Lipschitz-Killing curvatures and polar images - Archive ouverte HAL Access content directly
Journal Articles Advances in Geometry Year : 2019

Lipschitz-Killing curvatures and polar images

Abstract

We relate the Lipschitz-Killing measures of a definable set $X \subset \mathbb{R}^n$ in an o-minimal structure to the volumes of generic polar images. For smooth submanifolds of $\mathbb{R}^n$, such results were established by Langevin and Shifrin. Then we give infinitesimal versions of these results. As a corollary, we obtain a relation between the polar invariants of Comte and Merle and the densities of generic polar images.
Fichier principal
Vignette du fichier
CurvaturesPolar.pdf (332.33 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01239927 , version 1 (08-12-2015)

Identifiers

Cite

Nicolas Dutertre. Lipschitz-Killing curvatures and polar images. Advances in Geometry, 2019, 19 (2), pp.205-230. ⟨10.1515/advgeom-2018-0019⟩. ⟨hal-01239927⟩
142 View
88 Download

Altmetric

Share

Gmail Facebook X LinkedIn More