
)

for a.e. (x′, y) ∈ ω̂ε × Y, (resp. for a.e. (x′, y) ∈ ω̂ε × Y j)
0 for a.e. (x′, y) ∈ Λε × Y, (resp. for a.e. (x′, y) ∈ Λε × Y j).

For ϕ Lebesgue-measurable on Sjε , j ∈ 1, . . . ,m, the unfolding operator T bl,jε is defined by

T bl,jε (ϕ)(x′, y) =

{
ϕ
(
ε
[x′
ε

]
Y ′

+ εy
)

for a.e. (x′, y) ∈ ω̂ε × Sj ,
0 for a.e. (x′, y) ∈ Λε × Sj .

Remark 3.1. If φ ∈W 1,p(Ωjε), j = 1, . . . ,m, p ∈ [1,+∞], T bl,jε (ϕ) is just the trace of Tε(ϕ) on ω × Sj.

Proposition 3.1 (Properties of the operators Tε, T bl,jε ).

1. For any ϕ ∈ L1(ΩMε ), ∫
Ω̂Mε

ϕdx = ε

∫
ω×Y

Tε(ϕ)(x′, y)dx′dy.
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2. For any ϕ ∈ L2(ΩMε ),
‖ϕ‖L2(Ω̂Mε ) =

√
ε‖Tε(ϕ)‖L2(ωε×Y ).

3. Let ϕ ∈ H1(ΩMε ). Then
∇y(Tε(ϕ)) = εTε(∇ϕ) a.e. in ω × Y.

In a similar way, for any v ∈ H1(ΩMε ;R3)

ey(Tε(ϕ)) = εTε(e(ϕ)) a.e. in ω × Y.

4. For any ψ ∈ Lp(Sjε), p ∈ [1,+∞]∫
Sjε

ψ dσ(x) =

∫
ωε×Sj

T bl,jε (ψ)(x′, y)dx′dσ(y) (3.1)

and
‖ψ‖Lp(Sjε) = ‖T bl,jε (ψ)‖Lp(ω×Sj). (3.2)

Proof. Proofs for the properties 1-3 can be found in [2]. For the last property starting from the right-hand side
we obtain∫

ω×Sj
T bl,jε (ψ)(x′, y)dx′dσ(y) =

∫
ω̂ε×Sj

T bl,jε (ψ)(x′, y)dx′dσ(y) =
∑
ξ′∈Ξε

∫
(εξ′+εY ′)×Sj

T bl,jε (ψ)dx′dσ(y)

= ε2
∑
ξ′∈Ξε

∫
Sj
ψ(εξ′ + εs)dσ(s) =

∑
ξ′∈Ξε

∫
(εξ′+εSj)

ψ(x)dσ(x) =

∫
Sjε

ψ(x)dσ(x).

3.2 Unilateral Korn inequality

Let O be a bounded open subset of R3. We denote

R =
{
r ∈ H1(O;R3) | r(x) = a+ b ∧ x, (a, b) ∈ R3 × R3

}
.

We recall that a bounded domain O satisfies the Korn-Wirtinger inequality if there exists a constant CO such
that for every v ∈ H1(O;R3) there exists r ∈ R such that

‖v − r‖H1(O;R3) ≤ CO‖e(v)‖L2(O;R3×3). (3.3)

A domain like O is called a Korn-domain. We equip H1(O;R3) with the following scalar product

< u, v >=

∫
O
e(u) : e(v) dx+

∫
O
u · v dx.

If O is a Korn-domain, the associated norm is equivalent to the usual norm of H1(O;R3).

Definition 3.2. For a Korn-domain O denote

W 1(O)
.
=
{
v ∈ H1(O;R3) |

∫
O
v(x) · r(x)dx = 0 for all r ∈ R

}
.

Observe that there exists a constant such that for every v ∈W 1(O) we get

‖v‖H1(O;R3) ≤ C‖e(v)‖L2(O;R3×3).

Considering the orthogonal decomposition H1(O;R3) = W 1(O)⊕R, every v ∈ H1(O;R3) can be written as

v = (v − rv) + rv, v − rv ∈W 1(O), rv ∈ R.

The map v 7−→ rv is the orthogonal projection of v on R. From (3.3) we get

‖v − rv‖H1(O;R3) ≤ CO‖e(v)‖L2(O;R3×3). (3.4)

We also recall that if O is a bounded Lipschitz domain, there exists a constant C such that

∀v ∈ H1(O;R3), ‖v‖L2(∂O;R3) ≤ C
(
‖e(v)‖L2(O;R3×3) + ‖v‖L2(O;R3)

)
. (3.5)

We will use the following proposition from [6].
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Proposition 3.2. If O is a bounded Lipschitz domain, there exists a constant C such that

∀r ∈ R, ‖r‖L1(O;R3) ≤ C
(
‖(rν)+‖L1(∂O) + ‖rτ‖L1(∂O;R3)

)
. (3.6)

We denote Oj the center of gravity of Y j , j = 1, . . . ,m.

Let u be in H1(Ωjε;R3) and rju, j = 1, . . . ,m, the orthogonal projection of u|Ωjε on R. We write

rju(x) = aj
(
ε
[x′
ε

]
Y ′

)
+ bj

(
ε
[x′
ε

]
Y ′

)
∧
(
ε
{x
ε

}
Y
− εOj

)
, x ∈ Ωjε.

We define the piecewise constant functions aju and bju by

aju(x′) = aj(εξ) x′ ∈ εξ + εY ′, ξ ∈ Ξε,

aju(x′) = 0 x′ ∈ Λε,

bju(x′) = bj(εξ) x′ ∈ εξ + εY ′, ξ ∈ Ξε,

bju(x′) = 0 x′ ∈ Λε.

(3.7)

These functions belongs to L∞(ω;R3) and the associated rigid body field, still denoted rju, belongs to
L∞(ω;R).

As a consequence of the above Proposition 3.2 we get

Proposition 3.3. There exists a constant C (independent of ε) such that for every j = 1, . . . ,m and for every
u in H1(Ωjε;R3),

‖u− rju‖L2(Ωjε;R3) + ε‖∇(u− rju)‖L2(Ωjε;R3×3) ≤ Cε‖e(u)‖L2(Ωjε;R3×3),

‖aju‖L1(ω;R3) + ε‖bju‖L1(ω;R3) ≤ C
(
‖(rju)+

ν ‖L1(Sjε) + ‖(rju)τ‖L1(Sjε ;R3)

)
,

‖u‖L1(Ωjε;R3) ≤ Cε
3/2‖e(u)‖L2(Ωjε;R3×3) + Cε

(
‖(rju)+

ν ‖L1(Sjε) + ‖(rju)τ‖L1(Sjε ;R3)

)
.

(3.8)

Proof. Applying (3.4) (after ε-scaling) gives

‖u− rju‖2L2(εξ+εY j ;R3) + ε2‖∇(u− rju)‖2L2(εξ+εY j ;R3×3) ≤ Cε
2‖e(u)‖2L2(εξ+εY j ;R3×3). (3.9)

Then adding the above inequalities (with respect to ξ) yields (3.8)1. Taking into account (3.6) (after ε-scaling),
we get

|aju(εξ)|ε2 + |bju(εξ)|ε3 ≤ C
(
‖(rju)+

ν ‖L1(εξ+εSj) + ‖(rju)τ‖L1(εξ+εSj ;R3)

)
. (3.10)

Adding these inequalities (with respect to ξ) gives

‖aju‖L1(ω;R3) + ε‖bju‖L1(ω;R3) ≤ C
(
‖(rju)+

ν ‖L1(Sjε) + ‖(rju)τ‖L1(Sjε ;R3)

)
.

Finally, estimate (3.8)3 is an immediate consequence of (3.8)1 and (3.8)2.

Remark 3.2. Due to (3.6) and then (3.9), we also obtain

‖aju‖L2(ω;R3) + ε‖bju‖L2(ω;R3) ≤
C

ε

(
‖(rju)+

ν ‖L1(Sjε) + ‖(rju)τ‖L1(Sjε ;R3)

)
,

‖u‖L2(Ωjε;R3) ≤ Cε‖e(u)‖L2(Ωjε;R3×3) +
C

ε1/2

(
‖(rju)+

ν ‖L1(Sjε) + ‖(rju)τ‖L1(Sjε ;R3)

)
,

‖∇u‖L2(Ωjε;R3×3) ≤ C‖e(u)‖L2(Ωjε;R3×3) +
C

ε3/2

(
‖(rju)+

ν ‖L1(Sjε) + ‖(rju)τ‖L1(Sjε ;R3)

)
.

(3.11)

The constants do not depend on ε.

3.3 Korn inequality for the perforated layer

Now we want to derive the Korn inequality for the simply connected part of the layer.
Denote

H1
Γ(Ω∗ε) =

{
φ ∈ H1(Ω∗ε) | φ = 0 a.e. on Γ

}
.
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Proposition 3.4. There exists a constant C independent of ε such that for every u in H1
Γ(Ω∗ε;R3)

‖u‖H1(Ω∗ε ;R3) ≤ C‖e(u)‖L2(Ω∗ε ;R3×3). (3.12)

We also have

‖u‖2H1(Ωaε ;R3) +
1

ε
‖u‖2L2(Ω0

ε;R3) + ε‖∇u‖2L2(Ω0
ε;R3×3) + ‖u‖2H1(Ωb;R3)

≤C
(
‖e(u)‖2L2(Ωaε ;R3×3) + ε‖e(u)‖2L2(Ω0

ε;R3×3) + ‖e(u)‖2L2(Ωb;R3×3)

)
.

(3.13)

Proof. Step 1. First, we construct an ”extension” of u. Set

Yη
.
=
{
y ∈ Y | dist(y, ∂Y ) < η/2

}
.

The domain Yη is a bounded domain with a Lipschitz boundary. Therefore there is an extension operator Pη
from H1(Yη) into H1(Y ) and a constant C (which depends on η) such that (see [8])

∀v ∈ H1(Yη) ‖Pη(v)‖L2(Y ) ≤ C‖v‖L2(Yη) and ‖∇yPη(v)‖L2(Y ;R3) ≤ C‖∇yv‖L2(Yη ;R3). (3.14)

Let w ∈ H1(Yη;R3) and rw the projection of w on R, we have

‖w − rw‖H1(Yη;R3) ≤ C‖ey(w)‖L2(Yη;R3×3). (3.15)

The constant depends on η.

Now for every w ∈ H1(Yη;R3) we define the extension Qη(w)
.
= Pη(w − rw) + rw of w. From (3.14) and

(3.15) we get
Qη(w) ∈ H1(Y ;R3), ‖ey(Qη(w))‖L2(Y ;R3×3) ≤ C‖ey(w)‖L2(Yη ;R3×3). (3.16)

Applying the above result to the restriction of the displacement y 7−→ u(εξ + εy) to the cell Yη, ξ ∈ Ξε, allows

to define an extension ũ of u in the layer Ω̂Mε . Estimate (3.16) leads to

ũ ∈ H1(Ω̂Mε ;R3), ‖e(ũ)‖2
L2(Ω̂Mε ;R3×3)

≤ C
∑
ξ∈Ξε

‖e(u)‖2L2(ε(ξ+Yη;R3×3)) ≤ C‖e(u)‖2L2(Ω0
ε;R3×3).

The constants do not depend on ε.

We set ũ = u in Ω \ Ω̂Mε . The displacement ũ belongs to H1(Ω;R3), it vanishes on Γ and it satisfies

‖e(ũ)‖L2(ΩMε ;R3×3) ≤ C‖e(u)‖L2(Ω0
ε;R3×3), ‖e(ũ)‖L2(Ω) ≤ C‖e(u)‖L2(Ω∗ε ;R3×3). (3.17)

The constant do not depend on ε.

Step 2. From the Korn’s inequality, the hypothesis that the measure of Γ is positive and (3.17)2 we obtain

‖ũ‖H1(Ω;R3) ≤ C‖e(ũ)‖L2(Ω;R3×3) ≤ C‖e(u)‖L2(Ω∗ε ;R3×3). (3.18)

Step 3. We prove (3.12). Since by construction the domains Y 0 is a Korn-domain, there exists a constant
C > 0 such that for every v ∈ H1(Y 0;R3) equal to zero on ∂Y

‖v‖H1(Y 0;R3) ≤ C‖ey(v)‖L2(Y 0;R3×3).

Applying the above result to the restriction of the displacement y 7−→ (u− ũ)(εξ + εy) to the cell Y 0, ξ ∈ Ξε,
gives

‖u− ũ‖2
L2(Ω̂Mε ;R3)

≤ Cε2
∑
ξ∈Ξε

‖e(u− ũ)‖2L2(ε(ξ+Y 0;R3×3)),

‖∇(u− ũ)‖2
L2(Ω̂Mε ;R3×3)

≤ C
∑
ξ∈Ξε

‖e(u− ũ)‖2L2(ε(ξ+Y 0;R3×3)).

The constants do not depend on ε. Hence, using the fact that u− ũ vanishes in Ω0
ε \ Ω̂Mε and due to estimate

(3.18), we obtain

‖u− ũ‖L2(Ω0
ε;R3) ≤ Cε‖e(u)‖L2(Ω0

ε;R3×3), ‖∇(u− ũ)‖L2(Ω0
ε;R3×3) ≤ C‖e(u)‖L2(Ω0

ε;R3×3). (3.19)

Combining the above inequalities and (3.18) gives (3.12).

Step 4. We prove (3.13). The Korn inequality and the trace theorem give

‖ũ‖L2(Ωb;R3) + ‖ũ‖L2(Σ;R3) + ‖∇ũ‖L2(Ωb;R3×3) ≤ C‖e(ũ)‖L2(Ωb;R3×3),

‖ũ‖L2(Ωaε ;R3) + ‖∇ũ‖L2(Ωaε ;R3×3) ≤ C‖e(ũ)‖L2(Ωaε ;R3×3) + C‖ũ‖L2(Saε ;R3).
(3.20)
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Besides we have
‖ũ‖2L2(Saε ;R3) ≤ C

(
‖ũ‖2L2(Σ;R3) + ε‖∇ũ‖2L2(ΩMε ;R3×3)

)
,

‖ũ‖2L2(ΩMε ;R3) ≤ C
(
ε‖ũ‖2L2(Σ;R3) + ε2‖∇ũ‖2L2(ΩMε ;R3×3)

)
.

(3.21)

Taking into account the above estimates (3.20)-(3.21) together with (3.18)-(3.19) we obtain (3.13).

We set

Vε
.
=
{

v = (v, v1, . . . , vm, av, bv)
∣∣ v ∈ H1

Γ(Ω∗ε;R3)×
m∏
j=1

H1(Ωjε;R3)× [Q0(ω)]m × [Q0(ω)]m,

vj is orthogonal to the rigid displacements, j = 1, . . . ,m
} (3.22)

where Q0 is the set of functions vanishing on Λε and constants on each cell ε(ξ + Y ′), ξ ∈ Ξε. The rigid
displacements rjv are defined by

rjv(x) = ajv

(
ε
[x′
ε

]
Y ′

)
+ bjv

(
ε
[x′
ε

]
Y ′

)
∧
(
ε
{x
ε

}
Y
− εOj

)
, x ∈ Ωjε, j = 1, . . . ,m.

We will denote by [v]Sjε the jump of the vector field across the surface Sjε , j = 0, . . . ,m. More precisely, for

j = 1, . . . ,m we set [v]Sjε = vj
|Sjε

+ (rjv)|Sjε − v|Sjε , [vν ]Sjε = [v]Sjε · ν|Sjε , [vτ ]Sjε = [v]Sjε − [vν ]Sjε and we define

[v]S0
ε
, [vν ]S0

ε
, and [vτ ]S0

ε
by

[v]S0
ε
(x′) = lim

t→0,t>0
v
(
x′ + tν(x′)

)
− v
(
x′ − tν(x′)

)
, (3.23)

[vν ]S0
ε
(x′) = lim

t→0,t>0

(
v
(
x′ + tν(x′)

)
− v
(
x′ − tν(x′)

))
· ν(x′), for a.e. x′ ∈ S0

ε (3.24)

[vτ ]S0
ε

= [v]S0
ε
− [vν ]S0

ε
. (3.25)

The space Vε is usually equipped with the following norm(1):

∀v ∈ Vε, v −→

√√√√‖∇v‖2
L2(Ωb;R3×3)

+ ‖∇v‖2L2(Ωaε ;R3×3) + ε‖∇v‖2L2(Ω0
ε;R3×3) +

m∑
j=1

ε‖vj‖2
H1(Ωjε;R3)

.

With the above norm, Vε is a Hilbert space. But the following norm over Vε is well adapted to the contact
problem:

∀v ∈ Vε, ‖v‖Vε
.
=|v|Vε + ‖au‖[L1(ω;R3)]m + ε‖bu‖[L1(ω;R3)]m .

where

|v|Vε =

√√√√‖e(v)‖2
L2(Ωb;R3×3)

+ ‖e(v)‖2L2(Ωaε ;R3×3) + ε‖e(v)‖2L2(Ω0
ε;R3×3) +

m∑
j=1

ε‖e(vj)‖2
L2(Ωjε;R3×3)

,

‖au‖[L1(ω;R3)]m =

m∑
j=1

‖aju‖L1(ω;R3), ‖bu‖[L1(ω;R3)]m =

m∑
j=1

‖bju‖L1(ω;R3).

Below we summarize the estimates for v ∈ Vε.

Proposition 3.5. There exists a constant C independent of ε such that for all v = (v, v1 . . . , vm, av, bv) ∈ Vε

‖v‖2H1(Ωaε ;R3) + ε‖∇v‖2L2(Ω0
ε;R3×3) + ε

m∑
j=1

‖∇vj‖2
L2(Ωjε;R3×3)

+
1

ε
‖v‖2L2(Ω0

ε;R3) +
1

ε

m∑
j=1

‖vj‖2
L2(Ωjε;R3)

+ ‖v‖2H1(Ωb;R3) ≤ C|v|
2
Vε ,

‖av‖[L1(ω;R3)]m + ε‖bv‖[L1(ω;R3)]m ≤ C
m∑
j=1

(
‖(rjv)+

ν ‖L1(Sjε) + ‖(rjv)τ‖L1(Sjε ;R3)

)
.

(3.26)

The constants do not depend on ε.

1Here we consider the case where the layer and the inclusions are made of a soft material.
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Proof. The estimates (3.26) are the immediate consequences of (3.13) and (3.8).

Remark 3.3. From (3.11) we also obtain

m∑
j=1

(
‖ajv‖L2(ω;R3) + ε‖bjv‖L2(ω;R3)

)
≤ C

ε
‖v‖Vε . (3.27)

The constant does not depend on ε.

4 Convergence results

Every v ∈ H1(Ωaε ;R3) is extended by reflexion in a displacement belonging to H1(ω × (ε, 2L − ε);R3).
Denote

H1
per(Y

0) =
{
φ ∈ H1(Y 0) | φ(0, y2, y3) = φ(1, y2, y3) for a.e. (y2, y3) ∈ (0, 1)2,

φ(y1, 0, y3) = φ(y1, 1, y3) for a.e. (y1, y3) ∈ (0, 1)2
}
,

H1
Γ(Ωb) =

{
φ ∈ H1(Ωb) | φ = 0 a.e. on Γ

}
.

(4.1)

Before giving the convergence results, we prove the following lemma of homogenization:

Lemma 4.1. Let {φε}ε be a sequence in H1(Ω) satisfying

‖φε‖2H1(Ωaε ) + ‖φε‖2H1(Ωb) + ε‖∇φε‖2L2(ΩMε ;R3) +
1

ε
‖φε‖2L2(ΩMε ) ≤ C

where the constant C does not depend on ε. There exist a subsequence -still denoted ε- and φb ∈ H1(Ωb),

φa ∈ H1(Ωa), φ̂ ∈ L2(ω;H1
per(Y )) such that

φε ⇀ φb weakly in H1(Ωb),

φε(·+ εe3) ⇀ φa weakly in H1(Ωa),

Tε(φε) ⇀ φ̂ weakly in L2(ω;H1(Y )).

(4.2)

Moreover, we have

φb(x′, 0) = φ̂(x′, y1, y2, 0), φa(x′, 0) = φ̂(x′, y1, y2, 1) for a.e. (x′, y1, y2) ∈ ω × Y ′. (4.3)

Proof. The function φε is extended by reflexion in a function belonging to H1(ω×(0, 2L−ε)) in order to obtain
convergence (4.2)2.

We only prove the first equality in (4.3), the second one is obtained in the same way. Consider the function
defined by

φε(x1, x2, x3) = φε(x1, x2, x3)− φε(x1, x2,−x3) x = (x1, x2, x3) ∈ ΩMε .

It satisfies

‖∇φε‖2L2(ΩMε ;R3) ≤ ‖∇φε‖
2
L2(ΩMε ;R3) + ‖∇φε‖2L2(Ωb;R3) ≤

C

ε
, φε = 0 on ω × {0}.

Hence ‖φε‖2L2(ΩMε ) ≤ Cε. Due to the convergences (4.2)1 and (4.2)3 we have

Tε(φε) ⇀ φ̂− φb|ω×{0} weakly in L2(ω;H1(Y )).

Since the trace of the function y 7−→ Tε(φε)(x′, y) on the face Y ′ × {0} vanishes for a.e. x′ ∈ ω the result is
proved.

Theorem 4.1. Let {vε}ε, vε = (vε, v
1
ε , . . . , v

m
ε , avε , bvε), be a sequence in Vε satisfying

‖vε‖Vε ≤ C (4.4)

where the constant C does not depend on ε. There exist a subsequence -still denoted ε- and vb ∈ H1
Γ(Ωb;R3),

va ∈ H1(Ωa;R3), v̂0 ∈ L2(ω;H1
per(Y

0;R3)), v̂j ∈ L2(ω;H1(Y j ;R3)), aj ∈ M(ω;R3) and bj ∈ M(ω;R3),
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(j = 1, . . . ,m), such that
vε ⇀ vb weakly in H1

Γ(Ωb;R3),

vε(·+ εe3) ⇀ va weakly in H1(Ωa;R3),

Tε(vε) ⇀ v̂0 weakly in L2(ω;H1(Y 0;R3)),

εTε(e(vε)) ⇀ ey(v̂0) weakly in L2(ω × Y 0;R3×3),

Tε(vjε) ⇀ v̂j weakly in L2(ω;H1(Y j ;R3)),

εTε(e(vjε)) ⇀ ey(v̂j) weakly in L2(ω × Y j ;R3×3),

ajvε ⇀ ajV weakly-* in M(ω;R3),

bjvε ⇀ bjV weakly-* in M(ω;R3).

(4.5)

Moreover we have

vb(x′, 0) = v̂0(x′, y1, y2, 0), va(x′, 0) = v̂0(x′, y1, y2, 1) for a.e. (x′, y1, y2) ∈ ω × Y ′. (4.6)

Furthermore, setting
∀y ∈ Y j , rjV(·, y) = ajV + bjV ∧ (y −Oj) in M(ω ; R3)

we get
T bl,jε ([vε]Sjε ) ⇀ v̂j|Sj + (rjV)|Sj − v̂0

|Sj weakly ∗ in M(ω × Sj ;R3), j = 1, . . . ,m. (4.7)

Proof. The convergences (4.5) are the immediate consequences of the estimates (3.26). To prove (4.6) we apply
the Lemma 4.1 with the fields of displacements ṽε introduced in Step 1 of the Proposition 3.4.

5 The contact problem for fixed ε

Assume we are given the following symmetric bilinear form on Vε:

∀(u,v) ∈
(
Vε
)2
, Aε(u,v)

.
=

m∑
j=1

∫
Ωjε

aεe(uj) : e(vj) dx+

∫
Ω∗ε

aεe(u) : e(v) dx,

where

aε(x) =

 aa(x) for a.e. x ∈ Ωaε ,
εaMε (x) for a.e. x ∈ ΩMε ,
ab(x) for a.e. x ∈ Ωb.

(5.1)

The tensor fields aMε , aa, ab have the following properties.

• Symmetry:
aε(x)η : ξ = aε(x)ξ : η a.e. x ∈ Ω, ∀ξ, η ∈ R3×3.

• Boundedness: aε belongs to L∞(Ω;R3×3×3×3) and

‖aMε ‖L∞(ΩMε ;R3×3×3×3) + ‖aa‖L∞(Ωa;R3×3×3×3) + ‖ab‖L∞(Ωb;R3×3×3×3) ≤ C.

The constant does not depend on ε.

• Coercivity (with constant α > 0 independent of ε):

α η : η ≤ aMε (x) η : η for a.e. x ∈ ΩMε ,

α η : η ≤ aa(x) η : η for a.e. x ∈ Ωa,

α η : η ≤ ab(x) η : η for a.e. x ∈ Ωb,

∀η ∈ R3×3. (5.2)

Let Kε be the convex set defined, for non negative functions gjε belonging to L1(Sjε), j = 0, . . . ,m, by

Kε
.
=
{

v ∈ Vε, [vν ]Sjε ≤ g
j
ε on Sjε , j = 0, . . . ,m

}
. (5.3)

The vector fields v ∈ Vε are the admissible deformation fields with respect to the reference configuration Ωε.
By standard trace theorems, the jumps belong to H1/2(Sjε ;R3). The tensor field

σε(v)
.
= aεe(v) in Ωε

9



is the stress tensor associated to the deformation v (not to be confused with the surface measures dσ!).

The functions g0
ε and the gjε’s are the original gaps (in the reference configuration), and the corresponding

inequalities in the definition of Kε represent the non-penetration conditions. In case there is contact in the
reference configuration, these functions are just 0.

Consider also the family of convex maps Ψj
ε, 0 ≤ j ≤ m, where Ψj

ε is non negative, continuous on L1(Sjε ;R3)
and satisfies

w ∈ L1(Sjε ;R3), M j
ε ‖w‖L1(Sjε ;R3) − a

j
ε ≤ Ψj

ε(w) ≤M
′j
ε ‖w‖L1(Sjε ;R3)

for non negative real numbers M
′j
ε , M

j
ε , ajε, M j

ε 6= 0, M
′j
ε 6= 0.

(5.4)

In case of Tresca friction, the maps Ψj
ε are explicitly given by

Ψj
ε(w)

.
=

∫
Sjε

Gjε(x)|w(x)| dσ(x), Gjε ∈ L∞(Sjε), w ∈ L1(Sjε ;R3) (5.5)

with Gjε bounded from below by M j
ε > 0 for j = 0, . . . ,m.

Problem Pε: Given fε = (f, f1
ε , · · · , fmε ) in L2(Ω;R3)× L∞(Ω1

ε;R3)× . . .× L∞(Ωmε ;R3) find a minimizer
over Kε of the functional

Eε(v)
.
=

1

2
Aε(v,v) +

m∑
j=0

Ψj
ε([vτ ]Sjε )−

∫
Ωε

fε · v dx (5.6)

where ∫
Ωε

fε · v dx =

∫
Ω∗ε

f · v dx+

m∑
j=1

∫
Ωjε

f jε · (vj + rjv) dx.

From the properties of convexity of the Ψj
ε, j = 0, . . . ,m, the solutions of Pε are the same as that of the

following problem:

Problem P ′ε: Find uε ∈ Kε such that for every v ∈ Kε,

Aε(uε,v − uε) +

m∑
j=0

(
Ψj
ε([vτ ]Sjε )−Ψj

ε([(uε)τ ]Sjε )
)
≥
∫

Ωε

fε · (v − uε) dx. (5.7)

The strong formulation of the problem is (with σε for the stress tensor σε(uε)):
∇ · σε = −fε in Ωε,

σε(ν)ν ≤ 0,

σε(ν)ν
(
[(uε)ν ]Sjε − g

j
ε

)
= 0

σε(ν)τ ∈ ∂Ψj
ε([(uε)τ ]Sjε ) on Sjε for j = 0, . . . ,m,

(5.8)

where ∂Ψj
ε denotes the subdifferential of Ψj

ε.

The corresponding explicit Tresca conditions on the interfaces Sjε with the function Ψj
ε given in (5.5) are as

follows: {
|σε(ν)τ | < Gjε(x)⇒ [(uε)τ ]Sjε = 0,

|σε(ν)τ | = Gjε(x)⇒ ∃λjε ∈ Sjε s.t. |[(uε)τ ]Sjε |+ λjε|σε(ν)τ | = 0 a.e. on Sjε .

Our aim now is to study the behavior of the solutions uε for small values of the parameter ε. We will do
this by studying the asymptotic behavior of the sequence uε for ε → 0. When ε tends to zero, the thin layer
ΩMε approaches the interface Σ. The domain Ωaε tends to the domain Ωa.

5.1 A priori estimates and existence of solutions for the Problem Pε
The first step in the proof of existence of the solution consists in obtaining a bound for minimizing sequences.

We use the generic notation C for constants which can be expressed independently of ε.
Since for v = 0 we have Eε(v) = 0, without lost of generality we can assume that every field u of a minimizing

sequence satisfies Eε(u) ≤ 0.
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Proposition 5.1. (Estimate for minimizing sequences of Eε.) We assume that

C ′0 ε max
j=1,...,m

‖f jε ‖L∞(Ωjε;R3) max
k=1,...,m

( 1

Mk
ε

)
≤ 1

2
. (5.9)

Then, there exists a constant C which does not depend on ε, such that for every field u satisfying Eε(u) ≤ 0 we
have

‖u‖Vε ≤ C
(
ε max
j=1,...,m

‖f jε ‖L∞(Ωjε;R3) + ‖f‖L2(Ω;R3) +

m∑
k=0

(
‖(gkε )+‖L1(Skε ) + akε

))
. (5.10)

The constant C does not depend on ε.

Proof. For simplicity, we set

Ru =

m∑
j=1

(
‖(rju)+

ν ‖L1(Sjε) + ‖(rju)τ‖L1(Sjε ;R3)

)
.

Let u be in Kε, such that Eε(u) ≤ 0. We have

α|u|2Vε +

m∑
j=0

Ψj
ε([uτ ]Sjε ) ≤

∫
Ω∗ε

f · u dx+

m∑
j=1

∫
Ωjε

f jε · (uj + rju) dx. (5.11)

Now we use (3.26)2 to get∫
Ω∗ε

f · u dx+

m∑
j=1

∫
Ωjε

f jε · uj dx

≤C‖f‖L2(Ω;R3)

(
‖u‖L2(Ωb;R3) + ‖u‖L2(Ωaε ;R3) + ‖u‖L2(Ω0

ε;R3)

)
+ C

m∑
j=1

‖f jε ‖L2(Ωjε;R3)‖u
j‖L2(Ωjε;R3)

≤C
(
‖f‖L2(Ω;R3) + ε

m∑
j=1

‖f jε ‖L∞(Ωjε;R3)

)
|u|Vε .

(5.12)

Using (3.8)2, the last term on the right-hand side of (5.11) is simply bounded as follows:

m∑
j=1

∫
Ωjε

f jε · rju dx ≤ Cε
m∑
j=1

‖f jε ‖L∞(Ωjε;R3)

(
‖aju‖L1(ω;R3) + ε‖bju‖L1(ω;R3)

)
≤ C ′0 ε max

j=1,...,m
‖f jε ‖L∞(Ωjε;R3)Ru.

(5.13)

Hence∫
Ω∗ε

f ·u dx+

m∑
j=1

∫
Ωjε

f jε ·(uj+rju) dx ≤ C
(
‖f‖L2(Ω;R3)+ε

m∑
j=1

‖f jε ‖L∞(Ωjε;R3)

)
|u|Vε+C ′0

(
ε max
j=1,...,m

‖f jε ‖L∞(Ωjε;R3)

)
Ru.

From the above inequality and (5.11) we derive

α|u|2Vε +

m∑
j=0

Ψj
ε([uτ ]Sjε ) ≤C

(
‖f‖L2(Ω;R3) + ε

m∑
j=1

‖f jε ‖L∞(Ωjε;R3)

)
|u|Vε

+C ′0
(
ε max
j=1,...,m

‖f jε ‖L∞(Ωjε;R3)

)
Ru.

(5.14)

Assumption (5.4) gives
m∑
j=1

(
M j
ε ‖[uτ ]Sjε‖L1(Sjε) − a

j
ε

)
≤

m∑
j=1

Ψj
ε([uτ ]Sjε ). (5.15)

One has
‖(rju)τ‖L1(Sjε) ≤ ‖[uτ ]Sjε‖L1(Sjε) + 2‖uj

|Sjε
− u|Sjε‖L1(Sjε). (5.16)

Besides, from the trace theorem (after ε-scaling) and (3.26), we have

m∑
j=1

‖uj
|Sjε
− u|Sjε‖L1(Sjε ;R3) ≤

C√
ε

m∑
j=0

(
‖uj‖L2(Ωjε;R3) + ε‖∇uj‖L2(Ωjε;R3×3)

)
≤ C

(
‖f‖L2(Ω;R3) + ε

m∑
j=1

‖f jε ‖L∞(Ωjε;R3)

)
|u|Vε .

(5.17)
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Then, the above estimate, (5.16) and (5.15) lead to

min
j=1,...,m

M j
ε

m∑
j=1

‖(rju)τ‖L1(Sjε) ≤
m∑
j=1

Ψj
ε([uτ ]Sjε ) +

m∑
j=1

ajε + C
(
‖f‖L2(Ω;R3) + ε

m∑
j=1

‖f jε ‖L∞(Ωjε;R3)

)
|u|Vε . (5.18)

By definition of Kε (see (5.3)) we have

(rju)+
ν ≤ (gjε)

+ + |(uj · ν)|Sjε − (u · ν)|Sjε | a.e. Sjε , j = 1, . . . ,m. (5.19)

Then
‖(rju)+

ν ‖L1(Sjε) ≤ ‖(g
j
ε)

+‖L1(Sjε) + ‖uj
|Sjε
− u|Sjε‖L1(Sjε ;R3).

The above estimate together with (5.17) yield

m∑
j=1

‖(rju)+
ν ‖L1(Sjε) ≤

m∑
j=1

‖(gjε)+‖L1(Sjε) + C
(
‖f‖L2(Ω;R3) + ε

m∑
j=1

‖f jε ‖L∞(Ωjε;R3)

)
|u|Vε .

Inequality (5.18) and the above one lead to

min
j=1,...,m

M j
εRu ≤

m∑
j=1

Ψj
ε([uτ ]Sjε ) +

m∑
j=1

‖(gjε)+‖L1(Sjε) +

m∑
j=1

ajε + C
(
‖f‖L2(Ω;R3) + ε

m∑
j=1

‖f jε ‖L∞(Ωjε;R3)

)
|u|Vε .

Now, the above estimate and (5.20) give

α|u|2Vε + min
j=1,...,m

M j
εRu ≤C

(
‖f‖L2(Ω;R3) + ε

m∑
j=1

‖f jε ‖L∞(Ωjε;R3)

)
|u|Vε

+C ′0
(
ε max
j=1,...,m

‖f jε ‖L∞(Ωjε;R3)

)
Ru +

m∑
j=1

‖(gjε)+‖L1(Sjε) +

m∑
j=1

ajε.

(5.20)

Then, under assumption (5.9) and (3.26)3 we obtain (5.10).

Proposition 5.2. (Existence of solutions for Pε.) Under assumption (5.9) there exists at least one global
minimizer for the functional Eε.

Proof. Let {uη}η>0 be a minimizing sequence for Pε. Due to (5.10) and (3.27) there exists a constant C which
does not depend on η (but which depends on ε) such that

uη = (uη, u
1
η . . . , u

m
η , auη , buη ) ∈ Vε ‖uη‖H1(Ω∗ε ;R3)+

m∑
j=1

‖ujη‖H1(Ωjε;R3)+

m∑
j=1

(
‖ajuη‖L2(ω;R3)+ε‖bjuη‖L2(ω;R3)

)
≤ C.

Since Eε is bounded from below, convex and weakly lower semicontinuous as a sum of weakly lower semicon-
tinuous functions, there exists at least a minimizer uε ∈ Kε for Eε.

Remark 5.1. Let uε = (uε, u
1
ε . . . , u

m
ε , auε , buε) ∈ Kε, u′ε = (u′ε, u

′1
ε . . . , u

′m
ε , au′ε , bu′ε) ∈ Kε be two minimizers

of Pε, both fields satisfy (5.7). Hence

uε = u′ε, ujε = u
′j
ε , j = 1, . . . ,m.

6 Main result

In this section, we only consider the case of Tresca friction.

6.1 Hypotheses on gjε, G
j
ε and f jε

To pass to the limit in the homogenization process, we need structural assumptions concerning the Tresca
data which are more precise than those of Section 5. Hence, we assume that there exist

1. gj ∈ L1(Sj), j = 0, . . . ,m, such that

gjε = gj
({ ·

ε

}
Y

)
,

and therefore
T bl,jε (gjε)(x

′, y) = gj(y) for a.e. (x′, y) ∈ ω × Sj .
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2. Gj ∈ Cc(ω × Sj), j = 0, . . . ,m, such that

T bl,jε (Gjε)→ Gj strongly in L∞(ω × Sj),
Gj(x′, y) ≥M j for any (x′, y) ∈ ω × Sj , M j > 0.

3. F j ∈ Cc(ω × Y j ;R3), j = 1, . . . ,m, such that

f jε (x) =
1

ε
F j
(
ε
[x′
ε

]
Y ′
, ε
{x
ε

}
Y

)
, for a.e. x ∈ Ωjε. (6.1)

The Assumption (5.9) becomes

C ′0 max
j=1,...,m

(
‖F j‖L∞(ω×Y j ;R3)

)
max

j=1,...,m

( 1

M j

)
≤ 1

2
. (6.2)

6.2 The limit problem

We equip the product space

H = H1
Γ(Ωb;R3)×H1(Ωa;R3)× L2(ω;H1

per(Y
0;R3))×

m∏
j=1

L2(ω;H1(Y j ;R3))× [M(ω;R3)]m × [M(ω;R3)]m

with the norm

‖V‖H = ‖vb‖H1(Ωb;R3) + ‖va‖H1(Ωa;R3) +

m∑
j=0

‖v̂j‖L2(ω;H1(Y j ;R3)) + ‖aV‖[M(ω;R3)]m + ‖bV‖[M(ω;R3)]m

where V = (vb, va, v̂0, . . . , v̂m, aV, bV) ∈ H.

We set

V =
{

V ∈ H | vb(x′, 0) = v̂0(x′, y1, y2, 0), va(x′, 0) = v̂0(x′, y1, y2, 1) for a.e. (x′, y1, y2) ∈ ω × Y ′,

v̂j is orthogonal to the rigid displacements, j = 1, . . . ,m
}
.

For any V ∈ V, as in Section 5, we define [V]Sj = v̂j|Sj − v̂
0
|Sj , [Vν ]Sj = [V]Sj · ν|Sj , [Vτ ]Sj = [V]Sj − [Vν ]Sj ,

j = 1, . . .m, and

[V]S0(x′, y) = lim
s→0,s>0

(
v̂0
(
x′, y + sν(y)

)
− v̂0

(
x′, y − sν(y)

))
,

[Vν ]S0(x′, y) = lim
s→0,s>0

(
v̂0
(
x′, y + sν(y)

)
− v̂0

(
x′, y − sν(y)

))
· ν(y),

[Vτ ]S0(x′, y) = [V]S0(x′, y)− [Vτ ]S0(x′, y) for a.e. (x′, y) ∈ ω × S0.

Now we introdce the closed convex set K

K =
{

V ∈ V | [Vν ]S0 ≤ g0 in ω × S0, [Vν ]Sj + rjV · ν ≤ g
j in ω × Sj (2)

,

where ∀y ∈ Y j rjV(·, y) = ajV + bjV ∧ (y −Oj) in M(ω ; R3), j = 1, . . . ,m
}
.

Theorem 6.1. Assume f ∈ L2(Ω;R3) and f jε , gjε, Gjε satisfy the hypotheses of Subsection 6.1 and also assume
(6.2). Suppose that the following assumption holds: there exists a tensor aM such that, as ε→ 0,

Tε(aMε )→ aM a.e. in ω × Y. (6.3)

2This condition means

∀φ ∈ Cc(ω×Sj), s.t. φ(x′, y) ≥ 0 on ω×Sj , < φ, rjV·ν >Cc(ω×Sj),M(ω×Sj)≤
∫
ω×Sj

(
gj−[Vν ]Sj

)
φ dx′dσ(y), j = 1, . . . ,m.
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Let uε be the solution of Problem (5.7), there exist a subsequence -still denoted ε- and
U = (ub, ua, û0, . . . , ûm, aU, bU) ∈ K such that (j = 1, . . . ,m)

uε ⇀ ub weakly in H1
Γ(Ωb;R3),

uε(·+ εe3) ⇀ ua weakly in H1(Ωa;R3),

Tε(uε) ⇀ û0 weakly in L2(ω;H1(Y 0;R3)),

εTε(e(uε)) ⇀ ey(û0) weakly in L2(ω × Y 0;R3×3),

Tε(ujε) ⇀ ûj weakly in L2(ω;H1(Y j ;R3)),

εTε(e(ujε)) ⇀ ey(ûj) weakly in L2(ω × Y j ;R3×3),

ajuε ⇀ ajU weakly-* in M(ω;R3),

bjuε ⇀ bjU weakly-* in M(ω;R3).

The limit field U satisfies the following unfolded problem:∫
Ωb
abe(ub) : e(vb − ub) dx+

∫
Ωa
aae(ua) : e(va − ua) dx+

m∑
j=0

∫
ω×Y j

aMey(ûj) : ey(v̂j − ûj) dx′dy

+

m∑
j=0

< Gj , |[Vτ ]Sj + (rjV)τ | − |[Uτ ]Sj + (rjU)τ | >Cc(ω×Sj),M(ω×Sj)

≥
∫

Ωb
f · (vb − ub) dx+

∫
Ωa
f · (va − ua) dx+

m∑
j=1

∫
ω×Y j

F j · (v̂j − ûj) dx′dy

+

m∑
j=1

< F j , rjV − r
j
U >Cc(ω×Y j ;R3),M(ω×Y j ;R3), ∀V ∈ K

(6.4)

where
r0
V = r0

U = 0, (rjV)τ = rjV − (rjV · ν)ν, (rjU)τ = rjU − (rjU · ν)ν, j = 1, . . . ,m.

Proof. Based on the Proposition 5.1 and the assumptions of Section 6.1, the solution uε of Problem Pε is
uniformly bounded with respect to ε. Hence, up to a subsequence of ε (still denoted ε), the convergences of
Theorem 4.1 hold. Therefore, we should show that the limits furnished by the Theorem 4.1 satisfy a homogenized
limit problem. The main point now is to pass to the limit in (5.7).

Let V = (vb, va, v̂0, . . . , v̂m, aV, bV) be in

K∩H1
Γ(Ωb;R3)×H1(Ωa;R3)×C∞c (ω;H1

per(Y
0;R3))×

m∏
j=1

C∞c (ω;H1(Y j ;R3))× [C∞c (ω;R3)]m × [C∞c (ω;R3)]m.

We use the following test function vε ∈ Kε:

vε(x) =



vε(x) =vb(x) in Ωb,

vε(x) =va(x− εe3) in Ωaε ,

vε(x) =v̂0
(
x′,
{x
ε

}
Y

)
in Ω0

ε,

vjε(x) =v̂j
(
x′,
{x
ε

}
Y

)
in Ωjε,

rjvε(x) = ajV(x′) + bjV(x′) ∧
({x

ε

}
Y
−Oj

)
in Ωjε.

(6.5)

By construction we have (j = 1, . . . ,m)

vε = vb in Ωb, vε(·+ εe3) = va in Ωa,

Tε(vε) −→ v̂0 strongly in L2(ω;H1(Y 0;R3)),

εTε(e(vε)) −→ ey(v̂0) strongly in L2(ω × Y 0;R3×3),

Tε(vε) −→ v̂j strongly in L2(ω;H1(Y j ;R3)),

εTε(e(vε)) −→ ey(v̂j) strongly in L2(ω × Y j ;R3×3),

Tε(rjvε) −→ ajV + bjV ∧ (y −Oj) strongly in L1(ω × Y j ;R3).

(6.6)
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We rewrite (5.7) in the form

ε

m∑
j=1

∫
Ωjε

aMε e(u
j
ε) : e(vjε) dx+ε

∫
Ω0
ε

aMε e(uε) : e(vε) dx+

∫
Ωb
abe(uε) : e(vε) dx+

∫
Ωa
aa(·+εe3)e

(
uε(·+εe3)

)
: e(va) dx

+

m∑
j=0

∫
Sjε

Gjε(x)|[(vε)τ ]Sjε |dσ(x)−
∫

Ωε

fε · vε dx ≥ ε
m∑
j=1

∫
Ωjε

aMε e(u
j
ε) : e(ujε) dx+ ε

∫
Ω0
ε

aMε e(uε) : e(uε) dx

+

∫
Ωb
abe(uε) : e(uε) dx+

∫
Ωa
aa(·+e3)e

(
uε(·+εe3)

)
: e
(
uε(·+εe3)

)
dx+

m∑
j=0

∫
Sjε

Gjε(x)|[(uε)τ ]Sjε |dσ(x)−
∫

Ωε

fε·uε dx.

Therefore, by unfolding and due to the convergences in Theorem 4.1 and the equalities and convergence in
(6.6), we have

lim
ε→0

(
ε

m∑
j=1

∫
Ωjε

aMε e(u
j
ε) : e(vjε) dx+ ε

∫
Ω0
ε

aMε e(uε) : e(vε) dx
)

= lim
ε→0

(
ε2

m∑
j=1

∫
ω×Y j

Tε(aMε )Tε(e(ujε)) : Tε(e(vjε)) dx′dy + ε2

∫
ω×Y j

Tε(aMε )Tε(e(uε)) : Tε(e(vε)) dx′dy
)

=

m∑
j=0

∫
ω×Y j

aMey(ûj) : ey(v̂j) dx′ dy,

lim
ε→0

m∑
j=0

∫
Sjε

Gjε|(vε)τ ]Sjε |dσ(x) = lim
ε→0

m∑
j=0

∫
ω×Sj

T bl,jε (Gjε)T bl,jε (|(vε)τ ]Sjε |)dx
′dσ(y)

=

m∑
j=0

∫
ω×Sj

Gj |[Vτ ]Sj + (rjV)τ |dx′ dσ(y).

By the lower semi-continuity with respect to weak (or weak-*) convergences, we first obtain

lim inf
ε→0

m∑
j=0

∫
Ωjε

εaMε e(u
j
ε) : e(ujε) dx = lim inf

ε→0
ε2

m∑
j=0

∫
ω×Y j

Tε(aMε )Tε(e(ujε)) : Tε(e(ujε)) dx′dy

≥
m∑
j=0

∫
ω×Y j

aMey(ûj) : ey(ûj) dx′dy,

then, unfolding the term corresponding to the Tresca friction, passing to the limit and making use of lower
semi-continuity gives

lim inf
ε→0

m∑
j=0

∫
Sjε

Gjε|[(uε)τ ]Sjε |dσ(x) ≥
m∑
j=0

< Gj , |[Uτ ]Sj + (rjU)τ | >Cc(ω×Sj),M(ω×Sj) .

Considering the terms corresponding to the applied forces we get

lim
ε→0

∫
Ωb∪Ωaε

f · uε dx = lim
ε→0

(∫
Ωb
f · uε dx+

∫
Ωa
f(·+ εe3) · uε(·+ εe3) dx

)
=

∫
Ωb
f · ub dx+

∫
Ωa
f · ua dx,

lim
ε→0

∫
Ω0
ε

f · uε dx = lim
ε→0

ε

∫
ω×Y 0

Tε(f) · Tε(uε) dx′ dy = 0,

lim
ε→0

m∑
j=1

∫
Ωjε

f jε · ujε dx = lim
ε→0

ε

m∑
j=1

∫
ω×Y j

Tε(f jε ) · Tε(ujε)dx′ dy

=

m∑
j=1

∫
ω×Y j

F j · ûj dx′dy +

m∑
j=1

< F j , rjV >Cc(ω×Y j ;R3),M(ω×Y j ;R3) .

In a similar way

lim
ε→0

∫
Ω∗ε

f · vε dx =

∫
Ωb
f · vb dx+

∫
Ωa
f · va dx,

lim
ε→0

m∑
j=1

∫
Ωjε

f jε · vjε dx =

m∑
j=1

∫
ω×Y j

F j · (v̂j + rjV) dx′dy.
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Using the established convergences we obtain∫
Ωb
abe(ub) : e(vb) dx+

∫
Ωa
aae(ua) : e(va) dx+

m∑
j=0

∫
ω×Y j

aMey(ûj) : ey(v̂j) dx′ dy

+

m∑
j=0

< Gj , |[Vτ ]Sj + (rjV)τ | >Cc(ω×Sj),M(ω×Sj) −
∫

Ωb
f · vb dx−

∫
Ωa
f · va dx

−
m∑
j=1

< F j , v̂j + rjV >Cc(ω×Sj ;R3),M(ω×Sj ;R3)

≥
∫

Ωb
abe(ub) : e(ub) dx+

∫
Ωa
aae(ua) : e(ua) dx+

m∑
j=0

∫
ω×Y j

aMey(ûj) : ey(ûj) dx′dy

+

m∑
j=0

< Gj , |[Uτ ]Sj + (rjU)τ | >Cc(ω×Sj),M(ω×Sj) −
∫

Ωb
f · ub dx−

∫
Ωa
f · ua dx

−
m∑
j=1

< F j , ûj + rjU >Cc(ω×Y j ;R3),M(ω×Y j ;R3) .

Subtracting the terms on the right-hand side from the left-hand side we get (6.4). By a density argument, (6.4)
holds for any V ∈ K.

Remark 6.1. Since the functional

E(V)
.
=

1

2

(∫
Ωb
abe(vb) : e(vb) dx+

∫
Ωa
aae(va) : e(va) dx+

m∑
j=0

∫
ω×Y j

aMey(v̂j) : ey(v̂j) dx′ dy
)

+

m∑
j=0

< Gj , |[Vτ ]Sj + (rjV)τ | >Cc(ω×Sj),M(ω×Sj) −
∫

Ωb
f · vb dx−

∫
Ωa
f · va dx

−
m∑
j=1

< F j , v̂j + rjV >Cc(ω×Y j ;R3),M(ω×Y j ;R3), V = (vb, va, v̂0, . . . , v̂m, aV, bV) ∈ K,

(6.7)

is weakly lower semi-continuous and convex over K, Problem (6.4) is equivalent to find a minimizer over K of
the functional E. The field U obtained in Theorem 6.1 is a global minimizer of this functional over K and every
limit point of the sequence {uε} is a global minimizer of E.

Lemma 6.1. For every M ≥ 0 there exists a constant C(M) such that for any V ∈ K satisfying E(V) ≤ M
we have

‖va‖H1(Ωa;R3) + ‖vb‖H1(Ωb;R3) +

m∑
j=0

‖v̂j‖L2(ω;H1(Y j ;R3)) + ‖aV‖[M(ω;R3)]m + ‖bV‖[M(ω;R3)]m ≤ C(M). (6.8)

Proof. From the expression (6.7) of E(V), we first deduce that E(V) ≤M implies

α

2

(
‖e(va)‖2L2(Ωa;R6) + ‖e(vb)‖2L2(Ωb;R6) +

m∑
j=0

‖e(êy(vj))‖2L2(ω×Y j ;R6)

)
+

m∑
j=0

M j‖[Vτ ]Sj + (rjV)τ‖M(ω×Sj ;R3) − ‖f‖L2(Ωa;R3)‖va‖L2(Ωa;R3) − ‖f‖L2(Ωb;R3)‖vb‖L2(Ωb;R3)

−
m∑
j=1

‖F j‖L2(ω×Y j ;R3)‖v̂j‖L2(ω×Y j ;R3) −
m∑
j=1

‖F j‖Cc(ω×Y j ;R3)‖rjV‖M(ω×Y j ;R3) ≤M.

(6.9)

From the Korn inequality and the trace theorem we get

‖va‖H1(Ωa;R3) + ‖vb‖H1(Ωb;R3) +

m∑
j=0

‖v̂j‖L2(ω;H1(Y j ;R3))

≤C
(
‖e(va)‖2L2(Ωa;R6) + ‖e(vb)‖2L2(Ωb;R6) +

m∑
j=0

‖e(êy(vj))‖2L2(ω×Y j ;R6)

)
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where constant C depends on the geometry of the sets Ωa, Ωb, ω, S0 and Y j (j = 1, . . . ,m).

Then, the above inequality and (6.9) yield

β
(
‖va‖H1(Ωa;R3) + ‖vb‖H1(Ωb;R3) +

m∑
j=0

‖v̂j‖L2(ω;H1(Y j ;R3)) +

m∑
j=0

M j‖(rjV)τ‖M(ω×Sj ;R3)

−
m∑
j=1

‖F j‖Cc(ω×Y j ;R3)‖rjV‖M(ω×Y j ;R3) ≤M

where β > 0.

Now, in the case aV ∈ [L1(ω;R3)]m and bV ∈ [L1(ω;R3)]m, from Proposition 3.2, there exist constants C which
depend on Y j (j = 1, . . . ,m) such that

‖aV‖[L1(ω;R3)]m + ‖bV‖[L1(ω;R3)]m ≤ C
m∑
j=1

(
‖(rjV)τ‖L1(ω×Sj ;R3) + ‖((rjV)ν)+‖L1(ω×Sj)

)
.

Due to the definition of K we have ‖(((rjV)ν)+‖L1(ω×Sj) ≤ ‖(gj)+‖L1(Sj) + ‖[Vν ]‖L1(ω×Sj). Proceeding as in
the proofs of Propositions 3.3 and 5.1 and thanks to the condition (6.2) and the above inequalities, we deduce
the existence of a constant C(M) such that (we recall that ‖rjV‖M(ω×Sj ;R3) = ‖rjV‖L1(ω×Sj ;R3))

‖va‖H1(Ωa;R3) + ‖vb‖H1(Ωb;R3) +

m∑
j=0

‖v̂j‖L2(ω;H1(Y j ;R3)) + ‖aV‖[L1(ω;R3)]m + ‖bV‖[L1(ω;R3)]m ≤ C(M).

Then, for general elements V ∈ K, using regularization by convolution in x′ and this last estimate we obtain
(6.8).

Independently of Remark 6.1, using the above lemma we can easily prove the existence of at least one global
minimizer for the functional E .

Remark 6.2. Let U and U′ be two global minimizers of the functional E, from (6.4), we deduce that

ua = u
′a, ub = u

′b, ûj = û
′j , j = 0, . . . ,m

and
m∑
j=0

< Gj , |[Uτ ]Sj + (rjU)τ | >Cc(ω×Sj),M(ω×Sj) −
m∑
j=1

< F j , rjU >Cc(ω×Y j ;R3),M(ω×Y j ;R3)

=

m∑
j=0

< Gj , |[Uτ ]Sj + (rjU′)τ | >Cc(ω×Sj),M(ω×Sj) −
m∑
j=1

< F j , rjU′ >Cc(ω×Y j ;R3),M(ω×Y j ;R3) .

Lemma 6.2. Let uε be a minimizer of Pε over Kε,

mε = min
v∈Kε

Eε(v) = Eε(uε).

The whole sequence {mε} converges and we have

m = min
V∈K
E(V) = E(U) = lim

ε→0
mε = lim

ε→0
Eε(uε) ≤ 0.

Proof. As a consequence of Theorem 6.1 we have (with the subsequence of ε introduced in this theorem)

m = E(U) ≤ lim inf
ε→0

mε = lim inf
ε→0

Eε(uε).

Now, let V be in K and let {Vη}η be a sequence of fields in

K ∩H1
Γ(Ωb;R3)×H1(Ωa;R3)× C∞c (ω;H1

per(Y
0;R3))×

m∏
j=1

C∞c (ω;H1(Y j ;R3))× [C∞c (ω;R3)]m × [C∞c (ω;R3)]m

strongly converging to V in V (that is possible using regularization by convolution in x′). We fix η and for every
Vη we consider the test field belonging to Kε defined by (6.5) and here denoted vηε . Using the subsequence of
ε introduced in Theorem 6.1, we can pass to the limit (ε→ 0). Since mε ≤ Eε(vηε ), due to (6.6) we obtain

lim sup
ε→0

mε ≤ lim sup
ε→0

Eε(vηε ) = lim
ε→0
Eε(vηε ) = E(Vη).

17



Now η goes to 0; that gives
∀V ∈ K, lim sup

ε→0
mε ≤ E(V).

Then
lim sup
ε→0

mε ≤ E(U) ≤ min
V∈K
E(V).

Finally we get m = lim
ε→0

mε and this result holds for the whole sequence {ε}.

6.3 Computation of the effective outer–plane properties for a case of heteroge-
neous layer without contact

Solving (6.4) numerically is difficult because of the presence of non-differentiable non-linear term |[Uτ ]Sj |.
Also a complete scale separation is impossible for a non–linear problem.

In this subsection due to application purposes we want to consider a case without contact. Thus, we assume
that the open sets Y j , j = 1, . . . ,m, are holes. For this case we can give a linear problem whose solution is the
couple (ua, ub) with Robin-type condition on the interface. The result obtained will be similar to [2, 5, 14].

The space V is replaced by

V′ =
{

V = (vb, va, v̂0) ∈ H′ | vb(x′, 0) = v̂0(x′, y′, 0), va(x′, 0) = v̂0(x′, y′, 1) for a.e. (x′, y′) ∈ ω × Y ′
}

where H′ = H1
Γ(Ωb;R3)×H1(Ωa;R3)× L2(ω;H1

per(Y
0;R3)). We endowed this Hilbert space with the norm

‖V‖V′ = ‖vb‖H1(Ωb;R3) + ‖va‖H1(Ωa;R3) + ‖v̂0‖L2(ω;H1(Y 0;R3)).

Now, the closed convex set K is replaced by the space V′. Since for any V ∈ V′, −V also belongs to V′, the
problem (6.4) becomes

Find U = (ub, ua, û0) ∈ V′ s. t.∫
Ωb
abe(ub) : e(vb) dx+

∫
Ωa
aae(ua) : e(va) dx+

∫
ω×Y 0

aMey(û0) : ey(v̂0) dx′dy

=

∫
Ωb
f · vb dx+

∫
Ωa
f · va dx, ∀V = (vb, va, v̂0) ∈ V′

(6.10)

Introduce the Hilbert space

V̂0 =
{
ŵ ∈ H1

per(Y
0;R3) | ŵ(y1, y2, 0) = ŵ(y1, y2, 1) = 0 for a.e. (y1, y2) ∈ Y ′

}
.

We consider the 3 corrector displacements χ̂i ∈ L∞(ω;H1
per(Y

0;R3)), i = 1, 2, 3, defined by
χ̂i(x′, y1, y2, 1) = ei, χ̂i(x′y1, y2, 0) = 0, for a.e. (x′, y1, y2) ∈ ω × Y ′∫
Y 0

aMey(χ̂i) : ey(ψ) dy = 0 for a.e. x′ ∈ ω, ∀ψ ∈ V̂0,
(6.11)

The displacements ei − χ̂i ∈ L∞(ω;H1
per(Y

0;R3)), i = 1, 2, 3, satisfiy
(ei − χ̂i)(x′, y1, y2, 1) = 0, (ei − χ̂i)(x′, y1, y2, 0) = ei, for a.e. (x′, y1, y2) ∈ ω × Y ′∫
Y 0

aMey(ei − χ̂i) : ey(ψ) dy = 0 for a.e. x′ ∈ ω, ∀ψ ∈ V̂0.

Below we give the variational problem satisfied by (ua, ub).

Theorem 6.2. Let U = (ub, ua, û0) be the solution of (6.10). We have

û0(x′, y) =

3∑
i=1

χ̂i(x′, y)uai|Σ(x′) +

3∑
i=1

(ei − χ̂i(x′, y))ubi|Σ(x′) for a.e. (x′, y) ∈ ω × Y 0 (6.12)

and the couple (ua, ub) is the solution of the following variational problem:

Find (ua, ub) ∈ H1(Ωa;R3)×H1
Γ(Ωb;R3) s.t.∫

Ωb
abe(ub) : e(vb) dx+

∫
Ωa
aae(ua) : e(va) dx+

∫
ω

H(ua|Σ − u
b
|Σ) · (va|Σ − v

b
|Σ) dx′

=

∫
Ωb
f · vb dx+

∫
Ωa
f · va dx,

∀(va, vb) ∈ H1(Ωa;R3)×H1
Γ(Ωb;R3),

(6.13)
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where H is the 3× 3 symmetric matrix with coefficients in L∞(ω) defined by

Hij :=

∫
Y 0

aMey(χ̂i) : ey(χ̂j) dy, i, j = 1, 2, 3. (6.14)

Matrix H is the homogenized tensor of the effective outer-plane stiffness and the χ̂j’s (j = 1, 2, 3) are the
solution of the cell-problem (6.11).

Proof. Take ŵ ∈ V̂0 as test-displacement in (6.10). That gives

∀ŵ ∈ V̂0

∫
ω×Y 0

aMey(û0) : ey(ŵ) dx′dy = 0.

Hence, using the corrector displacements χ̂i, i = 1, 2, 3, we express û0.

Let (va, vb) be in H1(Ωa;R3) × H1
Γ(Ωb;R3), we set v̂0 =

3∑
i=1

χ̂ivai|Σ +

3∑
i=1

(ei − χ̂i)vbi|Σ. We consider V =

(vb, va, v̂0) as test function in (6.10). Then we develop

∫
ω×Y 0

aMey(û0) : ey(v̂0) dx′dy and we obtain (6.13).
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