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Homogenization via unfolding in periodic layer with contact
Georges Griso, Anastasia Migunova, Julia Orlik

Abstract

In this work we consider the elasticity problem for two domains separated by a heterogeneous layer.
The layer has an e—periodic structure, ¢ < 1, including a multiple micro-contact between the structural
components. The components are surrounded by cracks and can have rigid displacements. The contacts
are described by the Signorini and Tresca-friction conditions. In order to obtain preliminary estimates
modification of the Korn inequality for the e—dependent periodic layer is performed.

An asymptotic analysis with respect to € — 0 is provided and the limit problem is obtained, which
consists of the elasticity problem together with the transmission condition across the interface. The periodic
unfolding method is used to study the limit behavior.

1 Introduction

Contact problems for the domains with highly-oscillating boundaries were considered in different works (see
e.g. [12, 16, 17]) as well as problems on the domains including thin layer [2, 5, 14]. The elasticity problem for
a heterogeneous domain with a Tresca—type friction condition on a microstructure (involving inclusions and
cracks) was considered in [6] and Korn’s inequality for disconnected inclusions was obtained.

In this paper we are concerned with an elasticity problem in a domain containing a thin heterogeneous layer
of the small thickness e. We consider the case in which the stiffness of the layer is also of the order €. The
contact between structural components in the layer is described by the Tresca—friction contact conditions. Our
aim is to study the behavior of the solutions of the microscopic equations when ¢ tends to zero.

For the derivation of the limit problem we use the periodic unfolding method which was first introduced in
[3], later developed in [4] and was used for different types of problems, particularly, contact problem in [6] and
problems for the thin layers in [2].

However, additional difficulties arise in the proving uniform boundedness for the minimizing sequence of
the solutions. The idea consists in controlling the norm by the trace on the boundary of the domain and,
therefore, by the norm on the outside domain. Working this way we first obtain estimate for the Dirichlet
domain, through which an estimate of the trace is obtained and, therefore, norm on the structural components
of the layer. Two Korn’s inequalities are introduced: for the inclusions placed in the heterogeneous periodic
layer (based on the results from [6]) and for the connected part of the layer. The main result of the study is an
asymptotic model for the layer between elastic blocks.

The paper is organized as follows. Section 2 gives the geometric setting for the e-periodic problem, including
the unit cell. In Section 3 we give inequalities related to the unfolding operator on the interface surfaces, then
establish a uniform Korn inequality for the perforated matrix domain. Then, two unilateral Korn inequlities
are proved with their applications to the oscillating inclusions and the matrix of the layer. Section 4 deals
with the convergence result. In Section 5 the problem for fixed ¢ is introduced. At last, in Section 6 the limit
problem is obtained and the case of the linearized contact conditions is considered.

1.1 Notations

e Let O be a bounded domain in R*® with a Lipschitz boundary. For any v € H'(O;R?), the normal
component of a vector field v on the boundary of O is denoted v, = vj50 - v, while the tangential
component vjpo — v,V is denoted v, (v is the outward unit normal vector to the boundary).

e Let SO be a closed set in R?: a finite union of disjoint orientable surfaces of class C'. Then for every piece
of surface, we choose a continuous field of unit normal vector denoted v.

e The strain tensor of a vector field v is denoted by e(v),

y 1/0v;  Ov,
] _ ? J R 2
=3 (g +ge) G

The kernel of e in a connected domain is the finite dimensional space of rigid motions denoted by R.

2 Geometric statement of the problem

In the Euclidean space R? consider a connected domain w with Lipschitz boundary and let L > 0 be a fixed
real number. Define:



Qb =wx(-L,0),

2 =wx(0,L),

Y =wx{0},

Q =QUuUQUY =wx (-L,L).

To describe a structure with a layer introduce the notations:

Q =wx (g L),
QM =wx(0,¢), (2.1)
S =wx{e}.

Here ¢ is a small parameter corresponding to the thickness of the layer.
The assemblage is fixed on I', which is a non-empty part of 90 (I' is a set where the Dirichlet condition
will be prescribed). Furthermore, we assume that the external boundary of the layer 93 x [0, €] is traction free.
The layer QM has periodic in-plane structure. The unit cell is
denoted Y
Y =(0,1)°cR?  Y.=eV Sy

Additionally,

Sl
Si’,:{yEY:yB:O}, Sy ={yeY :y3 =1} @ O

are the lower and upper boundaries of Y.

There are two kinds of cracks, the first ones S*,...,S™ (the S
“closed cracks”) are the closed boundaries of open Lipschitzian
sets Y7 j € {1,...,m}. We assume that every S7 j € {1,...,m},
has only one connected component and U;nzl Y7 C Y. The other o /Q/
cracks (the “open cracks”), which union is denoted by S°, are the i S0

finite union of closed Lipschitz surfaces included in Y\ U;"Zlﬁ S gb
(see Figure 1). v

We set Figure 1: The unit cell Y
YOZY\(UWUSO)
j=1

and we assume that there exists tg > 0 such that

vz’ € S°, [z — tov(z)), 2’ + tov(z')] \ {2’} C Y°.
m
Since the set of cracks U 57 is a closed subset strictly included in Y, there exists n > 0 such that
§=0

Vo € U S9, dist(z,dY) > 7.

j=0
Denote
Y’ =(0,1)%
Recall that in the periodic setting almost every point z € R? (resp. 2’ € R?) can be written as
z=[z]y +{z}y, [2ly €2°, {2}y €Y,
(resp. 2’ = [2']y, + {z'}y, [2]y, € Z%, {2}y, €Y).

Denote by

o Z.={¢(eZ?|e(é+eY') cw}, EM = 2. x {0},

e (. = interior ( U e(¢ +?)), ﬁéw = interior ( U s(§+?)> = . x (0,¢),

£€E. ge=M

o Ar=w\ B, AM = QM \ QM = A x (0,¢).



The open subset of QM contains the parts of cells intersecting the lateral boundary dw x (0, ¢).

For j =1,...,m introduce the set
. PV x .
Qg:{xe Q; |5{—} eYﬂ}.
ely
The boundary 9 is the set of “closed cracks” associated with S7,

8Qgng:{x€ QM | e{g}yeszan}.

For j =0 set
ng{xe QM | 5{§}Y650}
and _
Qgﬁﬂy\( U qusg), 0= Q0N QM.
j=1,....,m

The union of all the cracks is denoted by S,

We define the set €. and Q} as follows
Q. =0\ S. inﬂ\( U Qg’usg).
j=1,.om
Note that from these definitions it is clear that there are no cracks in the part of the layer AM.
For a function v defined on 2, for simplicity, we denote its restriction to QZ by v’

vjivmg forj=1,...,m.

In the following, for any bounded set O and ¢ € L}(O), Mo (p) denotes the mean value of ¢ over O, i.e.

1
Mo(<p)=@/o<pdy-

3 Some inequalities related to unfolding and the geometric domain

3.1 The boundary-layer unfolding operator 7., 77

Here we recall the definition and the properties of the boundary-layer unfolding operator (for more details
see [2]).

Definition 3.1. For ¢ Lebesque-measurable on QM (resp. on QI, j=1,...,m), the unfolding operator T; is

defined by

x’ N N .
Tolo) (@', y) = { w(e[;} » + sy) for a.e. (z',y) €. XY, (resp. for a.e. (x',y) € e X YJ.)
for a.e. (2',y) € Ae XY, (resp. for a.e. (2',y) € Ac xY7).

For ¢ Lebesque-measurable on S, j € 1,...,m, the unfolding operator T2 is defined by

/

. T / ~ j
tbl,j(w)(m/yy) _ { w(a[ 5 }Y/ —i—ay) for a.e. (2',y) € U X SJ,’
0 for a.e. (z',y) € Ao x S9.

Remark 3.1. If ¢ € WhP(Q), j=1,....m, p € [1,+00], T21I(p) is just the trace of T-(¢) on w x S7.

Proposition 3.1 (Properties of the operators Tz, T2!7).
1. For any ¢ € L*(QM),
/ pdr = 5/ T-(p) (@', y)da' dy.
Aé” wXY

Q



2. For any ¢ € L?*(QM),
||‘P||L2(ﬁfy) = Ve[ Te ()| L2 (we xv)-

3. Let p € HY(QM). Then
Vy(Te(@)) =eTe (V)  ae. inw xY.

In a similar way, for any v € H'(QM;R3)

4. For any v € LP(S7), p € [1, +o0]

Ydo(z) = / TR () (!, y)da do () (3.1)
S we X 89

and

19l sty = 17259 ()l oo (3.2)

Proof. Proofs for the properties 1-3 can be found in [2]. For the last property starting from the right-hand side
we obtain

TG e = [ T e = 3 [ T @ty

WexSI ¢'eE.

=2 Z /Sj (& +es)do(s) = Z /(e§'+aSa‘) Y(z)do(z) = /sg Y(x)do(z). ]

§'eEe §'eEe

wx SI

3.2 Unilateral Korn inequality
Let O be a bounded open subset of R3. We denote
R = {r e HY(O;R?) | r(z) =a+bAz, (a,b)€R®x ]R?’}.

We recall that a bounded domain O satisfies the Korn-Wirtinger inequality if there exists a constant C'» such
that for every v € H!(O;R3) there exists r € R such that

lv =7l g omrsy < Colle(v)]lL2(orsx3)- (3.3)

A domain like O is called a Korn-domain. We equip H*(O;R?) with the following scalar product

<u,v>=/e(u):e(v)dw—k/u-vda:.
o o

If O is a Korn-domain, the associated norm is equivalent to the usual norm of H'(O;R3).

Definition 3.2. For a Korn-domain O denote

Wl((’))i{veHl((’);RB) | /

v(x) -r(z)de =0 forallr € R}
o

Observe that there exists a constant such that for every v € W1(O) we get
vl (oire) < Clle(v)]p2(oraxs)-
Considering the orthogonal decomposition H*(O;R3) = W(O) & R, every v € H(O;R3) can be written as
v=(v—"y) + Ty, v—r, € WHO), r,ER.
The map v — 7, is the orthogonal projection of v on R. From (3.3) we get
v —7ollmore) < Colle(v)]|L2(orsxs). (3.4)

We also recall that if O is a bounded Lipschitz domain, there exists a constant C such that

Vo e HY(O;R?), vl|z200ms) < C(lle(v)|2(0msxs) + 0]l L2 (0ms))- (3.5)

We will use the following proposition from [6].



Proposition 3.2. If O is a bounded Lipschitz domain, there exists a constant C' such that

vr e R, 17l Lromsy < C([1(r0) L1 00y + 17|22 (00:m3)) - (3.6)
We denote O the center of gravity of Y7, j =1,...,m.
Let u be in HY(Q;R?) and rJ, j = 1,...,m, the orthogonal projection of gy on R. We write

! /

A= (2],) o ([, ) ({8, ). e

We define the piecewise constant functions a? and bJ by

al(z)) =a’(ef) o €et+eY, E€E,,
a(x)y=0 2’ €A,
o , , ) (3.7)
bl(x) =0 (eg) o' ee+eY’, ez,
W')=0 o' €A..

These functions belongs to L>°(w;R?) and the associated rigid body field, still denoted 7, belongs to
L>(w;R).

As a consequence of the above Proposition 3.2 we get
Proposition 3.3. There exists a constant C (independent of €) such that for every j =1,...,m and for every
w in HY(Q;R3),
lJu — riHlﬂ(Qi;]}@) +ellV(u— Ti)HLQ(Qg;RSX?’) < CE||€(U)HL2(Q:;;RSX3)7
lafll L wmra) + ellBlll L1 @ire) < C(H(Ti)jup(sg) + ||(T1JA)T|‘L1(S£;R3))’ (3.8)
”uHLl(Q-;';JRS) < 053/2||e(“)”L2(Q-§;R3x3) + Cg(”(ri)mlu(sg) + H(Ti)rHLl(sg;Ra))
Proof. Applying (3.4) (after e-scaling) gives
f[u— Ti||2L2(gg+gyj;RS) + 52||V(U - Ti)”%Q(sg—Q—st;R?’X?’) < CEQ||€(“)||2L2(55+5YJ‘;RSXB)~ (3.9)
Then adding the above inequalities (with respect to £) yields (3.8);. Taking into account (3.6) (after e-scaling),
we get ‘ ‘ _ _
a3, (e€)|e? + [b,(e€)1e® < C(I(rl) 5 o e ress) + 1087l L (e resims)) - (3.10)
Adding these inequalities (with respect to £) gives
102123 oz + £l smsy < CUEDE s sty + 10Dl s
Finally, estimate (3.8)3 is an immediate consequence of (3.8); and (3.8)s. O

Remark 3.2. Due to (3.6) and then (3.9), we also obtain

. _ C _ _
ladllz2ormy + el sy < (00 sy + 10271 s smn)-
C . .
||u||L2(QJE';R3) < ane(u)ny(gg;mm) + o1/2 (”(T]u)j”u(sg) + ||(Tju)THL1(,5g;R3))a (3.11)

C . .
||vu||L2(Q§;R3><3) < C||€(U)||L2(Qg;]g3x3) + W(”(Ti)j”Ll(Sg) + ||(T3L)T||L1(S§;R3))'

The constants do not depend on €.

3.3 Korn inequality for the perforated layer

Now we want to derive the Korn inequality for the simply connected part of the layer.
Denote
ko) = {pe H'(Q) |6 =0ac onT}.



Proposition 3.4. There exists a constant C independent of € such that for every u in HE(QF;R3)
HU”Hl(Q:;RIﬂ) S C||€(U)||L2(Q;;]R3><3). (312)
We also have
03 ) + Il Va3 Jul?
1 (QzRe) T2 ullZ2(qomsy + ENIVUll L2 (Qorsxsy + 1ullF oops)
<C(lle(u) |22 (qemaxs) +elle(@l 2 qopaxay + le(w) L2 (qppaxs))-

Proof. Step 1. First, we construct an ”extension” of u. Set

(3.13)

Y, ={y €Y |dist(y,0Y) < n/2}.

The domain Y, is a bounded domain with a Lipschitz boundary. Therefore there is an extension operator P,
from H'(Y,) into H'(Y) and a constant C' (which depends on 7) such that (see [8])

Yv € Hl(Yn> ||P77(U)||L2(y) < C”U”Lz(yn) and ||vyP17(U)||L2(Y;R3) < C||vyv||L2(YT,;R3)~ (314)
Let w € H'(Y,;R3) and r,, the projection of w on R, we have

e = v e vy ) < Clley (W) z2vy msxs)- (3.15)

The constant depends on 7.

Now for every w € H*(Y,;R?) we define the extension Q,(w) = P,(w — ry,) + 74 of w. From (3.14) and
(3.15) we get
Qu(w) € H'(YV;R?),  lley(Qn(w))llz2(yimexsy < Clley(w)ll 2y, msxs). (3.16)

Applying the above result to the restriction of the displacement y — u(e€ + €y) to the cell Y, § € =, allows
to define an extension % of u in the layer QM. Estimate (3.16) leads to

u€ Hl(Qé\J;RB)a H ( )||L2 QM R3x3) = <C Z H ||L2(5(5+Yn,]1§3><3)) < CH ( )||2L2(Qg;R3><3)'
£e=,
The constants do not depend on &.

We set ©w = u in Q \ @ The displacement u belongs to H'(£2; R?), it vanishes on T' and it satisfies

le(@)ll 2@ rexs) < Clle(u)llzomaxsy,  lle(@)llLz2@) < Clle(u)llL2(azraxs). (3.17)

The constant do not depend on e.

Step 2. From the Korn’s inequality, the hypothesis that the measure of I" is positive and (3.17)2 we obtain
[all g (e < Clle(@)l|L2@mrsxe) < Clle(u)||2(azrexs).- (3.18)

Step 3. We prove (3.12). Since by construction the domains Y is a Korn-domain, there exists a constant
C > 0 such that for every v € H*(YY;R3) equal to zero on 9Y

”””Hl(Yo;RS‘) < C”ey(v)”m(YO;RSXB)-
Applying the above result to the restriction of the displacement y — (u — %)(e€ + €y) to the cell YO, £ € =,
gives
Hu uHLz(QM iR3) < OE Z ||€(U — ’(1)|‘%2(€(£+y0;R3x3)),

§EE.

HV(U - ﬁ)HiZ(ﬁé\/I;R:sxd <C Z ” ”Lz (e(E+YO;R3%3))+
§E€Ee

The constants do not depend on e. Hence, using the fact that u — u vanishes in QY \@ and due to estimate
(3.18), we obtain
lu—allL2oore) < Celle(u)||L2@orexs), V(v —a)||lL2(0oraxs) < Clle(w)]p2(oraxs)- (3.19)

Combining the above inequalities and (3.18) gives (3.12).
Step 4. We prove (3.13). The Korn inequality and the trace theorem give
[l £z o mre) + 1@l L2(sime) + IVl L2 viroxs) < Clle(@)]|p2 oo mraxs),

- - N - (3.20)
||uHL2(Szg;R3) + ||quL2(Qt€1;]R3><3) S C||€(U)HL2(Qg;R3X3) + CHU||L2(S;‘;R3)-



Besides we have - o 12
||u||L2(Sg;R3) < C(||u||L2(Z;R3) + EHVUHLQ(Qy;H@X:‘))’

B R ~ (3.21)
||“||2L2(Qy;R3) < C(5||“||2L2(2;R3) + 52||VU||2L2(QQ4;R3XS))-
Taking into account the above estimates (3.20)-(3.21) together with (3.18)-(3.19) we obtain (3.13). O
We set
Vo= {v= (ol 0" anby) | v € HE(Q2RY) x HH1 (QLR?) x [Q°(w)]™ x [Q°(w)]™
(3.22)

v/ is orthogonal to the rigid displacements, j =1, ..., m}

where Q° is the set of functions vanishing on A. and constants on each cell (¢ +Y'), £ € Z.. The rigid
displacements 7 are defined by

/ /

ri(x)zai(&[%}y/)—i—bf,(&[%]y/)/\(&{g}y—soj), €, j=1...,m.

We will denote by [v] g the jump of the vector field across the surface S7, j = 0,...,m. More precisely, for
j=1,...,m weset [v]g = U|]sg' +(rd)ss — Vs Vulss = Vg Vs [Vrlgs = [Vgi — [Vulgs and we define

[V]so, [Vu]so, and [v;]so by

[V]se(z') = t_}%rﬁgov(x’ +tv(z')) —v(a’ — tv(a')), (3.23)
[vi]so (z') = tj%gl>0 (U (3?/ + tu(x’)) — U(az’ — tu(w’))) -v(z'), for a.e. 2’ € SY (3.24)
[Vr]so = [V]so — [Vu]so. (3.25)

The space V. is usually equipped with the following norm(!):

Vv eV, v — HVUH 2(Qb;R3%3) + ||VU||L2 Qa;R3%3) +€||VU||%/2(QQ;R3X3) + Zgllvj‘lifl(ﬂé;R3)'
j=1

With the above norm, V. is a Hilbert space. But the following norm over V. is well adapted to the contact
problem:
Vv € Vs, ||V||V5 i|V|VE + ||au||[L1(w;R3)]m + €Hbu||[L1(w;]R3)]7"-

where

[VIv. = | 160) 2aqugmons) + 1€(0) 22 g maxsy + €le(0) 22 apmons) + D eI, 0 gavs)
=1

Hall”[Ll(w;]Rs)]m = Z ||a{1HL1(w;]R3)7 ||bu||[L1(w;]R3)]m = Z ||b{1||L1(w;]R3)'
j=1 j=1

Below we summarize the estimates for v € V..

Proposition 3.5. There exists a constant C' independent of € such that for all v = (v,v... ;0™ ay,by) € V.

m
HU”%Jl(Qg;]RS) +5||V’U||22(Qg;n@3x3) +5ZHVUJ||12(Q.;;R3“)

j=1
T Z 109124 ) + 10y < CIVER,. (326)
HQVH[Ll(w;Ri*’)]m + 5||bV||[L1(w;R3)]’" < CZ +HL1(SJ + (g ) HLl(sg;Rs)).

The constants do not depend on €.

1 Here we consider the case where the layer and the inclusions are made of a soft material.



Proof. The estimates (3.26) are the immediate consequences of (3.13) and (3.8). O

Remark 3.3. From (3.11) we also obtain

o Q

Y (ladllzems) + ellbd |l 22 @wimsy) < = Ivllv.. (3.27)

m
j=1

The constant does not depend on e.

4 Convergence results
Every v € H'(Q%R?) is extended by reflexion in a displacement belonging to H'(w x (g,2L — ¢); R3).

Denote
Hy,(Y°) ={0€ H'(Y?) | ¢(0,y2,y3) = &(1,y2.y3) for a.e. (y2,y3) € (0,1)7,
$(y1,0,ys) = ¢(y1,1,y3) for ae. (y1,y3) € (0,1)*}, (4.1)
HLE(QY) = {¢ € HY(Q") | ¢ = 0 ae. on r}.
Before giving the convergence results, we prove the following lemma of homogenization:

Lemma 4.1. Let {¢.}. be a sequence in H*(2) satisfying

1
1611 @) + I 0< T av) + V= T2 (arm0) + 2l el T2pry < C

where the constant C' does not depend on €. There exist a subsequence -still denoted e- and ¢* € H'(QP),
% € HY(Q), ¢ € L*(w; HL,,.(Y)) such that

per

b — ¢°  weakly in Hl(Qb)7
be(- 4 ce3) — ¢ weakly in H(Q), (4.2)
To(¢) = ¢ weakly in L*(w; H'(Y)).

Moreover, we have

~

(bb(m/) O) = a(m/7 Y1,Y2, 0)7 ¢a(x/a 0) = ¢(x/ayl7y27 1) fOT a.e. (x/a y17y2) € wX Y/' (43)

Proof. The function ¢, is extended by reflexion in a function belonging to H'(w x (0,2L —¢)) in order to obtain
convergence (4.2)s.

We only prove the first equality in (4.3), the second one is obtained in the same way. Consider the function
defined by

¢ (1,22, 23) = (21, T2, 23) — P (w1, T2, —T3) z = (71,22, 23) € QM.

It satisfies

o Q

||V$g||%2(9y;ne3) < ||V¢s||2L2(Qy;R3) + ||V¢5H%2(Qb;m3) < $.=0 on wx{0}.

Hence ”$e”i2(s2;‘4) < Ce. Due to the convergences (4.2); and (4.2)3 we have
To(.) = & — By oy weakly in L2 (w; H'(Y)).

Since the trace of the function y — T-(#.)(z’,y) on the face Y’ x {0} vanishes for a.e. 2’ € w the result is
proved. O

Theorem 4.1. Let {v.}., v. = (ve,v}, ..., 0™ ay_,by.), be a sequence in V. satisfying
[vellv. <C (4.4)

where the constant C' does not depend on . There exist a subsequence -still denoted e- and v € H%(Qb;RS),
v € HYQ%R3), 0° € L% (w; HL, (Y% R3)), o7 € L*(w; HY(Y7;RY)), o/ € M(w;R?) and bV € M(w;R3),

per



(G=1,...,m), such that
ve —v°  weakly in HE(Q;R?),
) = v weakly in H'(Q%R3),
To(ve) =0 weakly in L*(w; H (Y% R?)),
) — ey(ﬁo) weakly in L?(w x YO, R3X3),
)
)

eT(e(ve)
j ~j 72 1/v7. 3 (4.5)
Te(v) = v weakly in L*(w; H (Y7;R”)),
eTe(e(v])) — e, (¥7)  weakly in L?(w x Y7;R¥*3),
al, — aly  weakly-* in M(w;R3),
b, — b, weakly-* in M(w;R?).
Moreover we have
byt _ 0/, a/../ _ 0/ / /
v ($,0)—’U ($5y17y2a0)7 v (I,O)—U (x7y17y231) fOT a.ce. (x7y1ay2)€wxy' (46)
Furthermore, setting _ 4 4 4 _
VyeY?, ,(hy)=al +b Ay—07) in M(w; R?)
we get _ ] _ _
ﬁbl’J([ve}Sg) — i?fsj + (1)1s5 — @?Sj weakly * in M(w x S7;R?), j=1,....,m. (4.7)

Proof. The convergences (4.5) are the immediate consequences of the estimates (3.26). To prove (4.6) we apply
the Lemma 4.1 with the fields of displacements v, introduced in Step 1 of the Proposition 3.4. O

5 The contact problem for fixed ¢

Assume we are given the following symmetric bilinear form on V.:

Y(u,v) € (Ve)z7 Af(u,v) = Z/Q, afe(uw’) : e(v?) dx —|—/ ae(u) : e(v)dx,
=179

2z
where
a®(x) for a.e. z € QZ,
a®(x) =< eaM(z) forae zeQM, (5.1)
ab(x) for a.e. z € QP

The tensor fields a}, a®, a® have the following properties.

e Symmetry:
a®(x)n:E=a(x)€:n a.e. x € ), Ve, m € R3S,

e Boundedness: a® belongs to L>(Q; R3*3x3%3) and
CEM Lo (QM . R3X3x3x3 + aa Lo (Qa:R3X3x3x3 —+ (lb oo (Qb:R3X3X3X3 SC
€ (Q; ) Q9 ) Qb )
The constant does not depend on €.

e Coercivity (with constant @ > 0 independent of ¢):

an:n<a(x)n:n forae xecQM
an:n<a*(z)n:n forae xe€ N W € R3%3, (5.2)
an:n<a(z)n:n for ae z e’

Let K. be the convex set defined, for non negative functions g/ belonging to L'(S?), j =0,...,m, by
Kgi{veVg, Vo] <gl on S, j:O,...,m}. (5.3)

The vector fields v € V. are the admissible deformation fields with respect to the reference configuration (..
By standard trace theorems, the jumps belong to Hl/z(Sg; R3). The tensor field

o (v) = ae(v) in Q.



is the stress tensor associated to the deformation v (not to be confused with the surface measures do!).

The functions g2 and the gZ’s are the original gaps (in the reference configuration), and the corresponding
inequalities in the definition of K. represent the non-penetration conditions. In case there is contact in the
reference configuration, these functions are just 0.

Consider also the family of convex maps W7, 0 < j < m, where ¥/ is non negative, continuous on L!(S57;R?)
and satisfies

we LSLRY), MY w10y = < ¥L(w) < M Jw] sy o)

Iy S , . (5.4)
for non negative real numbers M7, M?, al, M #0, M/ #0.
In case of Tresca friction, the maps W/ are explicitly given by
Wi (w) = /S Gi(2)|lw(z)|do(z),  GIe€L™(S]), weL(SHR?) (5.5)

with G4 bounded from below by M7 > 0 for j =0,...,m.

Problem P.: Given f. = (f, f1,---, f™) in L2(Q;R3) x L>®(QL;R3) x ... x L>=(Q™; R?) find a minimizer
over K, of the functional
1 S
£.(v) = 5 A%V, V) + 30 W (Vi) —/Q £ vdr (5.6)
=0 .

where .
/ f5~vd:17:/ f~vdx+Z/ () 4 rl)da.
Qe * = Ql

From the properties of convexity of the W, j = 0,...,m, the solutions of P, are the same as that of the
following problem:

Problem P!: Find u. € K, such that for every v € K.,

m

A (us, v —ug) + (‘I’Z([Vr]sg)—‘I’Z([(ue)r]sg))Z/ fo- (v —uc)dr. (5.7)
=0 e

The strong formulation of the problem is (with o for the stress tensor o¢(u.)):

V-0f=—f in Q.
o¢(v), <0,

UE(V)V([(ua)lg]sg - gg) =0 ,
o*(v)r € OVL([(u:);lgs) onSI  for j=0,...,m,

where OWJ denotes the subdifferential of WY.

The corresponding explicit Tresca conditions on the interfaces SJ with the function W given in (5.5) are as
follows:

0°(0)s] < G(w) = [(u.)]g; =0, | |
0°(v)7| = GL(z) = 3N € S s.t. [[(ue)r]gs| + Allo®(v)-[ = 0 a.e. on SI.

Our aim now is to study the behavior of the solutions u. for small values of the parameter e. We will do
this by studying the asymptotic behavior of the sequence u. for ¢ — 0. When ¢ tends to zero, the thin layer
QM approaches the interface 3. The domain Q2 tends to the domain Q2.

5.1 A priori estimates and existence of solutions for the Problem P.

The first step in the proof of existence of the solution consists in obtaining a bound for minimizing sequences.
We use the generic notation C' for constants which can be expressed independently of €.

Since for v = 0 we have & (v) = 0, without lost of generality we can assume that every field u of a minimizing
sequence satisfies £, (u) < 0.
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Proposition 5.1. (Estimate for minimizing sequences of E..) We assume that

. 1 1
C()aj:r{{z}?fm\\fg\|mo(nz;ﬂ@3) popax (Mk) =

=5 (5.9)

Then, there exists a constant C' which does not depend on e, such that for every field u satisfying E.(u) < 0 we
have

[uflv. < C(Ejzn{laxm 1721 Lo 02 oy + 1122 @3y + > @ sy + a’;))- (5.10)
k=0

The constant C' does not depend on €.

Proof. For simplicity, we set
m
Z +||L1(S7) + ||( ) ”Ll(s-;';]R?»))'
j=1

Let u be in K, such that & (u) < 0. We have

aul, + 3 W (url) g/ﬂ*f-udx—kZ/Qj £ 41l da. (5.11)
5=0 : j=17%%

Now we use (3.26)2 to get
/ f-udx—i—Z/ 2wl de
Q =17

<C|Ifll2@m) ([ull z20rime) + 1wl 2o ms) + [l L2oms)) + C Y L2 0 o 197 ] 20 e (5.12)
J=1

C(||fHL2(Q;R3) + EZ HngLoe(Qg;RS)NUWE-
j=1

Using (3.8)2, the last term on the right-hand side of (5.11) is simply bounded as follows:

E / , fg 'r{x dx < Ce E ||fg||Loo(Qg;R3) (Ha’{l”Ll(UJ;RS) + 5||blelL1(w;R3))
- Ql -
ji= € j=1 (513)

<Cy £ max 121 e (1 o) R

Hence

/ judﬁz |, 70 7y de < Ol 42 32 ) Pl + (e mae (171 ) R

Jj=1

From the above inequality and (5.11) we derive

aluly, + ) Wl(ulg) <C(Ifllz@me) +€ D 12 o iy 1l
= = (5.14)

+Co(e  mmax 121l om0 ) R

Assumption (5.4) gives

M [ [u SJHLl(sﬂ) - ag) < Z\Pg([u'f]sg)~ (5.15)
j=1 j=1
One has
108 sy < ae)sgllpassy + 2y = sl s)- (5.16)

Besides, from the trace theorem (after e-scaling) and (3.26), we have

> gy = wsillpsimsy < e > (e gazms) + €IV [l 2z poxs)
- =0 N (5.17)
> C(||fHL2(Q;R3) + 52 HngLoo(Qg;RS)NuWE-

Jj=1



Then, the above estimate, (5.16) and (5.15) lead to

m

J_rlnm MJZH( ||L1 Z ur]sg)+ZG£+C(Hf||L2(Q;R3)+EZ||f§||Loo(Qg;R3))|u|Va~ (5.18)
et j=1 j=1 Jj=1 j=1

By definition of K. (see (5.3)) we have
()F < (@) + 1 )y — (V) me S j=1o..m. (5.19)

Then A . _
||(7'{1)j||1:1(sg) < ||(gﬁ)+||L1(sg) + ||“|J5g‘ —Ugs ”Ll(sg;RS)'
The above estimate together with (5.17) yield

m m

Z ) st < Z gE+||L1(57)+0(||f||mQR3>+€Z||f e i) ) v

j=1 j=1 j=1
Inequality (5.18) and the above one lead to

min MgRu < Z ‘I’i([ur]sg) + Z ||(9§)+\\L1(sg) + ZCLZ + C(||f||L2(Q;R3) + 52 ”fsj”Loc(Q-;';]RS)> lulv. .
j=1 j=1 j=1

j=1,...,m
J =

Now, the above estimate and (5.20) give

a‘ul%f *; rlmnmngRu SC(||fHL2(Q;]R3) + EZ “fg“Lw(Qg;RS))|u|VE
- m " (5.20)
03 max (1] g sy R+ D N0 sy + Dl
2 2

Then, under assumption (5.9) and (3.26)5 we obtain (5.10). O

Proposition 5.2. (Ezistence of solutions for P..) Under assumption (5.9) there exists at least one global
minimizer for the functional &..

Proof. Let {u,},>0 be a minimizing sequence for P.. Due to (5.10) and (3.27) there exists a constant C' which
does not depend on 7 (but which depends on ¢) such that

m m
u, = (un,u}]. u:,”,aun,bun) €V, ||u77||H1(Q;;R3)+Z ||u;7||H1(Qg;]R3)+Z (Ha{h,HLZ(w;R?’)""EHb{JUHLz(w;ﬂ@)) <C.

Since & is bounded from below, convex and weakly lower semicontinuous as a sum of weakly lower semicon-
tinuous functions, there exists at least a minimizer u. € K. for &.. O

! ’ . . .
Remark 5.1. Let u. = (ue,ul. .., u™, au.,bu.) € Ko, ul = (ul,ul. Su" aur, by ) € Ko be two minimizers

of Pe, both fields satisfy (5.7). Hence

6 Main result

In this section, we only consider the case of Tresca friction.

6.1 Hypotheses on ¢/, G and f/

To pass to the limit in the homogenization process, we need structural assumptions concerning the Tresca
data which are more precise than those of Section 5. Hence, we assume that there exist

=011, )

T ()@ y) = ¢’ (y)  forae. (a,y) €wx .

1. ¢ € L}($7), 7 =0,...,m, such that

and therefore
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2. GI €Ce(wx 87),j=0,...,m, such that

TPI(GY) — GY strongly in L™ (w x §7),
Gi(x',y) > M7 for any (2/,y) €w x S7, M7 > 0.

3. FI €Co(wx YI;R?), 5 =1,...,m, such that

. 1 . z’ T .
J :fFJ( [7} , {f} ) for a.e. € Q. 6.1
() 5 S P b or a.e. x € (] (6.1)
The Assumption (5.9) becomes
G max (IF | moxyime) max () <2 (6.2)
0 =1 (ATEN Gt \ M) = 2

6.2 The limit problem
We equip the product space

H = Hp(Q%R?) x HY(Q%R?) x L2 (w; Hp,, (Y% R?)) x ﬁ L (w; HY (YT R?)) x [M(w; R)]™ x [M(w; R)]™

with the norm
VIl = [1°] e oo mey + 0% e @emey + D10 2 sm (vasey) + lov lpsreys + 10V lpm sz
j=0
where V = (v*,0%,7°,...,0™, av,by) € H.
We set
V= {V € H ‘ Ub(x/70) = ao(xlaylay%())a va(x/’o) = Bo(xlaylay% 1) for a.e. (wl7ylay2) cwX Y/a

97 is orthogonal to the rigid displacements, j = 1,... ,m}.

For any V e V, as in Section 5, we define [V]Sj = 6|JS_7~ — iJ\‘OSj, [Vy]s'j = [V]Sj “V|sis [VT}Sj = [V]Sj — [Vy}sj’
j=1,...m, and

Vlso(a'sy) = lim_ (50 (z' y+sv(y)) —0° (o' y — SV(y))),

Vilso(a’sy) = lim_ (5“ (2, y+sv(y) —0°(a',y — SV(y))) “v(y),
[Vilso(2',y) = [Viso(¢,y) = [Vo]so(a',y)  forae. (2/,y) €w x S°.
Now we introdce the closed convex set K
K= {VEV | V] < g% in wxS% [V,]g +r{,~u§gj in wx Sj(Q),

where Vy € Y7 r{,(-,y)za{,—l—b{,/\(y—OU in M(w; R?), jzl,...,m}.

Theorem 6.1. Assume f € L2(;R3) and f2, g¢, GI satisfy the hypotheses of Subsection 6.1 and also assume

(6.2). Suppose that the following assumption holds: there exists a tensor a™ such that, as ¢ — 0,
Te(aM™) = o™ e inwxY. (6.3)
2 This condition means
Vo € Ce(wxS7), st ¢(a’,y) >0 on wxS, < ATV S (wx i) M(wx 1) S / (¢ -[Vi]gi) ¢da’do(y), j=1,...,m.
wx ST
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Let u. be the solution of Problem (5.7), there exist a subsequence -still denoted - and
U = (ub,u®, 2 ..., ™, au,bu) € K such that (j =1,...,m)
Ue — ub weakly in HL(Q;R?),

) — weakly in H'(Q%R?),
) — weakly in L?(w; H (Y%, R?)),
Te(e(ue)) — ey( ) weakly in L?(w x YO, R3*3),
Te(ul) =@ weakly in L*(w; H (Y7, R?)),
Te(e(ul)) — e, (@)  weakly in L*(w x Y7;R?**3),

al, — al;  weakly-* in M(w;R?),

bl — by weakly-* in M(w;R?).

Ue

ue (-

+ €es
Te (ue

The limit field U satisfies the following unfolded problem:

/ abe(ub):e(vbfub)der/ ae(u®) : e(v® —u® d:chZ/ aMe, (@) : e, (v — ) da'dy
Qb a xYJ
j=
#32 < G IIVels + ()] =101+ o) e s
S vt TS u/r Co(wxSI),M(wxS7)
(6.4)

m

f (v* —u) dx + f~(v“7u‘l)dw+2/ Fi (@7 — w7 da'dy
Qe 1 JwxYJ

+ Z < Fjvfln{/ - T{j >Cu(w><Y<7;R3),M(wxyj;R3), YV e K
i=1
where
0 0 j j j j j j )
rv=rg=0, (r)r=1—-0y v, (rg)r=r— (L vy, j=1,....m

Proof. Based on the Proposition 5.1 and the assumptions of Section 6.1, the solution u. of Problem P. is
uniformly bounded with respect to €. Hence, up to a subsequence of ¢ (still denoted ¢), the convergences of
Theorem 4.1 hold. Therefore, we should show that the limits furnished by the Theorem 4.1 satisfy a homogenized
limit problem. The main point now is to pass to the limit in (5.7).

Let V = (v%,v%,2°,...,9™, av,by) be in
KN Hp(Q%R?) x HY(Q%R?) x C°(w; H),, (Y% R?)) x Hcm HY (Y7;R?)) x [C°(w; R?)]™ x [C2° (w; R?)]™
j=1
We use the following test function v. € K.:
ve(z) =0°(x) in Q°
ve(z) =v*(x — ce3) in Q2,
o1 [Z : 0
ve(z) = ve(w) =0 (m ’ { € }Y) in £, (6.5)
Gy =i (o I Y
vl(x) U(l‘,{g Y) in Q,
i (2) = ad (2)) + b (2 Vi in
rve(x)—av(x)—l—bv(x)/\({g}y O ) in Q7.
By construction we have (j =1,...,m)
=° in Q°, Ve(- + ce3) = v in Q,
TE(UE) — 0 strongly in  L?(w; H (Y%, R?)),
eT-(e(ve)) — €,(1°) strongly in  L?*(w x YO, R3*3), (6.6)
Te(ve) — 7 strongly in  L?(w; H(Y7;R3)), '
eT-(e(ve)) — e, (?7) strongly in  L?(w x Y7;R3*3),
To(rl) —s al, + b, A (y— OF) strongly in  L'(w x Y7;R3).

14



We rewrite (5.7) in the form

EZ/ aMe(u?) : e(vl) dute /Qg aMe(u.) e(vg)der/Q abe(u.) : e(ve) der/a a®(-+ees)e(uc(-+ees)) : e(v?) dx

b

+Z/ G (2)|[(v2)+) 1 dor () — /f vsdas>52/ aMe(ul) uj)ders/Qoaéwe(ue):e(us)d:c

+/Qb ae(u.) : e(us)d:ch/a a®(-+esz)e(us(-+ees)) : e(uc(-+ees) dx+2/ GL(2)[[(ue)7] gy do () — /Qa f.-u. dx.

Therefore, by unfolding and due to the convergences in Theorem 4.1 and the equalities and convergence in
(6.6), we have

gi_r% (EZ/QJ‘ aMe(u?) : e(v?) da +E/Qo aMe(ue) : e(ve) dac)

_]=1 € =

“tim (23 [ T T D) s Tt 'y < [ T ()T o)) Tee(we)) da'dy)

wxYJ

Lmz/ GLI(ve)r]s;ldor(@) = Z/ T OOTH(I(ve)rl gy e'doy)

=Y [ G+ Gl ).

By the lower semi-continuity with respect to weak (or weak-*) convergences, we first obtain

m

limian/ cae(u?) : e(ul) dr = liminf €2 Z/ Te(aM)T(e(ud)) : To(e(ul)) da'dy
0l —_ogJwxYys

e—0 e—0
Z/ aMe, (W) : e, (W) da'dy,

7=0

then, unfolding the term corresponding to the Tresca friction, passing to the limit and making use of lower
semi-continuity gives

m

hmmfZ/ GI|[(us)r] gsldo(x) Z U,lsi + () r] >c.(wxsi) M(wxsi) -

j=0
Considering the terms corresponding to the applied forces we get

lim f- uedx—hm /f Ue dx +

f(+eez) - ue(- +563)dx>
=0 Jaruqa

Qe
:/ fubde + f-u*dz,
Qb Qe

lim frucde = hmE/ To(f) - Te(ue) da’ dy = 0,
xYO0

e—0 Qo e—0

Il do = j
(_11_13(1)2/ foulde = hmEZ/ Te(ud)da' dy

Jj=1

In a similar way
lim frv.de = fotde + f-v%dx,
e—0 Q;‘ Qb Qe

m

m
lim fe -Ugdx:Z/ FI (%7 4 7)) da’ dy.
J j=1 XY

e—0 4
Jj=1
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Using the established convergences we obtain

m

/Qb abe(u?) : e(v®) dx + /a ae(u®) : e(v®) dx + Z/ aMe, (@) : e, (V7 dz’ dy

=0 wXxYd

+Z<G3| si ()| >cwx i Mwxsy) / [t de — A [rvtdz
j=0 “

AT
- Z < F 07 413 >0 (wx 993R3), M(wx 53R3)
i=1

2/ abe(u?) : e(u®) dx —|—/ a“e(u” “Ydx + Z/ aMe, (W) : e, (@) da'dy
Qb Qe xYJ

+Z<G] [Urlss + (rly)e] >c.(wxsi) Mwxsy) —/bf'ubdl’—/ frutde

o
- Z < F W 41 >e, (wxYIR) M(wx Y R3) -
i=1

Subtracting the terms on the right-hand side from the left-hand side we get (6.4). By a density argument, (6.4)
holds for any V € K. O

Remark 6.1. Since the functional

EWV) = %(/m abe(v?) : e(vb)daz—k/m ae(v” dm+Z/XY] aMe, (v7) : ey(ﬁj)dx’dy)

+Z <G, |[Velss + (1) 7] >e.(wxsi) M@ s —/ footde— [ f-vtda (6.7)
j=0 Qe
- Z < F]’i)\j + T{/ >Cc(w><Yf;R3),M(waj;R3)7 V= (Ub>va7i)\oa s 7i}\m7aVabV) € Ka

j=1

is weakly lower semi-continuous and convex over K, Problem (6.4) is equivalent to find a minimizer over K of
the functional £. The field U obtained in Theorem 6.1 is a global minimizer of this functional over K and every
limit point of the sequence {u.} is a global minimizer of £.

Lemma 6.1. For every M > 0 there exists a constant C(M) such that for any V € K satisfying E(V) < M
we have
[0 |1 (@em) + 10° |12 v im9) + Z 197 | L2 s (vooy) + llav sy + 110V [ prsym < C(M). (6.8)
7=0
Proof. From the expression (6.7) of £(V), we first deduce that £(V) < M implies

a a
5(”6(” )||%2(Qa;R6)+|| e(v )HL2(Qb R6)+Z|| e(ey(v ||L2(w><YJ RG))
7=0

+ZMJH ss + ()l mwxssire) = [F 2o me [0° | L2(@emey — |1l L2 @ome) 100 | L2 (@bre) (6.9)

- Z 1P| 2wy sz 197 | 2@xyimey — D IF leawsyime) Im  mexysme) < M.
j=1 j=1

From the Korn inequality and the trace theorem we get

v | 1 (ar3) + [0® | z1 (v ima) + Z 197]] L2 (s 11 (v 2
7=0

C(1lew) 132 gy + 1€0") 32 gm0y + D N0y sz
§=0
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where constant C' depends on the geometry of the sets Q% Q° w, S® and Y7 (j =1,...,m).
Then, the above inequality and (6.9) yield

m

Bl (e ms) + 10" | 1 (20 m3) +Z 1197 || L2 (s (v 29 +ZM]|| i) | M(wx 5i:R3)
Jj=0 7=0

m
- Z [F7 M. wxy i) [T | mwxyimsy < M
j=1
where 5 > 0.

Now, in the case ay € [L!(w;R3)]™ and by € [L!(w;R?)]™, from Proposition 3.2, there exist constants C' which
depend on Y7 (j =1,...,m) such that

lav |1 @rsym + 1oV ][L @re)m Z I1(r%) rllL1wxsire) + ()™ L1 (wxsi))-

Due to the definition of K we have |\(((r{,)y)+\\L1(stJ 1(99) N 22csiy + V)l wxsi)- Proceeding as in
the proofs of Propositions 3.3 and 5.1 and thanks to the COI’ldlthIl (6.2) and the above inequalities, we deduce
the existence of a constant C'(M) such that (we recall that |73, || m(wxsirs) = 73 | L1 (wx 55:3))

m

0] 1 (Qasr3y + HvaHl(Qb;R3) + Z ||5j||L2(w;H1(YJ‘;R3)) +llav o1 @wrs)m + 1bvpr @wrsym < C(M).
=0

Then, for general elements V € K, using regularization by convolution in 2’ and this last estimate we obtain
(6.8). O

Independently of Remark 6.1, using the above lemma we can easily prove the existence of at least one global
minimizer for the functional £.

Remark 6.2. Let U and U’ be two global minimizers of the functional £, from (6.4), we deduce that

W=u® w=ub wW=u’l, j=0,...,m
and
m ) m
> <UL ss + (i)rl >eouxsiymwssi) — D < FIrl >e,wxyi@), MwxviR?)
7=0 Jj=1

m L
:Z < G |[U g5 + ()] >0 (wxS7),M(wx S9) —Z < F7 rd5 >0 (wxYiR3), M(wx YT iR -
j=0 j=1

Lemma 6.2. Let u. be a minimizer of P. over K.,

m. = min &.(v) = & (u.).

vek,
The whole sequence {m.} converges and we have

m= {Iflei%g(V) =£&(U) = gig(l)mg = gig(l)é'g(ug) <0.

Proof. As a consequence of Theorem 6.1 we have (with the subsequence of ¢ introduced in this theorem)

m = E(U) < liminfm, = hmlnff (u.).

e—0

Now, let V be in K and let {V"}, be a sequence of fields in
KN HE(QYR?) x H'(Q%R?) x C° (w; H),, (YO R?)) x HCOO THY (Y7 R3)) x [C°(w; R3)]™ x [C2°(w; R3)™
j=1

strongly converging to V in V (that is possible using regularization by convolution in ). We fix n and for every
V" we consider the test field belonging to K. defined by (6.5) and here denoted v7. Using the subsequence of
¢ introduced in Theorem 6.1, we can pass to the limit (¢ — 0). Since m. < &E.(v7?), due to (6.6) we obtain

limsupm, <limsup&.(v]) = hmE (vl) =E(VT).

e—0 e—0 e—=0
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Now n goes to 0; that gives
YV e K, limsupm, < E(V).

e—0
Then
i < < mi .
hr;ljgp me. < E(U) < min E(V)
Finally we get m = liH(l) m, and this result holds for the whole sequence {e}. O
e—

6.3 Computation of the effective outer—plane properties for a case of heteroge-
neous layer without contact

Solving (6.4) numerically is difficult because of the presence of non-differentiable non-linear term |[U.]g;].
Also a complete scale separation is impossible for a non-linear problem.

In this subsection due to application purposes we want to consider a case without contact. Thus, we assume
that the open sets Y7, j = 1,...,m, are holes. For this case we can give a linear problem whose solution is the
couple (u®,u’) with Robin-type condition on the interface. The result obtained will be similar to [2, 5, 14].

The space V is replaced by
V = {v = (v*,0%,7%) e H' | vb(a’,0) = 3%z, ¢/, 0), v(z’,0) =°(a’,1/,1) forae. (z',y) € w x Y’}

where H' = HE(Q% R3) x HY(Q%R3) x L?(w; (Y9 R?)). We endowed this Hilbert space with the norm

per
Vv = ||UbHH1(Qb;]R3) + [0 g1 (e sm3) + ||50||L2(W;H1(Y0;R3))~

Now, the closed convex set K is replaced by the space V’. Since for any V € V', —V also belongs to V', the
problem (6.4) becomes

Find U = (ub,u*,2°) € V's. t.
/ a’e(u®) : e(v?) dx +/ a“e(u®) : e(v®) dx +/ aMe, (@) : e, (?°) da'dy
o ., g (6.10)
z/ f-vbde + fv*da, YV = (v, 0%, 7% e V/
Ob Qa
Introduce the Hilbert space
‘/}O: {weH;e’r(YoaRg) ‘ ’&)\(ylay270):ﬁ}(ylay271)zo fOI‘ a.ce. (yhy?) EY/}
We consider the 3 corrector displacements X" € L™ (w; H,,.(Y% R?)), i = 1,2,3, defined by
(2 91,90, 1) = e, X' (2'y1,99,0) =0, for a.e. (2',y1,92) €w x Y’
. ) _ (6.11)
@ ey(X') 1 ey(¥)dy =0 for a.e. ' € w, VY € V,

The displacements e; — )? € L>®(w; H),. (Y% R?)), i = 1,2,3, satisfiy
(ei - Sc\i)(x/a Y1,Y2, 1) = 07 (ei - X\i)(x/7y17y25 O) = €, for a.e. ('T/ayla y?) cwX Yl
/ aMe,(e; —X') ey (v) dy =0 for a.e. ' €w, Vi € V.
YO
Below we give the variational problem satisfied by (u®,u).

Theorem 6.2. Let U = (u®,u,1%) be the solution of (6.10). We have
3 .
Z ufjs(z') + Z(ei — X', y))u?lz(x') for a.e. (x',y) €w xY? (6.12)
and the couple (u®,u®) is the solution of the following variational problem:
Find (u®,u’) € H'(Q%R3) x HL(Q%R?)  s.t.
/Qb a’e(ub) : e(v®) dx + /a a“e(u®) : e(v®) dx + / H(ujy, — u‘l’z) (v — vlbz) dr’
fotde+ f-v*de,

Qb Qe
Y(v?,0%) € HY(Q% R?) x HE(Q% R,

(6.13)
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where H is the 3 x 3 symmetric matriz with coefficients in L°°(w) defined by
Hyi= [ a¥e,(R):e,(¥)dy, ij =123, (6.14)
yo
Matriz H is the homogenized tensor of the effective outer-plane stiffness and the X?’s (j = 1,2,3) are the

solution of the cell-problem (6.11).
Proof. Take w € Vo as test-displacement in (6.10). That gives

Vi € Vo / aMe, (@) : e, () dz'dy = 0.
wXxY0

Hence, using the corrector displacements X*, i = 1,2,3, we express u°.

3 3
Let (v%, %) be in HY(Q%R3) x HL(Q%R3), we set 1° = Ziivﬁz + Z(ei — X")vjjg. We consider V =
i=1 i=1

(v, v®,7%) as test function in (6.10). Then we develop / aMe, (@) : e, (?°) dz’'dy and we obtain (6.13). O

wxYO
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