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On the robust guidance of users in road traffic networks

Nadir Farhi 1, Habib Haj-Salem and Jean-Patrick Lebacque

Univ. Paris-Est, IFSTTAR/COSYS/GRETTIA, 14-20 Boulevard Newton, 77447, Marne-la-Vallée Cedex France.

Abstract. We present in this article a model for the guidance of users in road traffic networks. It is well known since decades
that a path with a reliable travel time can be obtained by maximizing, over the different possible paths, the probability of
realizing a travel time less than a given time budget. We propose here an adaptation of this approach, in order to introduce
robustness in the selection of the optimal path. A robust path here is a path that is not likely to change during the travel, and
that admits acceptable alternative detours in case of failure.
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INTRODUCTION

The complexity of the guidance of users in road traffic networks is due to the variability and stochasticity of the travel

times through those networks. The problem is tackled with several approaches: shortest path - based ones; see for

example [7], stochastic methods calculating the probability of arriving at time [6, 2, 9], optimal control approaches

solving optimization problems in feedback of the state of the traffic in the network [8, 1], deterministic approaches

based on the calculus of travel time guarantees; see for example [5, 4, 3], etc. We are interested here on the stochastic

approaches that permit to guarantee reliable travel times and robust paths for the users.

The approach we adopt here is based on the idea of Frank [6] who proposed to derive reliable paths from a given

origin to a given destination by maximizing the probability of realizing a travel time less than a given time budget; see

also [2] and [9]. In order to give the main idea of the model we propose here, we consider the network of Figure 1. A

user departing from node 0 to node 7 needs to be guided in his selection of an appropriate path. We assume that the

user would like to minimize his travel time, maximize its reliability, and also optimize the robustness of the path to be

selected at node 0. The question for us is how to determine such optimal path for that user.

FIGURE 1. Illustration of model (3).

Solution 1 consists in calculating the shortest path in term of average travel time from node 0 to node 7. This solution

is known to be non optimal in term of the reliability of travel time of the obtained shortest path. Solution 2 consists in

calculating the maximum probability of arriving at node 7, departing from node 0, in a given time budget; see [6, 2, 9].

This solution is clearly better than solution 1. Indeed, solution 2 guarantees the travel time reliability of the selected

path.

We will show here that we can still improve (or extend) solution 2 in term of robustness of the selected path. Suppose

that the calculus of such maximum probability at the level of node 0 gives the optimal path passing through nodes 3

and 6. The travel times through the links of the network being variable in time, it is possible that, once a user is

arrived to node 1, the path passing through nodes 3 and 6 is no more optimal (a posteriori). We can still calculate the
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maximum probability of arriving to node 7, departing from node 1, in the remaining time budget, and, by that, select

another optimal path from node 1. However, some users (if not all of them) may be non confortable with this process

of changing the selected path at every node. Moreover, even if the user is not sensitive to the changing of path at every

node, he shall require a detour that will not deteriorate the initially promised travel time. Furthermore, if the initially

selected path at node 0 (the path passing through nodes 3 and 6) is optimal up to node 3, and becomes no more optimal

from the time when the user arrives to node 3, the user will not have any alternative path. The calculus of the maximum

probabilities of arriving at the destination node in a given time budget (by solution 2), as proposed in [6, 2, 9], does

not guarantee the existence, neihter the performance of such alternative detours.

We propose here an adaptation of solution 2 in such a way that the selection of the optimal path from node 0 to node

7 takes into account the robustness of the choice. We mean here by robustness, a kind of guarantee that the proposed

path is not likely to change a lot during the travel; and in the case where the path needs to be changed, acceptable

detours (that do not deteriorate the initial promised travel time, in its average and its reliability) exist.

THE MODEL

Franck (1969) [6] proposed to determine reliable paths in a road network by calculating the maximum probabilities to

reach a given destination departing from a given origin, in a time less than or equal to a given time budget. Without

loss of generality, we consider the case of a road network with only one destination node s, where the travel times

through the links of the network are correlated. We use the following notations.

• N : the set of nodes of the network.

• A : the set of links (arcs) of the network.

• i+ = { j ∈ N ,(i, j) ∈ A }, i− = {k ∈ N ,(k, i) ∈ A }.

• pki j(t,y): probability that the travel time through link (i, j) is t, knowing that we come from the predecessor node

k of i, and that the realized travel time on link (k, i) is y. That is the probability distribution of the travel time

through link (i, j), conditioned by the travel time on link (k, i).

• uki(t,y): maximum cumulative distribution of the travel time from node i to the destination node, knowing that we

come from node k, and that the realized travel time through (k, i) is y. That is the maximum probability, departing

from node i, of arriving to the destination in a time less than t, knowing that we come from node k upstream of

node i, and that the realized travel time on (k, i) is y.

The probabilities uki(t,y),∀i ∈ N ,k ∈ i−, t ∈ [0,T ],y ≥ 0 are obtained by solving the following system.

uki(t,y) = max
j∈i+

∫ t

0
pki j(w,y)ui j(t −w,w)dw, ∀i ∈ N \{s},k ∈ i−,0 ≤ t ≤ T,0 ≤ y ≤ T − t, (1)

with uks(t,y) = 1, ∀k ∈ s−,0 ≤ t ≤ T,0 ≤ y ≤ T − t.

We notice that in the case of non-correlated travel times, system (1) is reduced to

ui(t) = max
j∈i+

∫ t

0
pi j(w)u j(t −w)dw, ∀i ∈ N \{s},0 ≤ t ≤ T, (2)

with us(t) = 1, ∀0 ≤ t ≤ T .

Equation (1) tells that the probabilities uki(t) satisfy a kind of backward dynamic programming system, with a

maximization over the successors of node i. The implicit system can be solved, for example, with the successive

approximation method; see for example [9]. In term of guidance, the arguments (nodes) of the maximizations in the

calculus of the probabilities uki(t) give the optimal path that guarantees the maximum probability of arriving to s in

a time less than t. It is clear that the calculus of those probabilities permits the selection of reliable paths through the

network.

We follow here the same idea in term of reliability of the travel time of the selected path, but by introducing a

robustness guarantee of the selected path. We mean by robust path here, a path which is flexible, in the sense that, if

the path fails before the users who seleted it reach the destination node, the path admits acceptable detours (deviations

with acceptable travel time). For that, we propose to calculate, for each node i, a probability zki (which we define

below) of reaching the destination node, departing from node k upstream of i, where we take into account the case



where the selected path fails before the users who selected it reach the destination node; for which case, alternative

neighboring paths are used.

The probabilities zki are defined as follows.

zki(t,y) =
d

∑
j=1

ϕki j(t)

∫ t

0
pki j(w,y)zi j(t −w,w)dw, ∀i ∈ N \{s},k ∈ i−,0 ≤ t ≤ T,0 ≤ y ≤ T − t, (3)

with zks(t,y) = 1, ∀k ∈ s−,0 ≤ t ≤ T,0 ≤ y ≤ T − t, and where ∑d
j=1 ϕki j(t) = 1,∀i ∈ N ,k ∈ i−,0 ≤ t ≤ T , and d is

the number of successors to be taken into account.

In the calculus of zki(t,y), instead of maximizing the quantities

∫ t

0
pki j(w,y)zi j(t −w,w)dw, for j ∈ i+, (4)

we propose to take a mean of these quantities, with chosen weights ϕki j(t), i ∈ N ,k ∈ i−, j = 1,2, . . . ,d,0 ≤ t ≤ T .

The optimal path is still determined by the sequence of the successor nodes which maximizes the quantites (4). We

notice that even though the optimal paths are determined by taking the arg-max in both models (1) and (3), the results

shall be different since zki(t) and uki(t) are calculated with different ways.

We may have d <| i+ |, in wich case, only some successors of i are considered in the mean. We may also have

d >| i+ |, in which case, we have ∑ j∈i+ ϕki j(t) < ∑d
j=1 ϕki j(t) = 1. In the latter case, nodes i with small number of

successors are penalized (they get low values zki(t)). Therefore, paths passing through those nodes (ie. paths with

small number of alternatvies or detours) shall have low probabilities to be selected as optimal paths.

We note that d may depend on i and k, in which case, we write dki. The parameter d (or dki) is in fact dependent on

the wieghts ϕki j. Indeed, d is simply the number of non null ϕki j.

In order that the calculus (3) has a meaning, the weights ϕki j(t), i ∈ N ,k ∈ i−, j = 1,2, . . . ,d,0 ≤ t ≤ T must be

increasing with the quantities (4). This dependece of ϕki j(t) on those quantities makes the model (3) non trivial. We

notice here that if d = 1, or if d > 1 but for some j̄ ∈ {1, . . . ,d},ϕki j̄(t) = 1, and thus ϕki j(t) = 0,∀ j 6= j̄, the models (1)

and (3) coincide.

By taking a mean in (3) rather than the maximum (as in (1)), we do not only take into account the path maximizing

the probabilities uki(t), but we also take into account the existence and the performance of alternative deviations at

each node.

A NUMERICAL EXAMPLE

We take again the network of Figure 1 and consider the non-correlated travel times case. We calculate here the

probabilties zi(t) by solving the system (3) using the method of successive approximations; see for example [9].

The travel times through the links are stochastic with Gamma distributions. The travel times on all the links of the

network, except link (1,3), follow Gamma probability distribution with mean 10 and standard deviation 3. The travel

time on link (1,3) follow the same probability distribution but with a mean 9 and standard deviation 3.

To reach the destination node (node 7), departing from node 1, we have three paths: path 1: 1 → 2 → 4 → 7, path

2: 1 → 2 → 5 → 7, and path 3: 1 → 3 → 6 → 7. As all the standard deviations of all the links are the same, it is trivial

that path 3 is the optimal path by the model (1). Indeed, it is the path with the minimum average travel time, while the

standard deviations on all the links are the same.

Fo this example, we take d = 2, and

ϕki j(t) = ϕ j,∀i,k, t, j ∈ {1,2}.

As d = 2, we simply denote ϕ = ϕ1, and then ϕ2 = 1−ϕ . We apply model (3) by varying the constant ϕ in [1/2,1].
By taking ϕ < 1, we take into account the fact that if we choose path 1 or path 2, we have an option to change the

path at the level of node 2, while path 3 does not have such option.

The results of the calculus are presented in Table 1. As expected, we can see that the probabilities zi(t) are increasing

with ϕ . However, as mentioned above, for a given i ∈ N , the order of the z j(t) for j ∈ i+ changes by varying the

weights ϕ j. This changing in the order of z j(t), j ∈ i+ induces modifications of the optimal paths.

We see in Table 1 that with ϕ = 1, and for any budget time, the optimal path is path 3. For example, for a time

budget equal to 28 time units, we have z1(28) = 0.63. With ϕ = 0.9, the same performance in term of reliability of



travel time (ie z1(t) = 0.63) is obtained with a time budget of 30 time units, with path 2 as the optimal path. Therefore,

the decision to take here in term of route choice depends on the users. With a time budget T=30 time units,

• if a user maximizes the travel time reliability of the paths, without taking into account their robustness (or

their flexibility), then he shall choose path 3, because it is the one maximizing the probability of reaching the

destination node in the considered time budget (z1(30) = 0.76).

• If a user is satisfied with the value 0.63 for the travel time reliability of paths, and likes rather to optimise the

robustness, then he shall choose path 2.

TABLE 1. The probabilities zi(t) and the optimal paths from node 0 to node 7 in the network of Figure 1,
obtained by the model (3).

time t 20 21 22 23 24 25 26 27 28 29 30

ϕ1 = 1 z1(t) 0.10 0.14 0.20 0.26 0.33 0.41 0.49 0.56 0.63 0.70 0.76
succ(1) 3 3 3 3 3 3 3 3 3 3 3

ϕ1 = 0.9 z1(t) 0.08 0.11 0.16 0.21 0.27 0.33 0.39 0.45 0.51 0.57 0.63
succ(1) 3 3 3 3 3 3 3 3 3 2 2

ϕ1 = 0.8 z1(t) 0.06 0.09 0.13 0.16 0.21 0.26 0.32 0.38 0.44 0.50 0.55
succ(1) 3 3 3 3 3 2 2 2 2 2 2

ϕ1 = 0.7 z1(t) 0.05 0.07 0.1 0.13 0.18 0.22 0.27 0.32 0.37 0.41 0.46
succ(1) 3 3 2 2 2 2 2 2 2 2 2

The value 0.14 = 0.76− 0.63 represents the price of robustness to pay in term of the travel time reliability. The

time period 2 = 30− 28 represents the price of robustness to pay in term of travel time budget. Indeed, with a time

budget of 28 time units, the most reliable path is path 3 with the value 0.63. In order to get the same value of travel

time reliability, and assure a robust path, we need 2 more time units in our time budget. The selection of path 2 as the

optimal path instead of path 3, in the case where ϕ = 0.9 is justified by the fact that path 2 is more flexible compaing

to path 3. That is, path 2 has the option of changing at the level of node 2 (change to take path 1).

CONCLUSION

We presented in this abstract a model for the robust guidance of users in road traffic networks. It is a modification of an

existing model based on the calculus of the maximum probability to reach a destination node in a given time budget.

Our modification permits the selection of an optimal path according to two criteria: the reliability of the path, in term

of travel time, and the robustness of the path, in term of flexibility (existence and performance of alternative detours).

The model shows how to do a compromise with the two criteria, and gives the prices of robustness in term of travel

time reliability, and in term of travel time budget.
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