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LIPSCHITZ-KILLING CURVATURES AND POLAR IMAGES

NICOLAS DUTERTRE

ABSTRACT. We relate the Lipschitz-Killing measures of a definable set X C R™
in an o-minimal structure to the volumes of generic polar images. For smooth
submanifolds of R™, such results were established by Langevin and Shifrin [17].
Then we give infinitesimal versions of these results. As a corollary, we obtain a
relation between the polar invariants of Comte and Merle [7] and the densities
of generic polar images.

1. INTRODUCTION

Let M C R™ be a smooth compact submanifold of dimension dp;. To each
x € M, we can associate a sequence of curvatures Ko(z),..., Kq,, (x) called the
Lipschitz-Killing-Weyl curvatures. Let us recall their definition. We denote by
SN, m the unit sphere of N, M, the normal space to M at z. For i € {0,...,dn},
the i-th Lipschitz-Killing-Weyl curvature K;(z) is defined by

Ki(z) = / oi(I1;)dv,
SNy M

where II;, is the second fundamental form on M at x in the direction v and
0i(I1;,) is the i-th elementary symmetric function of its eigenvalues. The second
fundamental form 11, , is defined on T, M as follows:

IIz,U(WI; W2) = _<VW1W, W2>,

for W1 and Wy in T, M, where V is the covariant differentiation in R™ and W is a
local extension of v normal to M. Note that K; = 0 if 7 is odd. These curvatures
are important objects: the integrals [ 1 Ki(z)dx appear in Weyl’s tube formula [34]
and the integral [,, Kq,,(x)dz in the Gauss-Bonnet formula [1, 11].

In [17], Langevin and Shifrin explained how to compute the integrals [, K;(z)dz,
which have a differential geometric definition, by methods of differential topology.
Let us explain briefly their work. Let ¢ be an even integer in {0,...,dy}, let
G‘flM —4*+lhe the Grassmann manifold of (dy — g + 1)-dimensional linear spaces
in R™ and for P € Gd~9+1 et 7 : M — P be the restriction to M of the
orthogonal projection on P. Generically the discriminant A of 7 also called
the polar image of 7%, is almost everywhere a (djs — g)-dimensional submanifold of
P. With each regular point y in AY | we can associate an integer (7}, y), which
is very roughly speaking a kind of Morse index.

Mathematics Subject Classification (2010) : 14B05, 53C65, 58KO05.
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2 N. Dutertre

Langevin and Shifrin showed that

1
K, (z)dr = cst—— M )dydP,
M q($) z s giquJrl /GZMHI /Azlgf a(ﬂ-P ,y) 4 ’

where g™ ~4+1 is the volume of G4 =9+l and “cst” means a universal constant
that depends only on djy; — ¢ and n. For ¢ = dj, this formula is exactly the
exchange formula or exchange principle (already proved in [16]) which relates the
integral [, Kq,, (x)dz to the Morse indices of critical points of generic orthogonal
projections onto lines.

Our first aim is to extend Langevin and Shifrin’s results to a large class of
non-smooth objects, namely the class of definable sets in an o-minimal structure.
Definable sets are a generalization of semi-algebraic sets and global subanalytic
sets, we refer the reader to classical references [33, 32, 8, 21| for basic definitions
and results on this topics. The study of the geometric properties of these objects
was initiated by Fu [12], who developed integral geometry for compact subanalytic
sets. Using the technology of the normal cycle, he associated with every compact
subanalytic set X of R™ a sequence of curvature measures

Ao(X,—), ..., An(X,—),

called the Lipschitz-Killing measures. In [5] (see also [2, 3]), Brocker and Kuppe
gave a geometric characterization of these measures using stratified Morse theory,
in the more general setting of definable sets.

Let us describe now how we adapt the technics of Langevin and Shifrin to the
singular definable case. We consider a compact definable set X C R™ and assume
that it is equipped with a finite definable Whitney stratification {S;}sca. Let S
be a stratum of X of dimension dg < n and let U be an open subset of X. As in
the smooth case, for ¢ € {0,...,ds} and P generic in G4*!, the discriminant APV
of the restriction to S N U of the orthogonal projection on P is almost everywhere
a smooth hypersurface in P, and to almost all y in A%”U, we can assign an index
a(m3,y), defined by means of stratified Morse theory. Then we set (see Definition
3.17)

L,(X,5,U)= cst/ / a3, y)dydP.
Ggl+1 A%mU

For ds < ¢ <mn, weset Ly(X,S,U)=0. If dgs =n, weset Ly(X,5,U)=0ifg<n
and L,(X,S,U) = vol(SNU). We define the polar lengths of X (see Definition
3.18) by

Ly(X,U) =Y Ly(X,S,,U) for g € {0,...,n}.
acA

In Theorem 3.20, we establish a connection between the Lipschitz-Killing measures
and the polar lengths, namely we prove that for any open subset U of X and for

q€{0,...,n},
Ag(X,U) = Ly(X,U).

Our second goal is to give infinitesimal versions of the previous equalities. We
consider (X,0) C (R™,0) a germ of a closed definable set equipped with a finite
definable Whitney stratification. We define localized versions of the polar lengths
that we denote by L}COC(X7 0), k =0,...,n. Roughly speaking, these localized polar
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lengths are mean-values over Grassmann manifolds of weighted sums of densities
of polar images. We prove that (see Theorem 4.7)

. AX,XNB,) loc
E%T = Ly°(X,0),
for k € {0,...,n}. As a consequence, we obtain in Corollary 4.8 a relation between

the L°°(X,0)’s and the polar invariants of Comte and Merle [7]. This implies that
the LI°°(X,0)’s are continuous along the strata of a Verdier stratification of X.
This result should be related to Teissier’s famous result on the constancy of polar
multiplicities along the strata of a Whitney stratification of a complex analytic set
[29].

In complex analytic and algebraic geometry, polar and relative polar varieties
and their relations with curvatures, characteristic classes and equisingularity prob-
lems have been widely studied by many authors since the 70’s. We cannot give here
a complete list of all the interesting papers published on these subjects and we apol-
ogize for this. The study of real polar varieties and real equisingularity, suggested
by Trotman [30], was started by Comte in [6]. It was continued in [7], [31] and [25].
We hope that the present paper will provide new interesting developments in this
theory.

Throughout the paper, we will use the following notations and conventions (some
of them have already appeared in this introduction):

e s is the volume of unit sphere S* of dimension k and by is the volume of

the unit ball B¥ of dimension k,

e B(n, k) = % where I' is the Euler function,

e for k € {0,...,n}, G¥ is the Grassmann manifold of k-dimension linear
spaces in R"™ equipped with the O(n)-invariant density (see for instance
[27], p.200), g is its volume,

e AF is the affine grassmanian of k-dimensional affine spaces in R",

e if P is a linear subspace of R”, Sp is the unit sphere in P, G% is the
Grassmann manifold of k-dimensional linear spaces in P, A% is the affine
grassmanian of k-dimensional affine spaces in P, P+ is the orthogonal space
to P, mp : R® — P is the orthogonal projection on P and for any subset
ACR"™ 74 : A— P is its restriction to A,

e for v € R™, the function v* : R™ — R is defined by v*(y) = (v, y),

e in R", B.(z) is the closed ball of radius € centered at z and Se(z) is the
sphere of radius € centered at x, if x = 0, we simply write B, and S,

e if X C R, Sing(X) is the singular set of X, X is its topological closure, X
its topological interior, Fr(X) = X \ X its frontier,

e when it makes sense, vol(X) means the volume of the set X and dyx its

dimension,

e if vq,...,v; are vectors in R™, [v1,...,vg] is the linear space spanned by
U1y ..., Uk,

e a universal constant that we do not want to specify will be denoted by
“Cst” ,

e the word “smooth” means of class C® at least,
o if f(z,y) = f(a1,...,Zn, Y1, .., Ym) is a smooth function, Vf is its gradient
and V, f is its gradient with respect to the variables z1,...,z,.
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The paper is organized as follows. Section 2 contains a summary of results on
stratified mappings, stratified More theory and the definitions of the Lipschitz-
Killing measures and the polar invariants. In Section 3, we study generic polar
varieties and images and prove the relation between the Lipschitz-Killing measures
and the polar lengths. Section 4 deals with the local situation and contains infini-
tesimal versions of the results of Section 3.

The author thanks David Mond and Terry Gaffney for interesting discussions on
double points of fold singularities.

2. STRATIFIED MAPPINGS, STRATIFIED MORSE THEORY AND LIPSCHITZ-KILLING
CURVATURES

In this section, we present different mathematical objects, notions and results
that we will use in the next sections.

2.1. Stratified mappings. In this subsection, we recall well-known facts on map-
pings defined on stratified sets and on their critical points and values.

Let X C R™ be a compact definable set equipped with a finite definable Whitney
stratification § = {S,}aca. The fact that such a stratification exists is due to Loi
[20]. Recently Nguyen, Trivedi and Trotman [24] gave another proof of this result.
Let f : R® — R* be a smooth definable mapping and let fix : X = RF be its
restriction to X. We assume further that f is a submersion in an open neighborhood
of X.

A point = in X is a (stratified) critical point of f|x if 2 is a critical point of f|g,
where S is the stratum that contains x. This means that

dim (T, S + T, f 1 (f(x))) < n,
or equivalently
dim(T,S N T, f~ (f(x))) > ds — k.
Note that if dg < k, then all the points of S are critical. If x is not a critical point
of fix, we say that x is a regular point of f|x. We denote by E? the set of critical

points of f5 and we set Eif = UaeAE]Sc“.
Lemma 2.1. The set E;( is a compact definable set of X.

Proof. Tt is enough to prove that it is closed. Let (2, )men be a sequence of points
in Zf that tends to . We can assume that (2,,)men is included in Z]Sc. If x
belongs to S then = belongs to E]Sc C E;{. If = belongs to S’ C Fr(S) then, by
Whitney condition (a), there exists a vector space T' of dimension dg such that
dim(T + T, f~1(f(z))) < n and such that T,,S” C T. Therefore x € E?/. O

Let y € RF. We say that y is a critical value of fix if f‘}l(y) contains a critical
point of fx. Otherwise we say that y is a regular value of f|x. Note that if y is a
regular value of f|x, then f~!(y) N X is a Whitney stratified set (see for instance
[26]).

Lemma 2.2. The set of reqular values of f|x is an open definable and dense subset
of RF.
Proof. This set is equal to R¥ \ f(=F). By Bertini-Sard’s theorem (see [4]), each

set f(E]Sc) is a definable set of dimension less or equal to k — 1. Hence f(E;f) isa
compact definable set of dimension less or equal to k — 1. ([
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2.2. Stratified Morse theory. Let M be a smooth riemannian manifold. Let
X be a Whitney-stratified set of M. Let x be a point in X and let S(x) be the
stratum that contains x. A generalized tangent space at z is a limit of a sequence
of tangent spaces (Ty,,S1)men, where S; is a stratum distinct from S(x) such that
x € S and (Ym)men 18 a sequence of points in S; tending to z.

A Morse function f : X — R is the restriction of a smooth function f M — R
such that the following conditions hold:

(1) f is proper and the critical values of f are distinct i.e., if  and y are two
distinct critical points of f then f(z) # f(y),

(2) for each stratum S of X, the critical points of f|g are non-degenerate,

(3) at each critical point x, the differential Df(x) does not annihilate any
generalized tangent space at x.

Let f: X — R be a Morse function, S a stratum of X and z a critical point of
fis. Let us write ¢ = f(z). The local Morse data for f at z is the pair

(B (@) n f7H (e —d,c+0]), B (2) 0 f (e —0)),

where 0 < § < € < 1 and BM(z) is the dj/-dimensional closed ball centered at x
and of radius € in M. This definition is justified by the following property (see [13]
or [14]). There exists an open subset A in Rt x R* such that

(1) the closure A of A in R? contains an interval ]0, €[, € > 0, such that for all
a €]0,¢[, the set {b € RT | (a,b) € A} contains an open interval ]0,d(a)]
with d(a) > 0,
(2) for all (e,6) € A, the above pairs of spaces are homeomorphic.
The local Morse data are Morse data in the sense that f~!(]—oo, ¢+4]) is homeomor-
phic to the space one gets by attaching BM (z)Nf~1([c—d,c+6]) at f~1(]—o00,c—F])
along BM(z) N f=(c — §) (see [13], 1 3.5).

If x belongs to a stratum of dimension dx, the local Morse data at  are home-
omorphic to the classical Morse data (B* x B4x~* dB* x B4x~*) where \ is the
Morse index of f at x.

If = belongs to a zero-dimensional stratum then BM (z) N f~1([c — &, ¢+ d]) has
the structure of a cone (see [13], I 3.11).

If = lies in a stratum S with 0 < dg < dx, then one can consider the classical
Morse data of f|g at x. We will call them tangential Morse data and denote them
by (Pig, Qtg). One may choose a normal slice of IV at x, that is a closed submanifold
of M of dimension dy; — dg, which intersects S in x transversally. We define the
normal Morse data (Pyor, @nor) at o to be the local Morse data of fixnn at .
Goresky and Mac-Pherson proved that

e the normal Morse data are well defined, that is to say they are independent
of the Riemannian metric and the choice of the normal slice ([13], I 3.6),

e the local Morse data (P, Q) of f at x are the product of the tangential and
the normal Morse data ([13], I 3.7):

(P,Q) = (Ptg X Pnor;Ptg X Qnor U Pnor X th)-
This implies that P = BM(x) N f~([c — §,c + §]) has the structure of a cone.

Definition 2.3. Let x € X be a critical point of the Morse function f : X — R.
Let (P,Q) be the local Morse data of f at x. The Euler-Poincaré characteristic
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X(P,Q) =1—x(Q) is called the stratified Morse index of f at x and is denoted by
ind(f, X,z). If x € X is not a critical point of f, we set ind(f, X,z) = 0.

If (P, Qig) and (Pror, @nor) are the tangential and normal Morse data, then
one has

X(Pa Q) = X(Ptga th) : X(Pnora Qnor)-

Thus we can write
ind(f, X, z) = indeg(f, X, 2) - indnor(f, X, 2),

where indig(f, X, ) is called the tangential Morse index and indner(f, X, z) the
normal Morse index. Note that if  belongs to a zero-dimensional stratum then
indg(f, X, ) = 1. If = belongs a stratum of dimension dx, then ind(f, X, z) =
(—=1)* and ind,or (f, X, 2) = 1, where X is the Morse index of f at x.

The following theorem relates the Euler characteristic of X to the indices of the
critical points of a Morse function.

Theorem 2.4. Let X C M be a compact Whitney-stratified set and let f: X — R
be a Morse function. One has

X(X) =" ind(f, X, x).

reX

2.3. Lipschitz-Killing measures of definable sets. In this subsection, we present
the Lipschitz-Killing measures of a definable set in an o-minimal structure. We de-
scribe Brocker and Kuppe’s approach [5].

Let X C R™ be a compact definable set equipped with a finite definable Whitney
stratification S = {S, }aeca.

Let us fix a stratum S. For k € {0,...,ds}, let A7 : S — R be defined by

1
)\f(.’l]) = /S indnor(v*aXax)gds—k(llzﬂ/)dv’

Sn—k—1 e
=

where I1; , is the second fundamental form on S in the direction of v and where
0dg—k(I1z ) is the (dg — k)-th elementary symmetric function of its eigenvalues.
The index indpo. (v, X, z) is defined as follows:

indper (v, X, 2) =1 — x(X NN, N B(z)N{v* =v*"(x) — 6}),

where 0 < § < ¢ < 1 and N, is a normal (definable) slice to S at = in R™ . Since we
work in the definable setting, this index is well-defined thanks to Hardt’s theorem
[15, 8]. Furthermore when vy has a stratified Morse critical point at «, it coincides
with the normal Morse index at z of a function f : R®™ — R such that fjx has a
stratified Morse critical point at  and Vf(xz) = v. For k € {ds +1,...,n}, we set

A () = 0.
If S has dimension n then for all z € S, we put A5 (¥) =--- = AJ_,(x) =0 and
AJ(x) = 1. If S has dimension 0 then we set

1

Sp—1

X5 (x) =

and A7 (z) = 0 if k > 0.

/ inder (v*, X, x)dv,
Sn—l
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Definition 2.5. For every Borel set U C X and for every k € {0,...,n}, we define
AR(X,U) by

A(XU) =) Ape (x)da.
a€A SanU

These measures Ay (X, —) are called the Lipschitz-Killing measures of X. Note
that for any Borel set U of X, we have

Adx+1(Xa U) == An(Xa U) = 0;

and Agy (X, U) = L4 (U), where L4 is the dx-th dimensional Lebesgue measure
in R™. If X is smooth then for k € {0,...,dx}, Ax(X,U) is equal to

1
/ de_k(l')dl'.
U

Sn—k—1
As in the smooth case, the measure Ag(X, —) satisfies an exchange formula (see
[5])-

Proposition 2.6. For every Borel set U C X, we have

1
Ao(X,U) = /S 1 E ind(v*, X, z)dv.
" zex

Sn—1

In the next section, we will generalize this exchange formula to the other mea-
sures Ag(X,—), k > 1.

The Lipschitz-Killing measures satisfy the kinematic formula (see [12, 5, 2]). We
will need a particular case of this formula, namely the linear kinematic formula.

Proposition 2.7. Let U be an open subset of X. For k € {0,...,n}, we have
Ap_i(X,U) = cst/ Ao(XNE,XNENU)dE.
A%
Proof. See [5], Corollary 8.5. O
In [9], we gave a localized version of this equality. Let (X,0) C (R™,0) be the
germ of a closed definable set. Let H € G"* k € {1,...,n}, and let v be an

element in Sy.. For § > 0, we denote by H, s the (n — k)-dimensional affine space
H + év and we set

Bo(H,v) = lim lim Ag(Hj, N X, Hs, N X N By).

e—05—0
Then we set )
bol) = —— [ (o)
Sk—1J5S,1
Theorem 2.8. For k € {1,...,n}, we have
A(X, XNB 1
lim 22X O Be) — / Bo(H)dH.
e—0 bkek g,ﬁ k Gr*k
Proof. See [9], Theorem 5.5. O
In [9], we also established a relation between the limits lim._,q Au(XX0B) d

bkek
the polar invariants introduced by Comte and Merle in [7]. These polar invariants
are real versions of the vanishing Euler characteristics of Lé and Teissier (see [18],
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Proposition 6.1.8 or [19], (3.1.2)). They can be defined as follows. Let H € Gn~*,

ke {1,...,n}, and let v be an element in Sgy.. We set
ao(H,v) = lim lim x(Hs,, N X N Be),
€—05—0
1
ao(H) = / ao(H, v)dv,
Sk—1 Syt
and then
1
or(X,0) = — / ao(H)dH.
gn an*k

Moreover, we put og(X,0) = 1.
Theorem 2.9. For k € {0,...,n — 1}, we have

AL(X, X N B,
lim—k(’ NB)

=0 bkﬁk = Uk(X70> 7O—k+1(X70>'

Furthermore, we have

An(X, X N Be
lim 20X OB oy ),
e—0 b,e™
Proof. See [9], Theorem 5.6. O

3. CURVATURE MEASURES AND VOLUME OF POLAR IMAGES

In this section, we relate the curvature measures of definable sets to the volumes
of polar images of generic projections. We start recalling the definition of polar
varieties and polar images.

Definition 3.1. Let P € GF, k = 1,...,n, and let M C R" be a smooth sub-
manifold. The polar variety (or polar set) X% is the set of critical points of 7,
i.e.,

Y ={zeM | dm(T,MNP)>dy—k+1},

if kK <dp. If k> dys, we set Zy =M.
The polar image of 7% is the set AY defined by AY = M (2.

Let X C R™ be a compact definable set in an o-minimal structure. We equip it
with a definable Whitney stratification S. The following statements describe the
structure of ¥ and A7 for a stratum S of X.

The next two lemmas can be proved using the machinery of modular subman-
ifolds of multi-jet spaces developed by Mather and the fact the Thom-Boardman
manifolds are modular (see [22], Theorem 2). The proofs we present below are more
elementary and enable us to stay in the definable setting.

Lemma 3.2. Let S be a stratum of X such that ds < n. If k < dg + 1 then
for almost all P € G%, EIS’D is either empty or a (k — 1)-dimensional definable set.
Moreover the set

SE ={res} | dim(T,S N PY) >ds — k+2},

is a definable subset of 23 of dimension at most k — 2 and $3 \ $F5 is smooth.
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Proof. We treat first the case k < dg. Let V C (R™)* be the open subset consisting
of the k-tuples (v1,...,vx) such that (vy,...,vx) has rank k. Let M be the following
definable set:
M= {(z,vl,...,vk) ER"xV |z €S and dim(T,S N PLY) >dy —k+1

where P = [vg,... ,Uk]}.
The set M is the finite disjoint union of the sets M;, i =1, ..., k, where
M,; = {(m,vl,...,vk) ER"xV|xe€S and dim(TmSﬂPJ‘) =d,—k+1

where P = [vy,... ,Uk]}.

The set M, is a definable manifold of dimension nk + k — 1. To see this, we can
assume that locally S is given by

S={zeR"[ filz) == fes(z) =0},
where cg =n —dg and fi,..., fos are smooth definable functions. From now on,
we set V = (v1,...,v;). Then (z,V) is in M; if and only if the matrix
9 0
B o W
0fes  of.
axls (w) T axf (m) ,
v% e vp
v}i e ol
has rank cg + k — 1, where we use the notation v; = (v},...,v") € R™. It is an easy
exercise of linear algebra to see that we can assume that the matrix
) d
@ - ()
ofes 0t
azls (z> T az: (x) ,
’l}l DY U’]’j"
;
/T

has rank ¢g + k — 1 and so that the minor

af of
(@) BICS:kA (x)
Ofes o
6113 (z> o 6zcs+i—1 (z> ,
’U% e ’Uferkil
’Ulifl T Ulisjlrkil
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does not vanish. Therefore the matrix

) )
a(@) o gt
s T
1 n )
’l}l “ . Ul
Uli—l T Uy

has rank cg 4+ k — 1 if and only if the following minors:

0 0 0
Sh(a)y - 78%5111%1 (z) anﬁ-(@
0fes g of.
m] = awf (:C) e BZCS+51;71 ( ) 6113 v ,
'U% “ e ,UTSJF]C_I ’U‘{
’U]}; e U;S-"_k_l ,U‘]]C-

j = cs+k,...,n, vanish. Hence M; is defined locally by ¢cs +ds — k+ 1 =
n — k + 1 equations. Looking at the partial derivatives of the m;’s with respect
to the variables vi, j =cs+k,...,n, it easy to see that the gradient vectors of
the functions defining M; are linearly independent, because the above minor of size
cs + k — 1 is not zero. Hence M; is a submanifold of dimension nk + k — 1. Now
let us consider the projection 71 : My — V, (2, V) — V. Bertini-Sard’s theorem
implies that the set D, of critical values of 7; is a definable set of dimension less
than nk. Hence for all V € V\ D,,, m; * (V) is a smooth definable set of dimension
k — 1 (possibly empty). But m; ' (V) is exactly the set
{z e} | dim(T,SNP) =ds —k+1},

where V = (v1,...,v;) and P = [vy,...,v;]. Similarly we can show that the sets
M;, i > 2, are definable manifolds of dimension strictly less than nk+ k& — 1 and we

can consider the projections m; : M; — V, (z,V) — V. As above, forall V € V\ D,
where D, is the discriminant of ;, the set

{zex} | dm(T,SNP)=ds —k+i},
is a smooth definable set of dimension less or equal to &k —2. Let us denote by D the
union of the discriminants D,,. Then for all V in V\ D, £3 is a (k — 1)-dimensional
definable set, X5 is a definable subset of £%, of dimension at most k—2 and £\ %3

is smooth, where V = (vy,...,v;) and P = [v1, ..., U]
The same proof works if k = dg + 1. O

When k < dg, let ZIS;O be set of fold points of 7r1§ and when k£ = dg + 1, let
ZIS;O be the set of regular points of 7. The following lemma gives a more precise
description of ¥3.

Lemma 3.3. Let S be a stratum of X such that dg < n. If k < dg + 1 then for
almost all P € G, ZIS;O is a smooth definable set of dimension k—1 and X3 admits
the following decomposition:
5,0
E% = ZP U Zlga
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where Zg is a closed definable set of dimension strictly less than k — 1.

Proof. Let us treat first the case k < dg. We recall that z is a fold point of 7r153 if
dim(7,S N PL) = ds — k + 1 and dim(7, X% N P*) = 0. We keep the notations of
the previous lemma. Let N be the following definable set:

N:{(z,vl,...,vk)ER”x(V\ﬁ)|:c€S, dm(T,S NP =dy —k +1

and dim(7, %% N P*) > 1 where P = [vy,... ,’Uk]}.
The set N is the finite union of the sets N;, i = 1,...,k — 1, where

N; = {(x,vl,...,vk) €R"x (V\D) |z €8, dim(T,SNPY)=d, —k+1

and dim(7,%9 N PL) =i where P = [vy,... ,vk]}.

The set N; is a definable submanifold of dimension nk + k — 2. To see this, let
(x,V) be a point in M;. Since dim(7,S N P+) = ds —k+ 1, by the proof of Lemma
3.2 we can assume that around (z,V), M; is defined by the vanishing of smooth
definable functions fi,..., feq and megyk, ..., My, where f1,..., fos depend on z,

Megtk,---, My depend on x and V' and where

rank(V fi(x),...,Vfes(x),v1,...,06-1) = cs + k — 1.

Furthermore since V' ¢ D, ZISD is defined locally at x by the vanishing of fi, ..., feq
and megyr(—, V),...,mp(—, V) and the following gradient vectors:
vfla ey vfcsa vmmcs-i-k(_; V)a ey vzmn(_a V)a

are linearly independent. So we see that (z,V) belongs to N if and only if the
matrix

0 0
oL (x) S0 ()
O Ofeg
5 amf (x) 5 am: (z>
Me Me
a;:k (z> a;:k (x)
om., o,
3721 (x) aTZn (x)
vl vy
UL vy
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has rank n — 1. Since rank(V fi(z),...,V fes(z),v1,..

N. Dutertre

condition is equivalent to the fact that the matrix

0 0
L) - Fhi
Ofes Ofeg
5 amf (x) 5 am: (z)
Meg Meg+k
611+k (:L') an%k (:L')
C = . .
omy, omy,
6721 (m) 67:77, (m)
U1 vy
”11—1 VE_q

has rank n — 1.

0 9
6_»{11 (:C) Bx,{l,l (‘T)
Ofes Ofeq
6113 (SC) anfl (SC)
Ome Om X
6151% (w) axnsjlk (m)
om, Brmy
o (z) azT,l )
vi U{‘_l
' 1
’U]}:72 Vp )

As in Lemma 3.2, we can assume that the minor

S Uk—1) = ¢s + k — 1, this

does not vanish. The set N is defined locally by the vanishing of the f;’s, the m;’s
and the determinant of C. Because the above (n—1) x (n—1)-minor is not zero, we
see that the gradient vectors of the functions defining N; have rank n — k + 2 and
N is a submanifold of dimension nk 4+ k — 2. In the same way, the sets N;, i > 2,
have dimension less than nk 4+ k — 2 and N is a definable set of dimension at most
nk+k—2. Let us consider the projection p: N — V\D, (z,V) + V. Let D’ be the
union of the discriminants of the restrictions of p to the N;’s. It is a definable set of
dimension strictly less than nk. Hence for all V' € V\ (DUD’), p~!(V) is a definable
set of dimension k — 2 (possibly empty). But p~1(V) is exactly ¥3 \ (EIS;O uxs),
where V = (v1,...,v;) and P = [vy,...,v]. We take Z3 = ¥/5 Up~1(V). Tt is
closed because ¥5 is closed and p=1(V)  p~{(V)U XS,

For k = dg + 1, the statement is just a reformulation of Lemma 3.2. (I

Lemma 3.4. Let S be a stratum of X such that ds < n. If k < dg + 1 then for
almost all P € GE, A% is a definable set of dimension k — 1 (or empty).

Proof. The set AISD is definable as the projection of a definable set. Moreover
dim(A%) < dim(¥3) = k — 1. The projection wﬁmi,o : 220 5 A s a local
diffeomorphism because for all z € Ef,’o, T,.Y3 N P+ = {0}. Let x be a point in
2;30. Then there exists a neighborhood U, of x included in EIS;O on which 7T1S3‘ES,0
P
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is a diffeomorphism and so dim 73(U,) = k — 1. But 73(U,) is included in A3.
Therefore the dimension of A% is greater or equal to k — 1. g

Let D(ﬂ'lsplzs,o) be the set of double-points of ﬂ'lsplzs,o, ie.,
P P

D(ﬂ'lsglzlsj,o) = {x € ZIS;O | Jy € Ei’o with z # y and 7p(x) = Wp(y)} .

Lemma 3.5. Let S be a stratum of X such that dg < n. If k < dgs + 1 then for
almost all P € G¥, D(ﬂlsgms,o) is a definable set of dimension at most k —2 (or
P

empty).

Proof. The set D(WI“‘J;'ES,O) is clearly definable. Let us treat first the case k < dg.
P

We keep the notations of the previous lemmas. Let L be the following definable
set:

L= {(m,y,vl,...,vk) ER"xR"x (W\DUD’) | :CGZIS;O,yE EIS;O,:E;&y
and (v, z) = (vj,y) for all j € {1,...,k} where P = [vl,...,vk]}.

This set is a definable submanifold of dimension nk + k — 2. Let us explain this
assertion. As explained in Lemma 3.2, if x € ZIS;,’O then there exist smooth definable

functions f1,..., feq and megyi(—, V), ...,mu(—, V), where V = (v1,...,vg), such
that in a neighborhood of =z, ZIS;O is the set
{fl == fes :mCerk(*aV) = :mn(*vv) :O}a

and the gradient vectors of these functions are linearly independent. Furthermore,
since z is a fold point,

rank(Vfi(x),..., Vs (@), Vamegir(@, V), ..., Vamp (2, V),v1,...,05) = n.

Similarly, there exist smooth definable functions g1, ..., gcs and Mmeg4x(—,V),...,
mp(—, V) such that in a neighborhood of y, ZIS;,’O is the set
{g1 =" = ges = Mcg(—=,V) =+ =mn(=,V) =0},

and the gradient vectors of these functions are linearly independent. We also have
that

rank(Vg1(y), ..., Vaes(¥), VyMes+k (Y, V), ..., Vymn(y, V), v1, ..., 05) = n.

Therefore L is locally given by the vanishing of the functions

fla"'afcsamcs-‘rk;'"amnagla"'angamCs-‘rka"'amna
and
(1,2 —=y), ..., (g, x —y).

Let us remark that the f;’s depend on x, the m;’s on x and V/, the g;’s on y and the
m;’s on y and V. We will show that the gradient vectors of these functions have
rank 2n — k + 2. As in the proof of Lemma 3.2, we can assume that v, belongs to
[Vfi(z),...,Vfes(x),v1,...,v5-1]. Since z # y, there is j € {1,...,n} such that
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xj —y; # 0. Let us consider the following matrix J of size (2n — k+2) x (2n+1):

Vi (x) o 0
Vfog (@) 0 0
Vaemegyk(z, V) (4] *
Vomn (2, V) 0 .
0 Vg1(y) 0
J= : : : :
0 Vgeg (y) 0
0 Vymeg (¥, V) *
6 Vy ﬁln (y, V) *
vy —vp 0
V1 S 0
Uk —Vg Tj —Yj
where 0 = (0,...,0) in R™. It is a submatrix of the matrix whose lines are the
gradient vectors of the f;’s, the m;’s, the g;’s, the m;’s and the k functions (v;, z—y).
Since vy, belongs to [V fi(z), ...,V fn_as(2),v1,...,v5-1], J has the same rank as
the matrix J given by
V1 (x) o 0
Vfog (@) 0 0
Vaemegyk(z, V) (4] *
meT;(ac, V) 0 *
0 Vg1(y) 0
J= ‘ : :
0 Vgeg (y)
0 Vymeg (¥, V) X
0 Ty (y, V) .
vy —vp 0
Uk;l *Ul;fl 0
o) w T; — Y,
where w = (w1, ...,w,) is a linear combination of the —v;’s and thus belongs to

P. Let us denote the lines of J by
Fl)'"7FCS)MCS+I€7"')MH7G1)"')GCS7M63+]€)'")M’n7

and
Vla AR Vka
and show that they are linearly independent. So let us suppose that

Z%‘Fi + ZﬂjM]‘ + Z%Gi + Z5ij + Z&ivi =0.
i j i j i
Since
rank(V fi(x), ..., Ve (@), Vameork (@, V), ..., Vemy(x, V), v1,...,05-1) = n,
we see that

M= =0 = fegrk = =fa=b = = &1 =0,



Lipschitz-Killing curvatures and polar images 15

We are left with the equality
D G+ Y &M, + & Vi =0,
i J

which implies that {,w belongs to

[Vgl (y)a cet VQCS (y)v Vym65+k(y7 V)7 crt Vymn(yv V)]

But y is a fold point so dim(7},S N P1) = dg — k + 1 and dim(7,, %3 N PL) = 0.
Therefore, dim(N,S N P) = dim(N,¥3 N P) =1 and N,SNP = N,X2 N P. So
the vector {rw belongs to [Vg1(y), ..., Vges (v)], and degyr = -+ = 6, = 0. Since
x; —y; # 0, we find that § = 0 and finally that y; = -+ = 7.4 = 0. We conclude
that the gradient vectors of the functions which define L locally at (z,y,V) are
linearly independent and that L has dimension nk + k — 2. As in the previous
statements, we see that for almost all (v1,...,vg) in V\ D UD’, the set

{(x,y) ER"XR" |z € EISD’O,y € Ei’o,z £y
and 73 (z) = 75 (y) where P = [vy,... ,vk]},

has dimension at most k — 2. Therefore D(ﬂ'lsplzi,o) has dimension at most k — 2
because it is the image of this set by the projection (z,y) — x.

Let us treat the case k = dg + 1. Here we recall that EISD’O is the set of regular
point of 7r1§. Let @ be the following definable set:

Q:{(m,y,vl,...,vk)eR”anxV |ze S,yeSz#y
and (v, z) = (vj,y) for all j € {1,...,k} where P = [vl,...,vk]}.

This set is a definable submanifold of dimension nk + k — 2. The proof of this fact
is an in the previous case. Locally at a point (x,y, V), @ is given by the vanishing
of functions fi,..., fes, 91, -, ges and the functions (v1,2 —y), ..., (vg,x —y). As
before the f;’s depend only on x and the g;’s only on y. It is not difficult to see that
the gradient vectors of these functions are linearly independent because x —y # 0.
Therefore for almost all V' in V), the set

{(m,y) €S xS |x#yand m5(z) = 75 (y) where P = [vy, ... ,vk]},
has dimension at most £ — 2 and so has D(wg‘zs,o). (]
P

Remark 3.6. As noticed to the author by Terry Gaffney, we can also use Mather’s
technology of modular submanifolds to prove the above lemma. Double points of
fold singularities form a contact class and a Thom-Boardmann manifold. Hence by
[22], pages 233 and 234, they form a modular submanifold. Therefore by Theorem
1 in [22], for almost all P € G*, 7% is transverse with respect to this submodular

manifold. Our proof avoids the notions of modular manifolds and contact classes
and enables us to stay in the definable setting.

For each stratum S and each P € GF, k < dg+1, let Z%lim be the following set:

Ezsv,lim = {2 € S\S | I(@m)men in S such that z,, — z,T,,, S — T

Tm

and dim(T N PH) >dg —k+1}.
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Proposition 3.7. Let S be a stratum of X. If k < dg + 1 then for almost all
PeGrk, E%lim is a definable set of dimension at most k — 2 (or empty).

Proof. We treat first the case dg < n and k < dg. In Lemma 3.2, we proved that
the following definable set M:

M:{(z,vl,...,vk)ER”xV |z €S and dim (1,8 N PY) >dy — k+1
where P = [vl,...,vk]}.

had dimension nk + k — 1.

If x € Z%hm then there exists a sequence (Zp,)men in S such that z,, — z,
Ty, — T and dim(T' N P+) > ds — k + 1. This implies that there exists a sequence
(P)men in G¥ such that P,, — P and dim(T,,,S N Pt) > ds — k + 1, because we
can find a subspace L., in T, S such that L,, — TNPL. Conversely if T, S—T,
P,, — P and dim(7T}, SNP) > ds—k+1 then dim(TNPL) > ds—k+1. Therefore
T € Elsg,lim if and only if (z,vy,...,vx) € M\ M where P = [v1,...,vs].

The set M \ M is definable of dimension nk + k — 2. We can conclude that for
almost all V = (vy,...,vx) in V, 7= 1(V) N M \ M has dimension at most k — 2,
where 7 is the projection (z,V) +— V.

If ds <n and k = dg + 1 then ZIS;, lim 1S just S\ S, which has dimension at most
ds —1=Fk—2. ’

If ds = n, the result is obvious because E%lim is empty. O

Let us fix now a stratum S such that dg < n and consider the strata that contain
S in their frontier. We denote them by Si,...,S,. Note that for i = 1,...,7,
Z%lim NS C X% by Whitney condition (a) (see the proof of Lemma 2.1). Applying
the previous results, we see that for almost all P € GE, the set Tjg defined by

r Si
T8 =z3 D(n3550) U, 2250 NS,
is a closed definable set of dimension at most k — 2.
From now on, we fix such a generic P in G¥, k =1,...,ds + 1. Let y be a point
in A2\ (73(T5) U Sing(A%)). Since y does not belong to W(D(WIS,‘EISD,U)), there is
a unique z in

S0\ |/ -S r S;
DN {D(W%zg(’)u (U1 2P im) N S} ;

such that 73(x) = y. Let u be a unit vector in P not belonging to T,A%. Let
Qu = Pt ®wu and let Q,, be the affine space through z parallel to Q.. Since
meg @ P+ has dimension n — 1 and u does not belong to this vector space, Qq «
intersects ZISD and S transversally at x.

Lemma 3.8. For any unit vector u in P\ TyAg, the point x is a non-degenerate
critical point of “I*Qu,ms' Furthermore if v is the unit normal vector to A% at y in
P such that (u,v) >0, then urQu,mﬂS and V\*Qu,mﬁs have the same tangential Morse
indez.

Proof. Let us treat first the case k < dg. It is clear that x is a critical point of
UTQI s because (P+®u)NT,S = PANT,S. We keep the notations of the previous

proofs. For simplicity, we assume that y = 0 in P.
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Note that v is a normal vector to S at = because TS = T, X3 @ (TS N PL).

Let (v1,...,vk—1) be an orthonormal basis of TyAISD such that (v,v1,...,v5-1) is a
positive orthonormal basis of P. Then (), , NS is the manifold
(fiz= = foo =0l = =0v_, =0},

in a neighborhood of . We can assume that the following minor:

. oy, ...,vi_1, f1,. -+, fes)

m = 5
8(1'1, vy T—1,Tky - - - 7$Cs+k71)

does not vanish at z. Therefore x is a critical point of VI*Q» ng if and only if the
following minors:

v a(y*avfa'"7UZ_1afla"'7fCS)

m; = ’

I a(-rla'"axk—lawka"wxcs-‘rk—lawj)
j =cs+k,...,n, vanish at z. But as explained in the previous lemmas, ZISD is
the set {f1 = -+ = feg = m{ ,, = -~ = mj, = 0} in a neighborhood of x. Since
{vi =---=0v;_, =0} intersects % transversally at z, the following n x n minor:

a(vra s 7’01:—15f17 .. '7fcsamzs+k7 e 5m;/z)

6(951,...,3:”) ’

does not vanish at 2. By the computations of Szafraniec ([28], pages 248-250), this
exactly means that I/‘*QU .nS has a Morse critical point. Moreover the tangential
index of V\*QV g at z is the sign of

(_1)(cs+k—1)(ds—k+1) (m” (x))ds+k+2 %

a(vra"'7UZ_1afla"'afcsamzs+ka"' ,mZ)(ZC)
a(xla"'azn) -
Let (w1, ...,wk—1) be an orthonormal basis of u* such that (u,ws,...,wk_1) is a

positive orthonormal basis of P. There exists a positive orthogonal k£ x k matrix
A = (a;;) such that

U =anV+---+ a1gVe—1

Wg—1 = A1V + - - - + QppVk—1,
where a7 > 0. Then @, NS is the manifold
{fi=r=fos=uwf = =wj_, =0},
in a neighborhood of . Let m" be the following minor:

“ (9(1[}1{,...,’LUZ_pfl;-"afCS)
m =

O(T1y oy Tl 1y They ey Tegik—1)
Since v belongs to [V f1(z),..., Vfes(2)] and A is orthogonal, it is not difficult to
see that m“(z) = a;ym”(z) and thus does not vanish. For j = ¢s + k,...,n, let
mj be the following minor:
mt = a(u*awfv"'awzflvflv"'vfcs)

J a(zlv"'7$k717xk5'"azCs+k717xj)



18 N. Dutertre

Since A is orthogonal, m} is equal to m? and since v belongs to [V f1 (), ..., V fes(2)],
O(WT, Wiy, [y fess Mg g ,mg)(x) _
6(951,...,3:”)
a a(’UTa'"avzflafla'"7fCS’mZS+ka"' ’m'lrlz)(x)
11 -
Oz, ..., xn)

We can conclude that u‘*Qu .ns has a Morse critical point at z and that the two
functions have the same tangential Morse index because a1 > 0.
The case k = dg + 1 is easy because in this situation,

Qu,z ns = Qu,m nsS = {ZC},

in a neighborhood of = and the tangential Morse index is 1. (I

By Whitney condition (a), @, . intersects also the strata that contains z in
their frontier transversally in a neighborhood of  and hence, @, , N X is Whitney
stratified around z.

Lemma 3.9. For any unit vector u in P\T,A%, the function “rQu,xﬂX is a stratified
Morse function in a neighborhood of x, with a critical point at x.

Proof. We already know that uI*Qu A5 has a Morse critical point at . The fact that

x does not belong to U;ZlEIS;'hm implies that P1 intersects the strata Si,...,S,

transversally in a neighborhood of x. Since @), . is also transverse to these strata
around , urQu,mX has no critical point on these strata.

Let us check now that u is not perpendicular to any limit tangent space at x
in Qu N X. If it is not the case then there is a sequence of points (%, )men in a
stratum S; such that z,, = x, and T3, 5; tends to T" where T satisfies the following
condition: u L (T'N Q) in Qu . This implies that TN P+ =T N Q.. and that
dim(T N Pt) > ds, — k + 1, which contradicts the fact that z is not in Ef,flim. O

Lemma 3.10. Let u be a unit vector in P\ T,A} and let v be the unit normal
vector to AISD at y in P such that (u,v) > 0, then urQu,mﬁX and V\*Qu,mﬂX have the
same stratified Morse index.

Proof. Let us study the behavior of 75 : X — P in the neighborhood of x. Since
P is transverse to the strata S, ..., S, in a neighborhood of & and since ng‘zs,o
P

is a local diffeomorphism, we see that m5'(y) intersects X \ {x} transversally in
a neighborhood of x. By the Curve Selection Lemma applied to the stratified
space 5" (y) N X, the function w, is a submersion on 75'(y) N X \ {=}, where
we(2) = ||z — x||?. Hence, for € > 0 small enough so that S.(z) is transverse to X
in the stratified sense, there exists a small neighborhood U, of y in P such that for
all y/ in Ue, 75" (y) is transverse to X N Sc(z) by Lemma 2.2.

Now in a neighborhood of y, the discriminant of 75 is exactly A%, so by the
Thom-Mather lemma and shrinking U, if necessary, we can say that if y; and ys lie
in the same component of U\ A% then 75" (y1)N X NB.(2) and 75" (y2) N X N B (x)
are homeomorphic and y(7p'(y1) N X N Be(z)) = x(75" (y2) N X N B(x)). The
Morse index of urQu,mmX at x is

1= x(QuazNXN{u* =u(z) — 8§} N Be(x)),
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where 0 < ¢’ < ¢’ < 1, that is
1—x(7p" (y — 6'u) N X N Bu(x)).
Similarly the Morse index of VF‘QV,IQ x at x is
1—x(rp"(y — 6”v) N X N B (2)),
where 0 < §” < €” < 1. We can choose € small enough so that the Morse index of
urQu,mﬁX at x is
1—x(rp(y — 6'u) N X N B(x)).
where 0 < §' < ¢ and y — §'u € U, \ A%, and the Morse index of Vl*Qu,mX at x is

1= X(mp'(y = 0"v) N X N Be(x)),

where 0 < 6" < e and y — 6"v € U, \ A%. But, if ' and §” are small enough, then
y — 8'u and y — 6”v lie in the same component of U, \ A%, since (u,v) > 0. O

Corollary 3.11. Let u be a unit vector in P\ T,A% and let v be the unit normal
vector to T,A% in P such that (u,v) > 0, then uI*Qu,mﬂX and VI*Qu,mﬂX have the
same normal Morse index at x.

Proof. Combine Lemma 3.8, Lemma 3.10 and the results of Subsection 2.2. O

Definition 3.12. For P generic in the sense of Lemmas 3.2, 3.3, 3.5 and Proposition
3.7 and for y € A3\ (73(T5) N Sing(A%)), we define

1
a(ms,y) = 3 (ind(u*, XNQuy,x)+ind(—v*, XN Qy7z,x)),

where v is a unit normal vector to T, A% and y = 73 (z).

Note that by Lemma 3.10, if u is a unit vector in P\ T, A%, then
1
a(rp,y) = 3 (ind(u*,X NQuz,x) +ind(—u*, X N Qu.q, z))

Lemma 3.13. There exists a closed definable set TI’DS C 2153 of dimension less or
equal to k — 2 such that for x in X3\ (T3 UT}), there exists a neighborhood U, of
zin 3\ (TS UTE) such that a(nd, w3 (x)) = a(rp, w3 (")) for all 2’ € U,.

Proof. Let d : R® — R be the distance function to ¥%. It is a continuous definable
function and moreover there exists an open definable neighborhood U of ¥3 \ T3
such that d is smooth on U \ (Y3 \ T5). By the Curve Selection Lemma, we can
also assume that d is a (stratified) submersion on X N U \ (23 \ T5)].

Let x be a point in % \ 75 and let v be a unit normal vector to A% at y
in P where 73(x) = y. Since z is an isolated point in @, N £3, the function

dq,., : Qv — Ris a distance function to x and therefore

ind(v*, X N Quz2) =1 —x (75 (y — )N X Nd*([0,¢]))
where 0 < § < € < 1. As explained in Lemma 3.10, there exists a neighborhood
W of y in P such that for all y; € W\ A3, wgl(yl) intersects X transversally
in a neighborhood of z. Moreover there exists €, > 0 and a neighborhood 2 of z
in ¥% \ 7% such that for all z in Q, 75" (7p(2)) intersects X \ {z} transversally

in {0 < d < e,}. If it is not the case, we can find a sequence of points (2 )men
in ¥ \ T8 that tends to = and a sequence of non-negative real numbers (€, )men
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that tends to 0 such that 75" (7p (2 )) does not intersect X \ {z,,} transversally in
{0 < d < €,,}. This implies that = belongs to UleEIS;jlim, which is excluded.

As in Lemma 3.10, there exists €/, > 0 such that for 0 < e < ¢/, W;l(y) intersects
X Nd~1(e) transversally. We are going to explain that for x generic, we can choose
€', uniformly in a neighborhood of z. Let us consider the mapping

(d,78) + (XNU)\ZF — Rx P
x = (d(@), ™ (x)),
where ¥¥ is the union of the Eg’s, for S’ a stratum of X. Let us call D its

discriminant. It is a definable set of dimension at most k. In R x P, let w5 be the

projection (r,y) ~— y. For y' in A3\ 73(T5), 75 '(y') N D is included in the set

{(r, y') | r critical value of dlﬂ,gl(y/)m[(Xmu)\Zg]} ,

and so 75 *(y') N D has dimension zero. Therefore the set 75 (A% \ 75(T5)) N D
has dimension at most k — 1 and the set

K§ = (AR \75(T) ND N (A \ 75(TF)),

has dimension at most k — 2. Let us set T = (73)~1(K32). Since ﬁlsglzlsa\Tg is a
local diffeomorphism, dim(7%) < k — 2.

Now we suppose that z belongs to 3\ (T3 UT}). Then there exist a neighbor-
hood ' C Q of x in 22\ (TEUTY) and 0 < €, < ¢, such that for 0 < € < ¢/, and 2 €
Q, w5 (mp(2)) intersects X Nd~!(e) transversally. If it is not the case, we can find
a sequence of points (2, )men in © that tends to 2 and a sequence of non-negative
real numbers (€,,)men that tends to 0 such that W;l(ﬂp(zm)) does not intersect
X Nd~(ey) transversally. But (e,,, T, (2m)) belongs to 75 ' (A% \73(T5))ND and
so y = 75 (z) belongs to K3, which is excluded.

Let €7 be an open neighborhood of  such that 7 C . Then for all 0 < ¢ < €/,
there exists . > 0 such that for z € Q" and 0 < § < &, 75" (7p(2) — 6v(2))
intersects X N d~!(e) transversally, where v(z) is the unit normal vector to A%
at mp(z) in P that lies in the same component as v. If it is not true, then we
can find € with 0 < € < €, a sequence of points (2, )men in Q7 that tends to z
and a sequence of non-negative real numbers (d,,)men that tends to 0 such that
7 (7P (2m) —OmV(2m)) does not intersect X Nd~' (¢) transversally. But 75 (7p(2))
intersects X N d~!(e) transversally and so for w in a neighborhood of mp(z) in P,
7pt (w) intersects X Nd~'(¢) transversally by Lemma 2.2.

We take U, = Q" N7wp' (W) N X3 and conclude using the Thom-Mather isotopy
lemma as in Lemma 3.10. g

Remark 3.14. We have proved that the index ind(v*, X N Q, ., x) was locally
constant. But since the tangential index indys (v*, X N Q. 4, x) is locally constant,
the normal index indye, (v, X N Q, ., ) is locally constant along %3 \ (T8 U T}p)
as well.

Lemma 3.15. There exists a closed definable set W5 C A_ISQ with dim(W35) < k—1
such that AR \W3 is smooth of dimension k—1 and such that the following function
my— a(ﬁlsg, y) is defined and constant on each connected component of AISD \ Wg.

Proof. Let

W = Sing(AF) Uns (T8 UTP) Uy (Fr(55)).
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By the previous results, ng is a definable set of dimension strictly less than k& — 1.
Moreover, W5 is a closed set in P, hence A% \ W5 is an open set in A%. The set
A%\ W5 is a smooth (k — 1)-dimensional manifold for Sing(A%) C W5 and the
function of the statement is well-defined because 75 (T5) U Sing(A%) C W5.

Let y be a point in A%\ W5 and let « be the point in 3\ (T3 UT%) such that
73(z) = y. We can choose an open neighborhood U, C £2 \ (T UT}) such that
7TI§|UI is a diffeomorphism and such that

a(np,y) = a(rp, 75 (a")),
for each 2’ in U, by Lemma 3.13. Let V C U, be a smaller open neighborhood of
zin 3\ (T3 UTY). Let A be the following set:

A=35\ V.

It is a compact subset of E_ISD, hence 73 (A) is compact in A_ISD. The point y does

not belong to m3(A) because y does not belong neither to 73 (Fr(X3)) nor to

m5(T8 UTy). Hence there exists an open neighborhood U of y in A% which does
not intersect 75 (A). The function y’ — a(m3,y’) is constant on U’ = UN(AZ\W5).
Note that (73)~1(U’) is included U,. O

Let U be an open subset of X. Recall that A" = 73(28W) = 73(2% N U).
Lemma 3.16. The set A"V \ W5 is an open subset of A3\ W5.

Proof. The inclusion is clear. Now let y be a point in A2V \ W§5. There exists a
unique point z in (X3 NU)\ (T3 UT,) such that 73 (z) = y. We can find a small
open neighborhood U, of # in ¥3 such that U, is included in (X3 NU)\ (TSUTH).
As above, there is an open neighborhood U’ of y in A%\ W3 such that (73)~(U’)
is included in U,. [l

Definition 3.17. Let U be an open subset of X and let S be a stratum of X. If
ds < n, for each ¢ € {0,...,ds} and for P € G4*! generic in the sense of Lemmas
3.2, 3.3, 3.5 and Proposition 3.7, we set

mso(PU) = [ aln )y,
A}ZHU
We define
Blg+1,n)gi™
For ds < ¢ <mn, we set L,(X,S,U) =0.
If dg =n, weset Ly(X,S,U) =01if ¢ <n and L,(X,S,U) =vol(SNU).

Ly(X,S,U) = /G ., msq(P.U)dP.

We note that mg (P, U) is well-defined because the definable set W3 has dimen-
sion at most k — 2 and the index a(73, y) is defined for y in A"V \WE C AZ\W5.

We are in position to define the polar lengths (or polar measures) of a definable
stratified set.

Definition 3.18. Let X C R™ be a compact definable set equipped with a finite
definable stratification X = U,caS,. Let U be an open subset of X. For each
q€{0,...,n}, we set
Ly(X,U) =Y Ly(X, S84, U).
a€A
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First we remark that Lo(X,U) = Ao(X,U) since

1 1/, N . ”
Ly(X,U) = E/G}l <Z §(md(v , X, x) +ind(—v ,X,x))) dL,

reX

where v is a unit vector such that L = [v]. This can be rewritten

Lo(X,U) = L /snl (Z %(ind(v*,X,x)Jrind(v*,X,z))) dv.

Sp—1 zeX

The right-hand side of this equality coincides with the right-hand side of the equality
of Proposition 2.6.
The polar lengths satisfy the linear kinematic formula.

Proposition 3.19. For g € {0,...,n}, we have
Lq(X,U):cst/ Lo(XNL,XNLNU)dL.
An—1

Proof. We assume first that dx < n. If ¢ > dx then the result is clear because
almost all L in A]'~? does not intersect X. Let us fix ¢ < dx. We have

LyX,U)= > Ly(X,S.,U),
a | ds,>q
Let us a fix a stratum S such that dg > q. We have

B(1 n—q / /
L,(X,SU 7r ,y)dydP.
ol ) = 5((14'1 )9 N Psy)dy

It is clear that

(TrPa )dy 7/ O‘(ﬂ-ls;vy>dy-
A}S‘;ﬂU A}SDHU\WISQ

Let us decompose A% \ Wg into the finite union of its connected components, i.e.
AZ\WE = UYjP’S. For each j, let us denote by )\;’,S the value of a (73, ) on YjP’S.
We can write

P,S P,S

/ a3, y)dy = Z A vol(Y7 n AR,
A}SDQU ]
The Cauchy-Crofton formula [10] in P gives
vol(YjP’S NASNYY = cst Py #(YjP,S N ASY A ),
P

and so

L,(X,5,U)= cst/

qatt

P,S snU
E NAY P.
/A1 Aj° NHdl| d

Let [ be a generic line in AL which intersects the YPS’

not meet W5. Let us write (U]Yj ) Nnl={y,... ,yt}. Then the affine space L,

defined by L = P+ @ intersects S transversally. To see this, let 2 be a point in
SNL. Ifx ¢ U _ 1(7TP|ES) L(yy) then P~ intersects S transversally at = and so L

s transversally and does

intersects S transversally at z. If x € Uzzl(ﬁlsglzg)’l(yk) then P+ @[ is exactly
the affine space @, where u is a unit vector in the direction of I. Furthermore
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the set U};:l(ﬂfp‘zg)_l(yk) is exactly the set of critical points of v* : SN L — R.
Let us denote by Fg the set of these critical points lying in SN U. We get
P,S ]
MNP AP0l = > a(rd, wh(@),
J zel'y

and

Ly(X,8,U) = cst / / > a(xd, wi(x))dldP.
Gt Ap z€l's
U
Let F be the flag variety of pairs (P,1), P € GZ and | € AL. The mapping
(P,1) v (L,1), where L = P+ @1, enables us to identify F with the flag variety of
pairs (L,1), where L € A"~ and | € G}. Therefore we can write

Ly(X,8,U) = cst / / > a(rd, mi(x))dl | dL,
Ar—e \Jai

s
zel'y

where u is a unit vector vector in [ and P = L+ @ 1. But for almost all v unit vector
in L, uy; is a Morse function (see [5], Lemma 3.5), and by Lemma 3.10,

1
a(rp, w3 (x)) = 3 (ind(u*, XNL,z)+ind(—u*, X N L, x))
Hence by the definition of Ly, we can conclude that

Ly(X,S,U) = cst/ Lo(XNL,SNL,XNLNU)L,
An—1

and so

L(X,U)= > cst/ Lo(XNL,S.NL,XNLNU)IL =

cstZ/ LoXNL,S,NL,XNLNU)dL,
because if dg, < ¢ then generically L does not meet S,. Finally we can write
Ly(X,U) =cst /Aniq Lo(XNL,XNLNU)dL.
If dx = n then for g < n '
L(X,U)= Y Ly(X,S.U)=

a | ds,<n
sty / LoXNL,S.NL,XNLNU)dL.
a | ds,<n AnTe

But if S is a stratum of dimension n then Lo(X NL,SNL, XN LNU) = 0 because
SN LNVU is an open subset of the affine space L, on which any «* has no critical
point. Furthermore

LX,U)= > LuJX,5U)= Y vol(SanU)=

a | ds,=n a | ds,=n

> /SmUdz: > /RnLO(Xﬂ{z},Saﬁ{x},Xﬂ{z}ﬁU)d:c.

a | ds,=n a | ds,=n
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[l

Theorem 3.20. For g € {0,...,n}, Ly(X,U) = Ay(X,U). The polar lengths
L,(X,U) do not depend on the stratification of X.

Proof. First let us recall that Lo(X,U) = Ag(X,U). By the linear kinematic for-
mula for A, (see Proposition 2.7) and the previous proposition, we see that L, and
A4 are proportional. Let us prove that they coincide on g-dimensional smooth sets.
It is true by definition for n-dimensional smooth sets. Let S be a smooth compact
definable manifold of dimension ¢ < n and let U be an open subset of S. By the
Cauchy-Crofton formula [10], we have

vol(SNU) = m/ﬁ [/H (#rSnv) ™! (z)dz} dH,

1 . .
- W/Gq UH 91—/@ (#rgnv) ™ (z)dldz] dH.
B n 4 n—gq "

Let P € G¢t! such that H C P and let 7} be the orthogonal projection on H
restricted to P. We have WI*?PU =78 o737V and so

and

vol(SNU)

#(ri )7 =) = # @) T () TR}
#(ry ) Hz) = > #(r2") ).

ye(nh)~1(z)nAZY

Writing P = H @1, where [ € GHL, we can identify the flag variety of pairs (P, H),
P € Git' and H € GY%, with the flag variety (H,1), H € G4 and | € G},
Therefore, we can write

vol(SNU) = / " / ) / #(r2"Y) L (y)dzd HdP.
q7 gngn q JGE G ye(r H) 1( )ﬂASmU

Now we know that for P generic in GZ*1, there is a definable set W3 of dimension
strictly less than ¢ such that #(73)~!(y) is equal to 1 on A3 \ W5. Therefore we

have
Z #(T‘_E‘ZHU) #{ 7TH )ﬂ ASHU}

ye(nf) ~t(2)NAZNY
Applying the Cauchy-Crofton formula to compute vol(AZ"Y), we find that
.q+1)gg
vol(§ NU) = ﬂ(qq—mlq“ / vol(ASNY)aP,
6((]; n)g'rlzgnfq Gatt
which we can rewrite

1 _
ﬁ(qﬁgr+n/gq+l /ASmU a(mp,y)dydP = Ly(S,U),

because here a(73,y) = 1. O

vol(SNU) =
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Let us remark that this last equality can be stated in a nicer way. Let X C R"
be a compact definable set and let U C X be an open subset. If dx < mn — 1 then

ﬂ(l, n — dx)
B(dx +1,n)gpx

Of course, this equality is trivial if dx =n — 1.

vol(X NU) = / . vol(rp (X NU))dP.
gaxti

4. LiMmITS OF LIPSCHITZ-KILLING CURVATURES AND DENSITY OF POLAR IMAGES

In this section, we give formulas which can be viewed as infinitesimal versions of
the formulas established in the previous section.

Let (X,0) C (R",0) be the germ at the origin of a closed definable set. We
assume that X is equipped with a finite definable stratification {S,}!_,, where So
is the stratum that contains 0 and 0 belongs to the frontier of each S,, a =1,...,t.

As in the previous section, for every stratum S of X, ZISD will denote the polar
variety of 73, where P € Gk k = 1,...,n. As explained in [7], the projection of
a definable germ does not define necessarily a germ. But, generically, it defines a
definable germ thanks to the following proposition.

Proposition 4.1. Let k € {1,...,n}. For almost all P € GZ, there exists an open
neighborhood U of 0 in R™ such that

(UNTENPHY\ {0} =0.
Proof. See [7], Proposition 2.2. O

Corollary 4.2. Let (X,0) C (R™,0) be the germ of a closed definable set. Let
k€ {1,...,n}. Then for almost all P € G¥, there exits ep > 0 such that for all
€ €]0,ep], there exists n. > 0 such that

Bl N3 (XN B =B} n7g(XNBe,),

where Bf; is the ball of radius n. centered at the origin in P. In other words, a
generic projection of the germ (X,0) defines a germ at the origin in P.

Proof. See [7], Proposition 2.3. O

Corollary 4.3. Let S be a stratum of X. Then for almost all P € G* | there erists
ep > 0 such that for all € €]0,ep], there exists ne such that

BP nn¥(2%nB) =B nrf (5N B.,.),

and
Bl nap (Fr($2 N B.)) = BY Nap (Fr(S2 N Bey)).

Proof. See [7], Proposition 2.4. O

For each stratum S of X and for P generic in GE, k = 1,...,ds + 1, we recall
that T3 is the following closed definable subset of X% of dimension at most k — 2:

1§ = 2 Drimge) U (U 0 S.

where the strata S; contain S in their frontier, and that T is the closed definable
subset of ¥% of dimension at most k— 2 defined in Lemma 3.13. As above, we have:
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Corollary 4.4. Let S be a stratum of X and let k € {1,...,ds + 1}. Then for
almost all P € G%, there exists ep > 0 such that for all € €]0,¢p], there exists 1.
such that

B nag(T§ Ty NBY) =By Nap (T§ UTE NBL).
For € > 0, let us denote by AIS;E the definable set 73 (Z_ISD N B). By the results

of Section 2, generically, Ai’e is a definable subset of P of dimension k — 1. Let
Wg’e be the following closed definable set:

Wi = Sing(AZ) Unf((T§ UTF) N Br) Und (Fr(SF N Br)).

As in Section 3, Wg’e is a closed definable set included in Ai’e of dimension k — 2.
Let us consider the connected components of AIS’;C \ Wlf’e that contain 0 in their

closure. We denote them by Ylp,s,e, ..., Y PSe As in Section 2, on each YjP’S’6
s

the function y — a(73,y) is constant. Furthermore, since by Corollaries 4.3 and
4.4 the sets AISD’E and Wlf’e define germs, the sets Ylp,s,e, ..., Y P:5¢ define germs as
well.

From now on, we will denote by A% the germ defined by the A%s and for
jed{l,....rps}, by YjP’S the germ defined by the YjP’S’e’s. To each YJ-P’S7 we can
associate the following integer

S,€5
P

P,S . . s
A7 =1lim lim o .
J c50 w0 ( va)
erjP’S

This integer does not depend on € nor on y, provided they are small enough. We
are now in position to define the localizations of the polar lengths.

Definition 4.5. Let S be a stratum of X such that 0 € S. If dg < n then for each
q€{0,...,ds}, we set

1 TP,S

LY¥°(X,8,0) = ﬁ/@m D AT 0,(Y,0) | dP.

g j=1

For q > dg, we set L}ZOC(X, S,0) = 0.
If dg = n then we set L}IOC(X, S,0) =0 for ¢ < n and L°¢(X, S,0) = 0,(S,0).

Definition 4.6. Let (X,0) be the germ of a closed definable set and let {S,}%_,
be a definable stratification of X such that 0 € S, for a € {0,...,t}. For each
q€{0,...,n}, we set

t
LPe(X,0) = > L°(X, S,,0).
a=0

The following theorem relates the limits lim._,g %

It can be viewed as an infinitesimal version of Theorem 3.20.

to the polar lengths.

Theorem 4.7. Let (X,0) C (R™,0) be the germ of a closed definable set. For
k€ {0,...,n}, we have

Ap(X, X N B,

lim Ae(X, X 0 Be)

_ 71loc
fim =S = (X, 0),
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Proof. Let us assume first that dx < n. If &k > dx then the result is obvious by the
definitions of the A.’s and leoc’s. Let us fix k < dx. In this case,

Lpe(X,0)= > Lp°(X,S,0).
a | ds,>k

Let us fix a stratum S such that dg > k. We know that

TP,S

1
1 P,S P,S
BRGS0 = /m DN 0k(Y0,0)| ap.

n j=1

We apply the Cauchy-Crofton formula for the density due to Comte [6]. Actually we
will use here a bit different version of this formula, namely we will apply Theorem
2.8.
For P € GE*L let L € G} and L1 be the orthogonal complement of L in P.
For each v in Sp.p and each § > 0, let Ls, be the affine line L + dv. We set
Boj(L,v) = lim lim #Ls, N Y;"* N BY.

e—06—0

By this theorem, we know that

1 1
Ox(Y;"%,0) = ~ / /
Ji+1 JGL \ Sk—1 Js

In fact, Theorem 2.8 is proved in [9] for germs of closed sets. But, it holds also here

because @k(YjP’S,O) = @k(YjP’S,O) and generically #Ls, N Fr(YjP’S) = 0. Then
we find

1 1 1
L*(X,8,0) = o= / T / I%(P, L,v)dvdLdP,
9n G Oky1 JGYL, Sk—=1Js, p

ﬁO,j (L, ’l))d’l)) dL.

Ltp

where I9(P, L,v) = Z;;S )\f’sﬂoﬁj(L,v). Since the flag variety of pairs (P, L),
P € GF*! and L € G, is isomorphic to the flag variety of pairs (H, L), H € G?~*
and L € G, by the mapping (P, L) — (H, L) where H = P @ L, we can write

1 1
LP°(X, S,0) = 7/ / /
g ab iy Janr sk-1 Js, 0 \Ja

because H+ = L*F, and where I°(H, L,v) = I°(P,L,v). As in the global case,
we see that the integer I°(H, L, v) admits the following description:

IS (H, L,v)dH) dvdP,

1
H

I°(H,L,v) = lim li 3 2
( ) ,’U) 65% 61_I>r(1) — O‘(WP’WP(‘T))’
TE e

where 0 < || < € < 1 and 1"65,€ is the set of critical points of u* : SﬂH@JTBZ — R,
u being a unit vector of the line L.

Let us choose a sequence (€n,)men such that lim,, 4 €, = 0 and for each
m € N, a sequence and (J,")pen such that lim,, 1 6;" = 0. By [5] Lemma 3.5, for

almost all L in G, is a Morse function. Since a countable union

u*
‘XﬁHg;)n,UﬂBEm
of sets of measure zero has measure zero, for almost all L in G}, the function
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* : : 2
U'xrHy, ., 1S a Morse function for every (m,p) € N2, Hence by Lemma 3.10,
m wNBep,

for every € 'y, ., we have
4

1
a(ms, 5 (x)) = 3 (ind(u*,X N Hsm v, o) + ind(—u”, X N H§gL7v7:C)) .

Therefore we find that

/ I°(H,L,v)dL =
Gl
1
/ lim lim Z = (ind(u*,X N Hsm 4, x) + ind(—u*, X N Hgmﬁu,l')) dL =
G 2 P P

1 m—-+4o00 p—oo
H S

ST em

g’rll—k 11mm_,+oo hmp_mo AO(X N Hé;n”u, SN Hé;n,,v n Bem)

Summing over all the strata S, such that dg, > k leads to

1
L]kOC(X, O) = ]ngrlliik/ lim lim AO(XOH(;m’,U, XﬂHémﬂjﬂBem)dvdH =
gn gk+15k71 SHL m—+00 p— o0 P P
1 1 L.
— lim lim Ao(X N Hs,, X N Hs, N Be)dvdH.
g;’ll Gr—F Sk—1 Sy e—05—0

Theorem 2.8 implies that
A (X, X N B,
LI°(X,0) = lim A(X, X0 Be)
e—0 bkfk
If dx = n and k < n then the proof works in the same way because the strata of

dimension n have no contribution. If k¥ = n then the formula is obvious because
both expressions are equal to the density of (X,0). O

Applying Theorem 2.9, we obtain the following relation between the polar in-
variants and the L¢(X,0)’s.

Corollary 4.8. Let (X,0) be the germ of a closed definable set. Fork € {0,...,n—
1}, we have

ok(X,0) — op41(X,0) = LI°(X,0).
Furthermore, we have

0n(X,0) = L°¢(X,0).

[l
Let us refine the above results. By Definitions 4.5 and 4.6, we know that
L¢(X,0) = 0 for k > dx. Furthermore, it is explained in [7] that for k €
{1,...,ds,} and P generic in G¥, the projection 75 is a submersion in a neighbor-
hood of 0. Hence, generically the polar varieties and the polar images are empty
near the origin and so Li°°(X,0) =0 for k € {0,...,ds, — 1}. Let us focus now on
the localized polar length leosco (X,0). If dg > ds,, then generically Fr(A%3) has di-
mension dg, — 1 and 0 is not in the closure of A%, so Lbosco (X, S,0) = 0. Combining
this with Definition 4.6 and Corollary 4.8, we find that

L};SCO (X,80,0) =1 —04g,41(X,0),

because o4z, (X,0) =1 (see [7], Remarque 2.9).
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If ds, < k < d then Sy has no contribution in the computation of L°¢(X,0)
and so LI¢(X,0) = Ztazl L¢(X,S,,0). Similarly the strata of dimension strictly
less than dx have no contribution in the computation of leo)? (X,0) = 04, (X,0).

Moreover, if S is a stratum of dimension dx, the indices )\;’,S that appear in the

definition of L}i"; (X, 0) are generically equal to 1. Therefore we can restate Corollary
4.8.

Corollary 4.9. Let (X,0) be the germ of a closed definable set, equipped with a
finite definable Whitney stratification { S, },_, where Sy is the stratum that contains
0 and 0 belongs to the frontier of each Sy, a =1,...,t. We have

Lgs (X,0) = LS (X, 50,0) = 1 — 045, +1(X, 0).

For ds, < k < dx, we have

t
01(X,0) = 0341 (X,0) = > LP°(X, S, 0).

a=1
Furthermore if dx < n, then we have

1
Oux (X,0) = LE(X,0) = i /G ) O (wE (X), 0)dP.

Of course, this last equality is trivial if dx =n — 1.

In [18], Theorem 6.1.9 and [19], Theorem 4.1.1, Lé and Teissier proved a relation
between the vanishing Euler characteristics and the multiplicities of the polar va-
rieties of a complex analytic germ. More precisely, if (X,0) C (C™,0) is a complex
analytic germ, they showed that the difference of two consecutive vanishing FEuler
characteristics of X at 0 is equal to a weighted sum of polar multiplicities, the sum
been taken over the strata that contain O in their frontier. Let us describe the
weights that appear in this sum. If Sy denotes the stratum that contains 0 and S,
is a stratum such that 0 € Fr(S,,), then the weight attached to S, is

(—1)%sa=50= 1 (1 — x(LK®(X, Sa)),

where Lk“(X, S,) is the complex link of the stratum S, in X (see for instance
[13], II 2.2, for the definition of the complex link). The first term of this product
is actually a complex tangential Morse index and the second term is a complex
normal Morse index. In the equalities
t
0r(X,0) — op41(X,0) = ZL}COC(X, Sa,0), ds, < k < dx,

a=1

the weights )\;’,S are half-sums of two stratified Morse indices, which are also de-
composed into the product of a tangential Morse index and a normal Morse index.
Therefore, and since the polar invariants are real versions of the vanishing Euler
characteristics, we can view the equalities
t
0r(X,0) — op41(X,0) = ZL}COC(X, Sa,0), ds, < k < dx,
a=1

as real versions of Lé and Teissier’s results.

In [7], Theorems 4.9 and 4.10, Comte and Merle showed that the polar invariants
were continuous along the strata of a (w)-stratification of a closed subanalytic set.
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Recently, Nguyen and Valette [25] extended this result for a (b)-stratification and
for a closed set X, definable in a polynomially bounded structure. They even proved
that the polar invariants were locally lipschitz along the strata of a (w)-stratification
of X. Note that these results are not true if the structure is not polynomially
bounded. A counter-example to the continuity of the density along the strata of
a (b)-stratified set, definable in a non-polynomially bounded structure, was found
recently by Trotman and Valette (see [23]). As a straightforward consequence
of these results and Corollary 4.8, we see that that localized polar lengths are
continuous along the strata of a (b)-stratification of a closed definable set, and
locally lipschitz if the stratification is (w)-regular. Let us examine these last results
in the case of two strata.

So let S be stratum that contains Sy in its frontier and such that the depth of
Sp in S is one. This means that there is no stratum S’ such that Sy C Fr(S’) and
S’ C Fr(S). Adapting the notations introduced before Definition 4.5 in an obvious
way, we have that for k € {ds, +1,... ds} and z € S,

"’PS

Li(S k“/kﬂ Z APS 10(v,"5(2), 2)dP,
felan it

where the Yjp’s(z)’s are defined in the same way as the Yj S were defined, replacing
the ball B, with the ball B.(z). The index )\f’s(z) was defined like that:

)\f’s(z) =lim  lim (T3, y),
e—0 v
yEYP S € (2 2)

with 1
a(ﬂlsg, y) = 5 (ind(lﬁ,g NQuz,x) + ind(fy*,g NQuz, z)) ,

where v is a unit normal vector to T,A% in P and y = 75 (z). But since S is a top

stratum in S, the indices ind(v*, SN Q, », ) and ind(—v*, SN Q,., ) are actually
tangential Morse indices. They are equal if dim(S N @, ;) is even and opposite if
dim(S N Q) is odd. The dimension of S N Q.. is ds — k, so L¢(S,2) = 0 if
ds — k is odd and if dg — k is even,

"’PS

Lloc k+1 /Gk+1 Z )\PS ( ]PS(Z),Z)dP,
j=1

where )\f’s(z) € {—1,+1}. Hence in this situation, the localized polar lengths
leoc(g’ —) are somehow real counterparts of the complex polar multiplicities.

Proposition 4.10. Assume that the depth of So in S is one. In this case, the local-
1zed polar lengths leoc(S, =), ke{ds,+1,...,ds} and ds —k even, are continuous
along Sy if the stratification is (b)-regular and locally lipschitz if the stratification
is (w)-regular.
Proof. By Corollary 4.9, for ds, < k < dg we have

o1(5.2) — o111(5,2) = (5, 2) = LY (5.5, 2),
and ©4, (S, 2) = Liiosc(g, S, z) = Liiosc(g, z). Then we apply the results of [25]. O

It would be interesting to see if this result still holds without the assumption on
the depth of Sy in S.
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