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Homogenization via unfolding in domains separated by the thin layer of the thin
beams

Georges Griso, Anastasia Migunova, Julia Orlik

Abstract

We consider a thin heterogeneous layer consisted of the thin beams (of radius r) and we study the limit
behaviour of this problem as the periodicity &, the thickness ¢ and the radius r of the beams tend to zero.
The decomposition of the displacement field in the beams developed in [1] is used, which allows to obtain a
priori estimates. Two types of the unfolding operators are introduced to deal with the different parts of the
decomposition. In conclusion we obtain the limit problem together with the transmission conditions across
the interface.

1 Introduction

In this paper a system of elasticity equations in the domains separated by a thin heterogeneous layer is
considered. The layer is composed of periodically distributed vertical beams, which diameter and height tend
to zero together with the period of the structure. The structure is clamped on the bottom. We consider the
case of the isotropic linearized elasticity system.

The elasticity problems involving thin layers with periodic heterogeneous structure appear in many engineer-
ing and material sciences, where special constraints on stiffness or strength of technical textiles or composites
are required, depending on the type of application. For example, drainages and protective wear, working for
outer-plane compression, should provide certain stiffness and strength against external mechanical loading.
Thin layers were considered in number of papers (see e.g. [9, 10, 11]). In particular, [9] deals with the layer
composed of the holes scaled with additional small parameter; [10, 11] consider the case of the layer which
stiffness has the same order as its thickness. as well The thin beams and their junction with the 3d structures
were also studied in [1, 2, 3, 4]: [1] deals with the homogenization of a single thin body; in [2] the structure
made of these bodies is considered. [3], [4] study the limit behavior of the structures composed of the rods in
junction with a plate.

In our problem due to the combination of both models above we obtain 3 small parameters: the thickness
0 of the layer (and the height of the beams at the same time), the radius 7 of the rods and the period of the
layer €. The first problem with this structure arises when we obtain the estimates on the displacements. To
overcome this difficulty we used decomposition of the thin beams on the mean displacement and the rotation of
the cross-section which was introduced in [1]. After deriving estimates on the components of the decomposition
we obtain bounds for the minimizing sequence which depend on e,7d. The result implies studying 3 critical
cases with different ratios between small parameters. Two of them are considered in the present paper and
lead to the same kind of the limit problem. The third one corresponds no longer to the thin beams but to the
small inclusions and therefore is not studied in the present paper.

In order to obtain the limit problem the periodic unfolding method applied again to the components of
the decomposition is used. Basic theory on the unfolding method can be found in [6]. In the present study
we introduce two additional types of the unfolding operators in order to deal with the mean displacement and
rotation which depend only on component z3 and the warping which depends on all (x1,x2,x3). In the limit
we derive 3d elasticity problem for two domains separated by the interface with Robin-type condition on it.
The value of this jump—condition is obtained from the solution of 1d beams problem.

The paper is organized as follows. In Section 2 geometry and weak and strong formulations of the problem
are introduced. Section 3 presents decomposition of a single beam and the initial estimates. Section 4 is devoted
to derivation of a priori estimates in all subdomains of €2, 5. In Section 5 the periodic unfolding operators are
introduced and their properties are defined. Also the limit fields for the beams based on the estimates from
the Section 4 are defined. Section 6 deals with passing to the limit and obtaining the variational formulation
for the limit problem. In Section 7 the results are summarized: the strong formulation for the limit problem
is given and the final result on the convergences of the solutions is introduced. Section 8 contains additional
information. Section 9 includes subsidiary lemma which was used in the proofs.



2 The statement of the problem

2.1 Geometry

In the Euclidean space R? let w be a connected domain with Lipschitz boundary and let L > 0 be a fixed
real number. Define the reference domains:

Q" =wx(-L,0),
QF =wx(0,L),
Y =wx{0}.

Moreover, ) (see Figure 1b) is defined by
Q=0"uUQ U =wx (-L,L). (2.1)
For the domains corresponding to the structure with the layer of thicknes ¢ introduce the following notations:

Qf =wx(41L),
Zg' =w x {d}.

In order to describe the configuration of the layer, for any (d,r) € (0, +00)? we define the rod B, 4 by
Br,d =D, x (07 d)

where D, = D(O,r) is the disc of center O and radius r.
The set of rods is

Q5= |J {veR®|zecic+B,,}, (2.2)
ieE. x {0}
where
~ 1 1\2
2 ={eez eermrcul v=(-53) - (2.9
Moreover, we set:
@, = interior U e(i + ?). (2.4)
icE,

The physical reference configuration (see Figure 1a) is defined by €, . s:
Q.5 = interior (97 LD UOT). (2.5)

The structure is fixed on a part I' with non null measure of the boundary 092~ \ X.

We make the following assumptions:
€ r
r< = - <C. 2.6
S 3 (26)
Here, the first assumption (2.6); is a non penetration condition for the beams while with the second one, we

0
want to eliminate the case — — 0 which needs the use of tools for plates (see [1]).
r

2.2 Strong formulation

Choose an isotropic material with Lamé constants A™, u™ for the beams and another isotropic material
with Lamé constants A?, u® for @~ and Q}. Then we have the following values for the Poisson’s coeflicient of
the material and Young’s modulus:

o pRL l/b _ )\b
20 Apm)T T 2N+ pt)
PG 2™y BN+ 2")

E™ = :
)\m_|_‘um )\b_|_‘ub

The symmetric deformation field is defined by

Vu+ VTy

(Vu)s = 5
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(a) The domain with the thin layer (b) The limit problem

Figure 1: The reference configuration

The Cauchy stress tensor in €, . s is linked to (Vu, . 5)s through the standard Hooke’s law:

- { )\b(TI“ (VUT’E’(S)S)I + 2Mb(vun57ts)s inQ~ U Qj{,
re,d —

)\m(Tr (VUT78,6)S)I + 2um(vur7575)s in Q¢

r,e,0°

We consider the standard linear equations of elasticity in €, . 5. The unknown displacement u, . s :

R? satisfies the following problem:

Y Ored = _fr,s,zi in QT’,E,57
Upes =0 onI,
Ores V=0 on 90, .5 \T.

2.3 Weak formulation
If V.. . s denotes the space

Vyes={veH (Q.5R)|v=00nT},
the variational formulation of (2.7) is

{ Find Upe,§ € Vr,s,&a

er‘g,s Ored - (v@)Sd-T = er,s,a fr,e,é%pdx7 VQD € Vr,e,é-

We equip space V., . s with the following norm:
lullv = [[(Vw)slL2.. )
It follows from the 3D-Korn inequality for domain 27:

ull 71—y < Cll(Vu)s| L2 @-)-

i

3 Decomposition of the displacements in (2] _;

3.1 Displacement of a single beam. Preliminary estimates

Qra&—>

I

2.7)

(2.8)

(2.9)

To obtain a priori estimates on u, . s and (Vu, . 5)s we will need Korn’s inequalities for this type of domain.
However, for a multi-structure like this, it is not convenient to estimate the constant in a Korn’s type inequality,
because the order of each component of the displacement field may be very different. To overcome this difficulty,
we will use a decomposition for the displacements of beams. A displacement of the beam B, 4 is decomposed



as the sum of three fields, the first one stands for the displacement of the center line, the second stands for the
rotations of the cross sections and the last one is the warping, it takes into account the deformations of the
cross sections.

We recall the definition of the elementary displacement from [1].

Definition 3.1. The elementary displacement U,, associated to u € L'(B, 4,R?), is given by

Ue(21, 22, 23) = U(z3) + R(x3) A (1061 + 2282), for a.e. x = (x1,%2,23) € Bya, (3.1)
where )
U = W b, u(xl,xg, ~)dx1dx2,
1
Rs = Tt o)t /DT (z1u2(71, 2, -) — T2Ur (1,22, °)) dr1dTs, (3.2)
-1 3—a
Ra = %/ T3—qus(T1, T2, ) dridze, I, :/ 2 dridey = —
I3_qr D, Dy
We write
a=u—U.. (3.3)

The displacement @ is the warping.
The following theorem is proved in [1].

Theorem 3.1. Let u be in H' (B, 4;R?) and u = U, + @ the decomposition of u given by (3.1)~(3.3). There
exists a constant C' independent of d and r such that the following estimates hold:

ltllL2(m, ) < Crll(Vu)slize(s, ), IVl 2, ) < Cl(Vu)sliLa(s, ..
dR C
—_— < —=||(Vu ,
‘ dzs || 20,0y ~ T IVe)sllze .. (3.4)
du C
A <= .
’ dzs “ 20,4 T I(VW)slleza,.q)

We set

Y. =¢Y, V.=Y.x(—¢,0), B, =D, x(-¢0), V.UD, x (—¢,9).

rs&f

Lemma 3.1. Let u be in HY(V/ .. s R?) and u = U, + @ the decomposition of the restriction of u to the rod

r,

B, . given by (3.1)~(3.3). There exists a constant C independent of §, £ and r such that the following estimates
hold:

C
RO < ﬁ\\VU\I%z<v€),

) 52
IRIZ2(0,6) < C*gHVUH%Z(v + Cj”(vu)s\\%z(ms),
52
||VU||L2 wo +C 2l (VW)slZz s,
L2(0, 5) (35)

2
‘dua
52

dl’g
lfs = Us(0) [ 2(0,5) < C 2H(W)slliz

Bs5)

[Ue — Ua (0 )HL2(05 <C HVUHLZ(V +C 4||(VU)SHL2(BN;)’

lu(,+,0) =UO)IZ2v,) < CellVulfan,, + C*lI(VU)sHLz
Proof. Applying the 2D-Poincaré-Wirtinger’s inequality we obtain the following estimate:
lu—=Ullr2s; ) < Crl|Vulres, ) (3.6)
The constant does not depend on r and ¢.
Step 1. Estimate of R(0).

Recalling the definition of R from (3.2) and since / r1dxidry = / rodridrs = 0, we can write
r D,

1
Vng € [—570]7 Rl(l'g) = W/ xIo (’LL3(£L') —Z/[g(xg))dxldxz.
D,



By Cauchy’s inequality

1
os € 6,0, |Ri(ws) < / w2daydy X / (us () — Us (23))2dz1ds
I2T D, D

r

< % / (s () — Us (3)) s devs.

r

Integrating with respect to x3 gives

0
/ |R1(x3)|2dxs < %/ (u(z) — U(z3))%dz.
—e T By

Using (3.6) we can write

C
R1llL2(—e,0) < ?HVUHLz(B;,E)- (3.7)

dR 1 0
The derivative of R is equal to —1(1‘3) = / To ug(m)dxldxg for a.e. 23 € (—&,0). Then proceeding
dSCg IQT'4 D, 51'3

as above we obtain for a.e. z3 € (—¢,0)

de 2 C 8u3(x) 2
3)| < = dridzs.
‘diﬁg( 3)| < r4 /Dr O3 v1ar2
Hence iR 5 o
U
: Sla < SIVullzs, ). (3.8)
das L2 (- 50) O3 Ly T :

We recall the following classical estimates for ¢ € H'(—a,0) (a >0)

2 a
6(0)]* < ;Ilsb\l%z(_a,()) + 5||¢’H%z(_a,o>,

(3.9)
Il 72(—a,0) < 20l6(0)1* + a®[[¢ 122 (—q,0)-
Due to (3.7)-(3.8), (3.9); with a = r and since £ > r that gives for R;(0)
C
[RiOF < S IVuliz,,)-
The estimates for R2(0), R3(0) are obtained in the same way. Hence we get (3.5);.
Step 2. Estimate of ||R||2(0,s)-
The Poincaré’s inequality leads to
dR
IR~ RO)s <6
3 |l L2(o, 5)
From (3.4)3, (3.9)2 and (3.5); we get
dR ) 52
IRI320.6) < 26/R(0)[* + 62 ol I cﬁnvun%z@, +C 4||(V7VL)S||2L2(BT15). (3.10)
Hence (3.5)3 is proved.
Step 3. Estimate of U — U(0).
Applying inequality (3.4)4 from Theorem 3.1 the following estimates on U hold:
dls C
12 < it o
3llcz0,6) T
u . (3.11)
—_a <||IR|z: + —[[(Vu .
e S TR0+ STl

Combining (3.11)3 with (3.10) gives

du 2

g 2 62 2 ¢ 2
dis < CT*3||VU||L2(B;‘15) + CTTH(VU)S”L?(BTj) + ﬁ|\(vu)s||L2(BM)-

L2(0,0)



Taking into account the assumption (2.6), we obtain (3.5)s. Then by (3.5)s, (3.11); and the Poincaré’s

inequality (3.5)4, (3.5)5 follow.
Step 4. We prove the estimate (3.5)¢.

By Korn inequality there exists rigid displacement r

r(x):a—l—b/\(:lc—i—%eg),
1

a= E—S/V u(x) dx,

6 €
b:€5/v€ <$+§63>/\U(I)dl'.

such that

|u—rlr2(v) < Cel(Vu)slrz(ve),
V(u—r1)llz2v.) < Cl[(Vu)sllzv)-

Besides by Poincaré-Wirtinger inequality we have
lu—allrz(v.) < Cel|Vullr2(v,).-
The Sobolev embedding theorems give (V =Y x (—1,0))
lellzaeyy < Cllellmrzyy < C (lellzoy + IVellzoy), Vo e HY(V).

By change of variables we obtain

1
lellsony < € (Sl +elVellaany ) - Ve € (V)
Therefore, (3.12) and the above inequality lead to

[ =rllLiy.) < Cl(Vu)s|La(ve)-

From the identity
1

3
g Dr(u(x/, 0) —r(z’,0))da’ =U((0) —a—bA 55

estimate (3.14) and Hélder inequality we get

€ 1 4/3 3./ o/ / / 491 e c
‘Z/I(O)—a—b/\ieg‘ <oa( ) v | et 0) —x@0)'d ) < Sl (Tu)slin-

r

From Cauchy-Schwarz inequality and taking into account (3.13), we derive

2 1/2 1/2
b< S </ ':z: + fe?,’ dz> ( lu(z) — a|2dx>
€ V. 2 V.

c
<75'5.€3/2‘
3

Using (3.15) and (3.16) we obtain

€ C C
U(0) ~al < |UO) ~a~bA e < 5 IVwsllza) + =75 I Vullzare):

r

3
bA -
+’ 263

Estimates (3.9) and (3.13) yield
Hu(7 70) - a”%/Q(YE) < C€HVU||%2<VE)

Combining (3.17), (3.18) gives
1. 0) ~U(O) gy < CUluC-0) — ally,) + 1400) - ally,)
< CelVuls vy + O 1(TW)s gy, + CellVulag,
< CeVulfagy + O (Vs ey,

Hence we get (3.5).

C C
lu —a||r2(v.) < 85ﬁ€\|vu||m(vs) < 83ﬁ||vu||m(vs)-

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)



4 A priori estimates

In this section all the constants do not depend on ¢, § and r. We denote 2’ = (21, 73) the running point of R2.

4.1 Decomposition of the displacements in QTM

We decompose the displacement u € V, . s in each beam €i + B, 5, i € ég x {0} as in the Definition 3.1.
/

x
The components of the elementary displacement are denoted Ug, R¢, where § = [] .
€ly

Now we define the fields Zj{, R and @ for a.e. z € B, 5,5 € w by

[11)

Ue(ws), if € = { ] cB, Re(rs), if €= [f} €

a(317827x3) = . 7’5’(81782a$3) = € PR
0, if £¢2=, 0, if £&2=,
" ug(x), if &€= [S=
ORI HES =
0, if £¢5=
We have o
U R e L*(w,H'((0,6),R%), 1€ L*(w,H (B, R?).
Moreover,

40172 (0x 0,67) = € Z UellZ20.600  IRIZ2(0x(0.0)) = € Z IRelZ2(0,6);
5625 EEEE

=12 2 — 2
HU||L2(waT,5) =¢€ § HUE||L2(B 5)
€€E.

As a consequence of the Theorem 3.1 and Lemma 3.1 we get

Lemma 4.1. Let u be in V,. 5. The following estimates hold:

3
Sl

H 8x3 L2(wx(0,6)) —

3
< C-|lullv,
,

[5r - 7ne
IVztllz2wx s, < Cellullv,

L2(wx(0,8))

: (4.1)
@l 2(ux, 5 < Cerllully.,

~ )
||R||L2(w><(0,5)) < CT*QHUHVv

55
ﬁ”“HV

H O3 l1L2(wx(0,6)) —

Moreover,
2

~ 9

||R(7 ) )HL2(UJE) = HVUHLQ(Q;)’

- ~ oe
Us — Uz (-, - 0)]| L2 (wx (0,5)) < C7||U||V»

- 5%
U —Ua (-, 0) | 2 wx (0,5)) < CTTHUHV’ where o = 1, 2.

Proof. Estimates (4.1); — (4.1)g follow directly from (2.9), (3.4)3, (3.4)4 and (3.5)2—(3.5)5 and estimates (4.2)1
— (4.2)4 are the consequences of the estimates in Lemma 3.1 and (2.9). O



4.2 Estimates on the interface traces

Lemma 4.2. There exists a constant C' independent of €,0,r such that for any u € V, .5

2
~ €
B U) = U U@y = Ul :
luC:, - 0) =UC, 5 0) T2,y < C—ull (4.3)
8 = e 8) By < OVl + Ol (1.4)
Moreover,
53
lttav,8) = ta (s, 0) 3a(a, < CellVula ey + O ull, (45)
s (-, 6) = us (s ) Z2 () < CellVul 7z o +C?||U||%/- (4.6)

Proof. Using (3.5)g and then summing all of the periodicity cells give

(-, 0) = U, 0)l72.) < CelVulaq- )+C Hullv (4.7)
In the same way the following estimate is derived:

a8 = T 0) By < OVl gy + Ol

Applying (4.1)3 we can write

2
~ ~ ou:
Ie43(-, -, 8) = Us(:, -, 0) |72z < 5‘ o < C*IIUHV (4.8)
L2(B. % (0,6))
From (4.1)g we have
- - 6252 8253 5253
a5 8) =Uaes, 0l (z,) < C—zlully + C—llullyy < C—[lulfi- (4.9)
Using (4.9) and above estimates we obtain (4.5), (4.6). O

4.3 Estimates on the displacements in O
Lemma 4.3. There exists a constant C' which does not depend on €, r and §, such that for any u € V, . 5

53/2
luallgropy < Oz llullv + Cllullv, (4.10)

3/2 3/2

[usll i oy < c= ullv + Cllullv, (4.11)

where o = 1, 2.

Proof. From the Korn’s inequality and the trace theorem we derive

lullresy = Cllullgo-) < Cll(Vu)sllrzo-), wi2)
luillims < € (IVuillpan + luillass)) i€ {1,2,3),
We know that there exists a rigid displacement r
vz € R3, r(z) =a+bA (x — des), a, becR?,
such that
Ju— I'HL2(25+) < Cllu - I'||H1(Q§+) < CH(VU)SHL?(Q;y (4.13)
The constant does not depend on §. Then, we get
I = 0)Cn llzaony < o= ¥l < CHTWs o (414



Using
[u(, - 0)llz2@.) < llullrzs),

from (4.5), (4.6) we obtain

3/2

1)
lua (s, 0)lz2@.) < CeV2IVull 2 qp) + C—5—llullv + Cllullv,

32612

lus (. D22, < C2([Vull 2y +C

Combining this with (4.14) gives

53/2
Iea (s 8l 2.y < CeV2(Vull 2oy + C—5—llully + Cllully,
1/2 51 /2
w3y, 8|2 @2y < CeV2(IVull 2oy + C
Therefore,
3/2

)
a1 + laa| + [bs| < CE2|Vul ya(gry + O llully + Cllullv.

1/2

15
ag| + [b1| + [b2| < C'&71/2||V"L||L2(Q;) +C

These estimates together with (4.13) allow to obtain estimates on w1, ug, us. From this we have

53 /2
luall i opy < C2IVull 2ty + C—5—llully + Cllullv,
51/
lusll g1 2y < CV2IVull 2 1) + C——llully + Cllullv-
Therefore,
IVl p2iqry < Ce2IIVull 2y + - ||UI|v + Cllullv-

For € small enough the following holds true:

53 /2

IVull 2oy < C—5—llullv + Cllufv.

Inserting this in (4.18) we derive (4.10)-(4.11).

As a consequence of Lemma 4.3 and estimate (4.5), (4.6) can be replaced by

253
[ta (s 8) = ua(, 0)| 22z, < 07IIUIIV,
35

Jus (- 6) —us(, '70)||%2(@5) < CTTHUH%/ + Cﬁ”””%/-

4.4 Estimates for the set of beams ()’

r,€,0

[ullv + Cllullv

[ullv + Cllullv-

[ullv + Cllullv

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Lemma 4.4. There exists a constant C' which does not depend on €, r and §, such that for any u € V, . 5

)
Vel 2,y < O lulv,
rél/2

ullv,

rgl/2 £6°/2
Il < O (14 2 )l

lusllL2i ) <C
rie,s

where o = 1, 2.

(4.21)



Proof. From the estimates in Theorem 3.1, (3.5)2 and (3.5)3 and after summation over all the beams,

(we make use of the assumption (2.6)s)

1Vl <0 (Ivalag, + 2
@i, ) S - 12(9-)

r2

62
7051, ) < Ol
From (4.7) and (4.12);, it follows that

2
~ 9
Y EWeOF = U, 0)lIFa ) < C—|lulls + Cllulf,

‘EGEE
2 1 1 2
> P <5+ %)l

£EE.

Using (3.4)4, (3.5)3, (3.9), we obtain

u 2 < C i 62 2
Z [Ue 31720057 < 7 T [[ully,

2 ER
5 &
5 Wheallioos <€ (5 + % ) Il

§EE.

Additionally,
> luelzes, ) < Cr?l|(Vu)sllzagr ) < Crllully

§E€E,

Then (3.5)2, (4.23) and (4.24) give

r2y &4 r28 g263
5 gl <€ (S5 + 5 +82 402 ) Il < €5 (14 50 ) i

§E€E,

r26 r2§ 26
5 lucallqm, o = € (52672l < 027 (1457 )l

§EE.

From the last inequalities we derive (4.21), and (4.21)s.

4.5 The limit cases

we get

(4.22)

(4.23)

(4.24)

In view of the estimates of Lemma 4.3 and in order that the lower and upper parts of our structure match,

we must assume that

g283

rd

is uniformly bounded from above.

From now on, the parameters r, § and € are linked in this way
o 7 =rpe™, g >1, kg >0, if g =1 then ko € (0,1/2) (non penetration condition),
e 0 =r1e™M, k1 >0 and 11 > no, (in order to deal with the beams).

The above assumption (4.25) yields
243n1 —4no > 0.

Hence we distinguish three important cases
o (i) 7= koe, ko € (0,1/2) and § = k123, k1 >0,
o (i1) 1= Koe™, my € (1,2), ko > 0 and § = k1e@0=2)/3 1) >0,

o (iii) 7 = Koe?, Ko > 0 and § = k12, K1 > 0.

For the sake of simplicity, from now on we will use the following notations:
e (). instead of Q, . s,
e Q! instead of

r,e,07

e QO instead of QF,

10

(4.25)



e 0. instead of o, s,
e u. instead of u, . s,
o f. instead of f, . 5.
With assumption (4.25) we can rewrite some estimates obtained above. For any v € V, . 5 we have

rot/?

lullL2(0i) < C [ullv, (4.26)

lull g2 ) < Cllullv- (4.27)

The constants do not depend on ¢, r and 6.

4.6 Force assumptions

We set
B1 = D1 X (O, 1)

To obtain estimates on u. we test (2.8) with ¢ = u.. We have
Miluclly < (el z2co. ro) el 20, r2)- (4.28)

We consider the following assumption on the applied forces:

2 / / )
%Fm (5 [x} ,E {x} ,x?’) for a.e. = € (),
folw)=4 "0 ely rlely 0 (4.29)

F(x) for a.e. € Q- UQT,

where F™ € C%(w, L*(B1,R?)), F € L*(w x (=L, L),R3). Then,
€ m

| fellz2 (i r3y < 71"61/2”}? | Lo (w,L2 (B R3))-

Making use of the estimates (2.9), (4.26), (4.27) together with inequality (4.28) yield

[uelly < C (4.30)

The constant does not depend of r, € and 4.

From now on, we only consider the cases (i) and (ii) introduced in Section 4.5.

5 The periodic unfolding operators

Definition 5.1. For ¢ Lebesgue-measurable function on w x (0,0), the unfolding operator Tz is defined as
follows:

o J p(s1,82,0X3),  fora.e. (s1,82,X3) € D x (0,1),
Te(p)(51, 82, X5) = { 0, for a.e. (s1,s2,X3) € Ac x (0,1).

Definition 5.2. For ¢ Lebesgue-measurable function on w X B, s, the unfolding operator T! is defined as
follows:

o(s1,82,rX1,7X2,0X3), forae (s1,82,X1,X0,X3) € 0 X By,

7—5(410)(51’527X1aX25X3) = { 0’ fOT‘ a.e. (Sl,SQ,Xl,XQ,Xg) c As x Bj.

Observe that if ¢ is a Lebesgue-measurable function on w x (0,4) then 7z(¢) = T (¢).
Lemma 5.1. (Properties of the operators Tz, T, )
1. Yv,w € L*(w x (0,9))
Te(vw) = Te(0) Te(w),

Vo,w € L*(w x By.5)



2. Yu € L' (w x (0,0))
(5/ Te(u) dsy dsg dX3 = / wdsy dss dzs,
wx(0,1) w:%(0,9)

Vu € LY (w x B,.5)

7‘2(5/ 7—;(“) dsydse dX; dXodXs = / udsy dss dry dxs dxs.
wXx By GexBrs

3. Yu € L*(w x (0,0))
1
17 ()| 22 (wx (0,1)) < \76||U||L2(wx(o,5))7

Yu € LQ(OJ X Br,g)

/ 1
172 (Wl 22 (wx By < m“unw(ujxa,é)-

4. Let u be in L*(w, H'(0,6)), a.e. inw x (0,1) we have
0T (Vy,u) = Vi, To(u).

Let u be in L*(w, HY(B,.5))., a.e. in w x By we have

/

7. (Vg u) = anTg/(u)7 (57'5/(Vz3u) = ngTg/(u)7 where o = 1, 2.

Proof. Properties 1-3 are obtained similarly as in the proof of Lemma 5.1 of [3].
Property 4 is the direct consequence chain rule formulae:

/

M:ﬂj (8u), a=1,2,

00X, Oz,
INTe(u) Ou AT, (w) Ou
80X =0T s )’ 08X =T drs )’ =

5.1 The limit fields (Cases (i) and (ii))

From now on, (us)a will be denoted as u. ; the same notation will be used for the fields with values in R?
or R3.

From Lemmas 4.1 and 5.1 we obtain the following result.

Lemma 5.2. There exists a constant C' independent of €, § and r such that

17e(Ue) | 22w, 157 0,1)) < C, (5.1)
7 ~ T
72 (Ue,3) — Ue,3(- '70)HL2(w,H1(0,1)) < Cg, (5.2)
~ C
TR 22w, 11 0,1)) < (5.3)
)
OT-(U:) ~ r
-4 £ £ S ) 4
H 0X3 T(R )AGS‘ L2(wx(0,1)) C(S (54)
2
/ ~ r
(7 ()|l L2 (wx 0.0), 121 (D1)) < C 5 (5.5)
5
IT, (i r
Ha)(() =G (56)
3 L2(wxBy)

Further we extend function u. defined on the domain QF by reflection to the domain w x (8, L + 6). The
new function is denoted u. as before.

Proposition 5.1. There exist a subsequence of {e}, still denoted by {e}, and u* € H'(Q* R3) withu™ =0 on
I, R € L¥w, H}((0,1),R?), Uy € L*(w, H*(0,1)), Us, U} € L*(w, H(0,1)), u € L*(w x (0,1), H'(Dy,R?))
and Z € L*(w x (0,1),R3) such that

12



ue —u~ weakly in HY(Q7), strongly in L*(Q7), (5.7)
ue(- +dez) = ut weakly in H*(QT), strongly in L*(Q7T),

ST2(R.) = R weakly in L*(w, H'(0,1)), such that (5.9)
R(z',0) = R(z',1) =0, for a.e. 2’ € w, (5.10)
) ~ ~ ~
S(Te@Ue3) = Uep(-5+,0) = Uy weakly in L?(w, H'(0,1)), (5.11)
7'5(1/75,3) —Us  weakly in L*(w, H'(0,1)), such that (5.12)
Us(-,-,-) = Us(-,-,0) = uz |5, = Us(-,-,1) = u;{m, a.e. in wx(0,1), (5.13)
Te(Ue o) = Uy weakly in L*(w, H'(0,1)),  for a =1,2, such that (5.14)
Uy(-,-,0) = Ug |53 Uy (-, 1) = ui‘z a.e. in w, (5.15)
O, U .
87)(3(', °y ) = 87)(3(771) =0 a.e. in w, (516)
o~ U s .
X Ra, X, R1 ae. in wx(0,1), (5.17)
52 / o~ ~ . 2 1
T—QTE () = u  weakly in L*(w x (0,1), H (D)), (5.18)
§7;’ (i) = 0  weakly in L*(w, H'(By)), (5.19)
r
9 (9Tee) _ 6Te(ReAes) | = Z  weakly in L?(w x (0,1)). (5.20)
r an

Proof. Convergences (5.7), (5.8), (5.9), (5.11), (5.12), (5.14),(5.18) and (5.20) follow from the estimate (4.30)
and those in Lemma 5.2.

Equalities (5.10) are the consequences of (4.2)1-(4.2)5. To obtain (5.17) take into account that from (5.20) we
have

ah
— R
0Xs
ou ~ U -
— R Aes = 2 =0
X “= ax, T
oUs
0X;
. " s .
Then (5.10) yields (5.16). Equalities (5.13) are the consequences of X, 0 and the estimates (4.3), (4.4).
3
Again due to (4.3), (4.4), we obtain
Uy (2',0) = Uy 5 (@), Uy (2',1) = ugs(z’), forae. 2’ €w.
From Lemma 5.2 we have |7, ()| L2 (w, 1 (Br)) < C% from which and (5.18) we deduce (5.19). O

)

The strain tensor of the displacement u. is

T ((Vu)s) =T (Va)shy, ii=12

ij

7 ((Vu)s) =5 ((“m”” - 7;<7“z;,z>) - aT(R)X) £ T (T s)un

(n)s) = L([(L0TWs) | g ) T IT(Res) (E
7. ((VUE)S>23 =3 <<5 9Xs +’T5(R571)> + 50X, X1 | + 7. (Vte)s)2s,

=X, "5 0% 275 ox, ot T((Vie)sks.

, ((%)S> B 187;(1/{5,3) iaﬁ(R&l)X 7"67;(’]?/872)

13



Define the field @' € L2(w x (0,1), H'(Dy,R3)) by

o = Ug, 'y = s + X121 + XoZs.
Then
ou's  Ous ou's  Ous

=—+7 — = — + Z5.
8X1 8X1+ b aXZ aX2+ 2

As an immediate consequence of Proposition 5.1, we have

Lemma 5.3. There exist a symmetric matriz field X € L?(w x B1,R%) and a field
w € L?(w x (0,1), HY(D1,R3)), such that

R
—T. ((VUE)S) —~ X weakly in L*(w x By, RY),
r

where X is defined by

ox, " ox,
X13 = X1 % gii’ gigj 2|
Xoz = X32 % Hga)(/z'f‘g?z 1]
X33 ggfi—g}? 2 Z;LgXl.

6 The limit problem

6.1 The equations for the domain Q!

52
Denote by © the weak limit of the unfolded stress tensor —7_ (o.) in L?(w x By, R?):
r

—T.(0.) = ©, weakly in L*(w x By, R%).
r

Proceeding exactly as in Section 6.1 of [3] and Section 8.1 of [4], we first derive @ and this gives

~ oy, X2 — X202U 92U,

= m | 3 1 2 1 2
ey ( Nox, T2 axz T axg) ’
~ o, o%U, X2 — X2 0%U

= . m | 3 1 2 1 2
w2y ( Xogx, TR Xegxr T axg)

Similarly, the same computations as in Section 6.1 of [3] lead to w's=0.
As a consequence from Lemma 5.3 we obtain

611 = 922 = @12 = Oa

OR OR

O3 = _MmX287X§’ Og3 = ,ulea—Xz,
U, U 02Uy

Oa =B (8X3 —X X2 ang)'

Proposition 6.1. (Zjl,ljg) satisfy the variational formulation

T8 o [ 0o
4K o 0X3

e b
(@', X0) g (X)X = [ (&', Xagal(Xa) X
3 0

Voo € H3(0,1), for a.e. ' € w

14



where

F' (a2, X3) = | F'a',X)dX1dXy ae inwx(0,1) a=1,2
D,

Furthermore R = 0 and there exists a € L*(w) such that
Us (2, X3) = a(z)) X3 a.e. inw x (0,1).

Proof. Step 1. Obtain the limit equations in QF.
We will use the following test function:

b (3)- 2550 ()

() = Tub(et) D (22) + B, (22) =5

where 1) € C2°(w), ¢3 and ¢4 € HE(0,1), o1 and @2 € H3(0,1). Computation of the symmetric strain tensor
gives

L xg — e&o dpy
0 0 2 T dX3
r 1ay —e&y dpy
= — DRI 0 - - <, 1
(Vue)s 52¢(€§) 5 1 dXs in €€ + By.
dps a1 -l d*p1 w2 — el o
dXs r dX? r dX?
Then
d904
0 0 —
24X,
52 , d‘P4 ’ : 2
TT((V%) s) =) .. 0 *X e =V(2',X) strongly in L*(w x By).
3
dps d2s01 d*ps
- X - X
dXs “ltax?z  TPdx2
Moreover,
¢1(X3)
T. (D) = (") | w2(X3) strongly in L*(w X B)
0
Unfolding the integral over 2. we obtain
/ o:: (Vv)sdz = Z / o : (ﬁ)sd‘r
2 ¢eE, e€+Brs
=%y / T, (Voe)g)da! dXy dXo dXs
E€E.
T26 ’ o ’
= — T.(0e) : T, (Vve)s)da' dX; dXo dX3.
€ wX By
In the same way for the integral for forces we get
r2§
fervedr = —- (fs) (ve)da: dX1dXodXs5.
Ql € wX By
Passing to the limit gives
Kg 2
-2 ©: Vda' dX = kgr1 Y / Fr(a!, X)(2' ) o (X)dz' dX. (6.3)
K1 Jwx By a=17wxB1

We can localize the above equation. That gives

2
TKQ 8723 ng4 K/O /
TR m 2’ dX Em
Pl /wxm 9Ky dxX, X T BT

7/ d 277 d2 277 J42
<4au3 ps |, Plh o1 | Ol o
% (0,1)

/
0X3dX; = 0X2 dXZ ' OXZ dX§> Y dw dXs

_ / (B + s ) wa! dXs. (6.4)
0.1

15



The density of the tensor product C°(w) @ H}(0,1) (resp. CX(w) ® HZ(0,1)) in L2(w; HE(0,1)) (resp.
L?(w; H3(0,1))) implies

2 2 i 277 92 277 92
TR m 8R3 6<D4 TRQ m/ 8“3 3(133 0 u1 0 (I)l 0 ZJ{Q 1o} (I)Q /
o IR3 904 1yt dxs + 0 4 o’ dX
iy / (0.1 X5 DX ST Lo C0Xs 0%, T axz oxz T axg axg | 4

:/ (Em@l + 17”5’@2) de’'dXz — V®3, &4 € L*(w; Hy(0,1)), Yy, &y € L*(w; HF(0,1)).
(0,1)

(6.5)
Step 2. Obtain Rs, Us.
Since 3 € H(0,1) is not in the right-hand side of equation (6.4) we obtain
L outy des 02U, .
—dX3 = = .e. 1). .
X dX, T 0 e 0 ae in wx(0,1) (6.6)
Moreover, we have Uj(z',0) = 0 for a.e. 2’ € w. Therefore, there exists a € L?(w) such that
Us(2', X3) = Xga(z'), forae. (2/,Xs3)€wx (0,1).
Similarly, recalling ¢4 € H}(0,1) and taking ¢; = w2 = 3 = 0 in (6.4) lead to
OR; dipa "Ry .
dX — = .€. 1
/0 39X, dXs 3 =0 = e 0 ae in wx(0,1),
which together with the boundary conditions (5.10) from Proposition 5.1 gives 7%3 =0. O

The variational problem (6.2) and the boundary conditions (5.15)-(5.16) allow to determine U, (o = 1,2)
in terms of the applied forces F* and the traces ujz.

6.2 The equations for the macroscopic domain

Denote
V= {v € LX(Q UQNRY) [vg- € H'(Q5R®) and vjg- =0 onT),
v+ € HY(QT;R?) and Ug|o+ = Ugj- On E}
Vi = {(0,V1, V2, V3, Va) €V x [L2(Q; H2(0,1))]2 x [L2(9; H'(0,1))]? |
Vol -, 0) = Vo |5 Valy 1) = U;_IE a.e. in w,

MVq Ve B ,
VS('7'70)_V4('a'70)_V4<'7'71)_87)(3('5'50)_87)(3(""1)_0&'6' m w, a € {172}}
Let x be in C2°(R?) such that x(y) = 1 in D; (the disc centered in O = (0,0) and radius 1).

From now on we only consider the case (ii).

6.2.1 Determination of ZZ;

Lemma 6.1. The function a introduced in Proposition 6.1 is equal to 0 and
Us(2', X3) =0 a.e. inw x (0,1).

Proof. For any 13 € C*(w x [0,1]) satisfying 3(2’,0) = 0 for every 2’ € w, we consider the following test
function:

Ve,o(x) = fora.e. x € Q., a=1,2,

ve(z) =
! / /

'Ue,S(-r) = g[dja(ﬂ?/a 1)(1 - X(;{%}})) +¢3<€[%}Y,1)x(§{%}y)}, for a.e. x € Q;‘,

/

ve3(x) = gwg (5 [%}Y, E), for a.e. z € Qé

for a.e. x € Q7

5

16



r .
If — is small enough, v, is an admissible test function. The symmetric strain tensor in €2 is given by
€

0 0 0
(Vue)s = (5% SR 0 a.e. in £ + By 5.
2 (e 2)
o g (6
Then
0 0 0
& o 0 0
T ((Vve)s) — | =V(2',X) strongly in L?(w x By).

811[}3 /

ax, © o Xs)

Elements of the symmetric strain tensor in QF are written as follows:

(Vuo)s = (Vo )% = (Vo) = (V)P =0,

(Vo) = (Vo8 = 355026 )0 =) + g5 (a0 = (<[ ) 1)),

/

whereyzi{x—} .
rlely

By Lemma 9.1 (see Appendix) and taking into account g — 0, the following convergences hold:
v(- + de3) — 0 strongly in H'(QT;R3),
(Vve)s — 0 strongly in L?(QT;R?).
Moreover,
T!(v.) — 0 strongly in H'(w x By;R?).

Using ve as a test function in (2.8) and passing to the limit in the unfolded formulation give

o, , . s / s
x, X 2, X3)dx' dX = alz 2, X3)da' dX = 0.
/ o B GEEX) [ o ST X

Hence a = 0. Since the test functions are dense in

Vs = {\If € L*(w; H(0,1)) | ¥(2/,0) =0 a.e. in w}

we obtain B
oU}, ov
, X "' X3)dz' dX =0 YU e V,. 6.7
/w><(0,1) 5X3( 3)8X (', Xa) deo © (6.7)
O
As a consequence of the above Lemma and Proposition 6.1 one gets
©5 =0, (i,5) #3,3)
02U, 0%Us (6.8)
O3 = —E" (X )
33 13vs oX2 + Xa aX2
6.2.2 Determination of ul and us
Theorem 6.1. The variational formulation of the limit problem for (2.8) is
TK, 0%U, 821/)
Vv)g dx + OEm/ > da’ dX5
/mufr (V) wx (0, 1)2 X3 3X2
TR IR Oy K2 m/ 81132 003
+— — ——di'dX5+ —FF dx’ dX3
4t /MO ) 0X3 0X3 K (0.1) 0X3 0X;3 (6.9)
:/ Fodx + 5351/ Z Fm¢adx dXs + nom / F;n’(}3dxl7
Q+tun- wx(0,1) 521

V(”ﬂ/’lﬂ/’% 77213, 1/]4) S VT
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where

Fy'(') = ; F(e', X)dX, o' €w.

Proof. For any v € V such that vjq- € Whe(Q~,R?) and v+ € Whoo(QF R3), we first define the displace-
ment v, , in the following way:

era x’ era a4+
veyr(x)—v(x)(l—x(;{;}y)) +U(E{;]Y,x3)x(;{;}y>, fora.e. 1€ Q- UQT. (6.10)
Then denote h the following function belonging to W1>°(—L, L)

z3+ L
h(l‘g) = L ’
1, T3 > 0.

3 € [_La 0]7

(6.11)

Now consider the test displacement

vi(z) = v(z)(1 — h(zs)) + ver(x)h(23), for a.e. € Q7,

vl(x) = v (2, x5 — 0), for a.e. x € QF,
/
W([2),2)
vi(z) = g (5{%})/, %) for a.e. x € O,

w20 -5k ClEL )
where 1, € C1(w;C3([0,1])), e = 1,2, satisfies

Va(2',0) = va0-(2',0),  ha(2',1) = va0+(2',0) for every o’ € w.
If  is small enough, v, is an admissible test displacement.
€

Then by Lemma 9.1 the following convergences hold:
vL(-+ de3) — v strongly in H'(QT;R?),
vl — v strongly in H'(Q™;R?),
(Vul)s — (Vu)s  strongly in L*(QT U Q;R?).

Computation of the strain tensor in Q¢ gives

(Vo) =0 (i.5) # (3,3),
N33 _ T 9% Oy 1!
(Vee)s” = Noxz ( [ }y X3) X 5%z (E[F}Y’XS) '
Therefore,
Y1 (2', X3)
T (L) — | a(a, X3) strongly in L?(w x By;R3),
(33 ,0)
4 8 w 8277[] / .
77' (( ( 8X21 ', X3) + Xo 8X§ (z 7X3)> strongly in L?(w x By).

Unfolding and passing to the limit in (2.8) give

1y
aX2

4 2
/ ot (Vo)g do — -0 @;(X18w1+X2
Qi wal

de’' dX =
K3 0X? > m

= / Fudzr + K2k / (F"py + Fyipgy + Fyvz) da’ dX.
Ot

w><B1

Since the space W (QF;R3) is dense in H!(Q;R3), the space of functions in W1°°(Q~,R3) vanishing on T
is dense in H(Q7;R3) and the space C!(w;C3([0,1])) is dense in L?(w; H*(0,1)), the above equality holds for
every v in V and every vy, ¥y in L?(w; H'(0,1)) satisfying

Va(2',0) = vaj0-(2',0), ha(z',1) = vyo+(2',0) for a.e. 2’ € w.
Finally, integrating over Dy and due to (6.5), (6.7) and (6.8) we obtain the result. O
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6.2.3 The case (i)

We introduce the classical unfolding operator.

Definition 6.1. For ¢ Lebesgue-measurable function on w, the unfolding operator T!' is defined as follows:

S ~
T/ () (5,y) = go(e[g}y + sy), for a.e. (s,y) € W XY,
0, for a.e. (s,y) € Ac xY.

Recall that (see [7])
Lemma 6.2. Let ¢ be in W1 (w) and ¢. defined by

! ! !/

o = ({2 )o(eZ),) (2, oo e 2 <o

Then we have
T () —> ¢ strongly in L*(w; H'(Y)),

T/ (V¢.) — Ve  strongly in L*(w x Y).

Theorem 6.2. The variational formulation for the problem (2.8) in the case (4)

2 a2 277
+ 7TK/0 m a ¢0¢ a Z/la /
o= (Vv)sdr + —=F / dr'dX3 =
/Qi (Vv) 4K3 wx(o 1) = X3 0X3 8

:/ Fudx + kik ZFdeadx ng-FIiolil/F;n’Ugdx/,
o

wx(0,1) ,—
Yo eV, Vi, o € L?(w; HY(0,1))  satisfying

Va(2',0) = vaj0- (2',0),  a(z’,1) = vyo+(2',0) for a.e. ' € w

Proof. Step 1. Pass to the limit in the weak formulation.
To (5.7) and (5.8) we add
T (ue) = u~  weakly in L*(Q7; H'(Y)),
T (Vue) = Vu~ +V,a~  weakly in L*(Q~ xY),
T2 () (- + Ges, ) = ut weakly in L2(QF; HL(Y)),

T (Vue)(- + bez, ) = Vut + V,at  weakly in L?(QF x Y),

where 4~ belongs to L?(Q~; H.,,.(Y;R?)) and u* belongs to L*(Q; H

per

(Y;R?)).

per

(6.12)

Remark 6.1. Here the third variable of u. is considered as a parameter, on which the unfolding operator T’

does not have any effect.

Step 2. Determination of U.

To determine the function a introduced in Proposition 6.1, take ¥3 € C!(@w x [0, 1]) satisfying v3(z2’,0) = 0

for every 2’ € w and consider the following test function:

Ve,a(x) =0 for a.e. z €., a=1,2,
ve(x) =0 for a.e. x € Q7

/ /

o= (11 ({E],)) + [ O (ER)] e s

ve 3( )—gl/3w3< [ } 52/3) ({ } ) for a.e. 2 € Q.

We obtain the following convergences:

v (- + dez) — 0 strongly in H'(QT UQ™;R?),
(Vv:)s — 0 strongly in L*(QT UQ™;RY),
T!(v.) — 0 strongly in H'(w x By;R?).

Unfolding and passing to the limit as in the Subsection 6.2.1 we obtain that a = 0.
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Step 3. For any v € V such that vjo- € Whe(Q~;R?) and v+ € Wheo(QF:R3), define the displacement v,
in the following way:

v(z) (1 - X({%}y)) + v(s{g}y,xg)x({i/ }Y), for a.e. 1€ Q- UQT. (6.17)

ve ()

Consider the following test displacement:

V(@) = v(@) (1 = h(ws)) + v-(2)h(zs) + U (2, 23)D ({i}y) . forae zeQ,
vl(z) = ve(a a3 — 0) + eV (2! 25 — 6)0 ({ “Z }Y) . forae zeQf,

n(elZ],
G

w(G[2],0 -5 EE)3)

e € H! (Y;R3),

per

vi(z)

12,3
f ],2)

for a.e. x € QL

where

e th, € CH(w;C3([0,1])), = 1,2, satisfies
Va(x',0) = vaj0-(2',0),  Ya(2',1) = v4)0+(2',0) for every 2’ € w,
o U e Wheo(Q7), () € Whoo(QF) satisfying
TE (2,0) =0, ae. inw, U()=0 on T,
e h(x3) is defined as in (6.11).

Using (6.1) we obtain the following convergences:

(
(Vul(-,) — Vo + IV, G strongly in L2(Q~ x Y),
T (WL(- 4 bes,-)) — v strongly in L*(QT; H'(Y)),
(VuL(- 4 des, ) — Vo 4+ UV, G strongly in L2(QF x Y).

Moreover,
1 (2, X3)
TA(T (L) — | ¥a(af, X3) strongly in L?(w; H(Y x By)),
v3(z’,0)

52 01y %1y
—T ('T” (( ’) 3)) — =X —— (¢', X3) — Xo——5 (2/, X3) strongly in L*(wxY x By).
0X3 0X3

Unfolding and passing to the limit we obtain

4 aZw a 1/)
1 5%) . vE (v, 5 —@/ A xE L x, T2 g dx =
/Qixy(a +57%) ((VU)S + (Vyv)s) dxdy 3 n (€] 1 e + X5 X2 dx' d

:/ F’wa—l—/iglﬁ/ (Flm’l/h —‘rFQm’(/JQ—l—Fg’l}g) de' dX. (6.18)
QF wX B

Since o* and (Vv)s do not depend on y and due to the periodicity of the fields ¥ and u™, the above equality
reads

/ oF (Vo) dchr/ ot v (v,7) dxdy””é/ 0: <X O + X 821/’2>dx'dx
[eE= ' 5 [OE22% ' vos /@11)’ x B1 ' 18X32 28X§

/ Fudr + K2k / (F"py + Fyipgy + Fyvz) da' dX.
Ot

w><B1
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Step 3. To determine & we first take v = 0. We obtain

4 2 2

At g () (o _ Kg . 0% 0“a Vv

o UE(Vy0)gdedy — — O: (X + X dz'dX =
/QixY ! K Joxn, Lox3 T P ox3

= I{%lﬁ:l/ (Flrnlibl + FQmwg) dl‘/ dX
w><Bl
Since the right-hand side does not contain v,
/ 6% U H(V,0)g dedy = 0,
QEXY

which corresponds to the strong formulation

for i = 1,2,3. Therefore, 5= = 0, and (6.18) is rewritten as

4 2 2
+ Ko 0% 2
: - — X X X =
/Qia (Vv)g dx s /w><31@ ( 13X32 + gan dx’d

Z/ del‘—f‘ﬁglil/ (F{nwl +F2m’(/J2—|—F3’U3) d.l?/dX (619)
O=*

w><Bl

Since the space W12 (Q+;R3) is dense in H*(2+;R?), the space of functions in W1 >°(Q~,R?) vanishing on I'
is dense in H'(Q7;R3) and the space C1(w;C3([0,1])) is dense in L?(w; H*(0,1)), the above equality holds for
every v in V and every vy, ¥y in L?(w; H'(0,1)) satisfying

’l/)a(JC/,O) = Vo |0— (.I/,O), ¢a($/a 1) = Vq|Q+ (ajla O) for a.e. o' € w.

Finally, integrating over D; and due to (6.8) we obtain the result. O

7 Summarize

7.1 Strong formulation
Strong formulations are the same for the cases (i), (i7). We will use the following notation.

Notation 7.1. The convolution of the functions K and F is

1
(K » (!, Xs) = / K(Xa,ys) 7 (2 ys) dys.
0

Let {e} be a sequence of positive real numbers which tends to 0. Let (ue, o) be the solution of (2.8) and
ﬁs and ﬁs be the two first terms of the decompostion of u. in QL. Let f satisfy assumptions (4.29). Then the
limit problems for the cases (i), (¢¢) can be written as follows.

Bending problem in the beams: (U;,Us) € L*(w, H'(0,1))? is the unique solution of the problem

2 4
% m?})zjg :f‘o’é” a.e. in w x (0,1),
U _ O0Uy,
ox%, 0= ox,
Un(:y-,0) = Upyisss Un(-,,1) = ul‘lz, a.e. in w,

7.1
(,1)=0, ae inw, (7.1)

3d elasticity problem in Qt*UQ™: (ut,o%) € (H}(QTUQ7))? x (L3(2))%*? is the unique weak solution
of the problem
3 +
0o
f§ Y—F inQF i=1,23,
; 8.%‘]‘
7j=1
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together with the boundary conditions

and the transmission conditions

[Uz‘is]lz =F; on X,

2

[U:’ﬂlz =0 on X,

+ 37‘—%% mry, + 2 ! m
Ol = —?E [uz]is + Kgh1 Ko+ F'd X5 onY, a=1,2.
1 0

7.1.1 Derivation of the 3d problem

Lemma 7.1. The weak formulation of the limit problem can be rewritten as

2
3Tk,
2 (Vo)gdx + OEm/ ds =
2 1 _
:/ FUdI+IigH1/ ZFZU; ds+ng/@1/ Z[Uf]m/ K, * F)'dXs5ds, YoeV, (7.2)
Q+tuQ- b> it bt 0

where
NPT (V) o) ] + 28 (Vut)s € LH Q5 R),
Ko(Xs,y3) = 0(X3 — y3) X3 (3 — 2X3) 4+ 6(1 — 2X3) (X3 — y3) H (X35 — y3) + (1 — y3)*(y3 — 2y3X3 — X3)) .
Proof. Step 1. Decomposition of Zja.

Denote
Vi = {77 € 63([()’ 1]) | 77(X3> = (b - a)X§(3 - 2X3) +a, (a, b) € RQ}'

Observe that a function X3 — n(X3) = (b — a)X3(3 — 2X3) + a of V, satisfies

dn
dXs

4
dd—)gu)zo, and LT 0 (0,1).

(0) =0, -

n(0) =a, n(1) =b,

Hence for any function ¢ € HZ(0,1) we have

2
/O e (t)dXs( ) dt = 0.

Let Uy, be in L2(w; H2(0,1)) the solution of the following problem:

29U,
%E X4 (INX?)) F'(a, X5) ae. inwx (0,1),
@z]a 8Z/~[a

e 0) = 22 1) =
QVX?)(”O) NaXS(,, )=0, ae. inw,
aa(',',O) :aa(';',l) =0, a.. inw.

Using Green’s function we can write U, in the following way:

=~ 4kt
Us(a', X5) = TEmR2 / Ea( X3, ys) F (@' ys) dys,
where &, is the solution of the equation
d*éa
=0(X3 — 0,1
dX§ ( 3 y3)7 Y3 e( ; )a

d€a o déa
dXs (0) = dxg(l)

£a(0) = &a(1) = 0.

:O7
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Solving the above equation we obtain
1 1 . 1
§a(X3,93) = 6(X3 —y3) H (X3 — y3) — 6(1 —y3)*(2ys + 1) X5 + 5(1 —y3)?ys X3,

where H is the Heaviside function.

The function Zj{a is uniquely decomposed as a function belonging to L?(w; V) and a function
in L?(w; HZ(0,1))

o o', Xs) = (1 — X2, + Do) — X3 — 2X )t (o) + U (', Xs) -
=Uq (2", X3) +Ha(w’7X3) for a.e. (', X3) € w x (0,1).

Step 2. Taking into account decomposition (7.3) and using as a test function 1 = [vE]5X3(3—2X3) T,
n (6.9) we obtain

37THO m 822/{1 82172 + ;o
/9+qu (V) s dr + E /Z/ 8X2 s+ X2 [’1}2]|2)(1—2X3)dX3d,’1} =
& ! ~ RV 821/{
= /Q+ . dex—i—/ Z[Uﬁm/o (mngg”Xg(S—QXg) OEm (1 —2X3)>dX3 Ao’ +
L Wa=1

2n1 8X2

3
+ K2k1 / Z Fllos da'. (7.4)
wa=1

Making use of the solutions for U/, and ZZX we can write

3mKg 2
/ ot (Vo)gde + 3OEWL/Z |Edl" 7/ Fodz+
Q+tuQ- K a=1 Qrues
2 1 " 25
o [ St [ e (B i 20 602X [ B 0y B 0, )X+
W a—1 0 0 dX

3
+n3n1/ ZFZL v, dx'. (7.5)
W =1

d2
Using the notation for convolution and the expression for % we get the result. O
3

From variational formulation (7.2) the final strong formulation is obtained.
7.2 Convergences

Theorem 7.1. Under the assumptions (4.29) on the applied forces, we first have (convergence of the stress
energy)

4 277
lim Ores: (Vue)gde :/ oF : (Vu)sdz + 7T—%)Em/ 0 L{2
==0Jq, s Qtun- 4Ky wx(0,1) = 1 0X3
_ (7.6)
2
TR m (97?,3 2 ’ 7TKJO m 82/{3 ’
+I50, / —) dz' dX; + "0 p —‘ dz' dXs.
4k} wx(0,1) 10X3 Pk wx(0,1) 10X3 ?

The sequence (u.,0.) satisfy the following convergences:
o u. — u~ strongly in H'(Q7),
ue (- + dez) — ut strongly in H*(QF),
e o. — o strongly in L*(Q7),
o.(- + de3) — ot strongly in L2(QF),
o T/ (ten) —= Uy strongly in H' (w x (0,1)), where Uy, is the solution of (7.1), a=1,2,
T (ue 3) — uz (2/,0) strongly in H' (w x (0, 1)),
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o —T!(0.) = © strongly in L?(w x By), where
7

U, 02U,
X, 22 ) =
an + 28X§)a (Za]) (3a3)7

0, otherwise.

o (X1
G)ij =

Proof. Step 1. We prove (7.6).
We first recall the classical identity: if T is a symmetric 3 x 3 matrix we have

3
Em
)\mTT(T)TT(T) + Z Q/J,mﬂ]fr” = EmT323 + (1 4 Vm)(l _ 2y7n) (T11 + T22 + 2VmT33)2
ig=1
Em
+ m[(Tu — T)® + AT + Tis + T33)).

Taking ¢ = u. in (2.8), by standard weak lower-semi-continuity we obtain
[Right hand side of (7.6) (written with the Lamé’s constants)] < lim i(I)lf [left hand side of (7.6)].
e—

Then we prove the inequality with limsup thanks to the variational formulation (6.9).
The equality (7.6) implies the strong converge of the stress and strain tensor fields. then we deduce the
strong convergence of the different components of the displacement field.

Convergences in the domains Q.
From (5.1) we have, that

u. — u~  weakly in H'(Q7), strongly in L*(Q7),
ue(- + de3) = ut  weakly in H*(Q"), strongly in L*(QT).
Therefore, we should prove the convergence of the gradients. Consider the domain 2~ (the procedure for the

domain Q7 is similar). Estimating the norm of the difference due to the coercivity we obtain

: —2 - -y - _
611_r>1(1)||VuEfVu 220 Sagl_% Q,(O—Eia ): (Vue)s — (Vu™)g) de =

= a;i_r}(l) - (0c: (Vus)s+0~ : (Vu )s —o~ : (Vue)s — oz : (Vu)g) dx. (7.7)

For the first term of the sum we get

lim oc : (Vug)g dx = lim fu.dx = fu~ dx.
e=0 Jo- e—=0 Jo- -

Moreover,

—gi_rg% - (oc: (VuT)s+0~ : (Vue)s) da = —2611_I>% - oe: (Vu7)gde = —2/ o~ (Vu7)gdx.

Returning to (7.7) due to the variational formulation of the problem we derive

L. _ - - _ - -
aili%HVug—Vu ||%2(97)§/Q,fu da:—Q/ o : (Vu )sdm—i—/ o (Vu")sdr =0.

Then, the first 4 convergences are true.
Step 2. Convergences in the beams.
For (s, X1, X2, X3) € (wx Dy x (0,1)) we can write the following:

T (ues) —Us = Ue i(5,6X3) + Rei(s,0X3) A (rXieq +rXoep) + e i(s,7X1,7 Xy, 0X3) —Us(s, X3), i=1,2,3.
Based on the results of Proposition 5.1 we obtain
lim |Uei(5,6X3) + Rei(5,0X3) A (rXies +17Xses) + e i(s,7X1,7 X0, 0X3) — ai(57X3)”2L2(w><Bl) <
< lim IEhe (s, 6X3) = Us(s, Xs)[|72 (e 1) + lim IRe.i(s,6X3) A (rXver + 7 Xe2)[ 72w+

+ lim [tei(5,7X1,7X2,0X3) [ 72(0x ) = O-
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Consider the elements of the gradient:

87 (ZF/?&Z'(S, (5X3) + 7%571‘(87 5X3) A (erel =+ T‘XQ@Q) + 5E,a(s,7‘X1,rX2, 5X3) — Z:{;(S,Xg)> , 1,]= 1,2,3.
J

Again, based on the results of Proposition 5.1,

gi_r:% ox, (rﬁg,i(S, 6X3) A (X1e1 + Xoeo) + Ue i(s, rX1,rXo, §X3)) =0,
and 2
. 9 ([~ ”
glg% 5'7)(] (UE,i(Sa 5X3) - ui(S’Xi’))) =0,

L2(wx(0,1))

which implies the convergences 5 and 6.
For the convergences of stress tensor in the beams we have

2

52 52 52
‘ o) -0 :/ (7;’(08) - @) : (T;(UE) - @) da' dX =
r L?(wxB1) wX By r r
54 52
= T.(0.): T!(0:)dx' dX — 2—/ T.(0e) : ©da’ dX —|—/ O :0dr dX.
r wX By T JwxB; wx By

Passing to the limit we derive

2 2

o) -0

r

lim
e—0

4
= 5—/ T (02) : T (o) da’ dX f/ ©:0dr'dX < ..
w><Bl

2 72 B
L (UJXBl) wX by

8 Complements
Remark 8.1. The case
r=kie2, 0 =koe?, K1,k >0,

can also be considered, but should be studied separately. The structure obtained will no longer correspond to the
set of the thin beams but to some kind of the perforated domain.

253
Remark 8.2. For the case ET — 0 from the estimates (4.19), (4.20) we obtain, that
r

lim lu(-,-,6) — u(-,,0)||r2@.) = 0.

r,e,0—0

Therefore,

+

U m =U |y,

where ut € HY(QTUQ™,T) is the limit of the function u.. Hence we obtain two limit problems on the domains
QF, Q= with Dirichlet boundary conditions and the layer has no influence on the limit problem.

9 Appendix

Let x be in C2°(R?) such that x(y) =1 in D;.

Lemma 9.1. Let ¢ be in W (w) and ¢, defined by

/ / !/

b =L JoCLE),) DY ot o @ <

If T 50 then for every p € [1,+00) we have
€

Ger —> ¢ strongly in WP (w).
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Proof. For the sake of simplicity we extend ¢ in a function belonging to W>°(R?) still denoted ¢. We denote

[

— {geZz ; (sf+5Y)Ow7é®}.
Observe that Z. C =.. Consider the following estimate:
60 = dlimo = (G {z},) (0CL2),) = 9)l e, < 20 (W) 000 —otee )]
= sup (5 ) (0(e6) ot + =)

€€E Leo(Y)

(9.1)

< ellxllo @) VAl oo (r2)-

The partial derivative of ¢, — ¢ with respect to z, is
P = Lan (L)) (oClE],) —o) —x(H{E), ) gete. orme v

W (e€ +ey) = 1807* (5v) (6(c) = o€ +2y') = x(Zv) af

(e€ +ey'), €€E., foraec. y cV.

[0}

Since x has a compact support in R?, there exists R > 0 such that supp(x) C Dg. Thus, the support of the
o €N . . . . p
function ¢y’ — X(fy ) is included in the disc D, r/.. As a consequence we get for a.e. y' € D,.g/.
r

|p(e€) — p(e€ +ey)| < TRVl Lo (r2)-

Using the above estimate, for the norms of the derivatives we first have

H (¢ — ) ||

p
2

r

v, () T ) g

< CTZHVXHPOO(RZ)HVQZ)HPOC(RQ),

o (6 + )

LP(e&+eY) Lr(Y)

The constant does not depend on € and r. Combining the above estimates for £ € EE, that gives

r\2/p
1V(er =)oy C(5) " 19Xl @) V@l e )- 9.2)
The constant does not depend on 7 and e. Hence, estimates (9.1) and (9.2) imply that ¢. strongly converges
toward ¢ in WP (w). O
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