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Abstract

We consider the linear elliptic equation −div(a∇u) = f on some bounded domain D, where
a has the form a = exp(b) with b a random function defined as b(y) =

∑
j≥1 yjψj where

y = (yj) ∈ RN are i.i.d. standard scalar Gaussian variables and (ψj)j≥1 is a given sequence of
functions in L∞(D). We study the summability properties of Hermite-type expansions of the
solution map y 7→ u(y) ∈ V := H1

0 (D), that is, expansions of the form u(y) =
∑
ν∈F uνHν(y),

where Hν(y) =
∏
j≥1Hνj (yj) are the tensorized Hermite polynomials indexed by the set F of

finitely supported sequences of nonnegative integers. Previous results [19] have demonstrated
that, for any 0 < p ≤ 1, the `p summability of the sequence (j‖ψj‖L∞)j≥1 implies `p summability
of the sequence (‖uν‖V )ν∈F . Such results ensure convergence rates n−s with s = 1

p −
1
2 of

polynomial approximations obtained by best n-term truncation of Hermite series, where the
error is measured in the mean-square sense, that is, in L2(RN, V, γ), where γ is the infinite-
dimensional Gaussian measure. In this paper we considerably improve these results by providing
sufficient conditions for the `p summability of (‖uν‖V )ν∈F expressed in terms of the pointwise
summability properties of the sequence (|ψj |)j≥1. This leads to a refined analysis which takes
into account the amount of overlap between the supports of the ψj . For instance, in the case of
disjoint supports, our results imply that, for all 0 < p < 2 the `p summability of (‖uν‖V )ν∈F
follows from the weaker assumption that (‖ψj‖L∞)j≥1 is `q summable for q := 2p

2−p > p. In the
case of arbitrary supports, our results imply that the `p summability of (‖uν‖V )ν∈F follows from
the `p summability of (jβ‖ψj‖L∞)j≥1 for some β > 1

2 , which still represents an improvement over
the condition in [19]. We also explore intermediate cases of functions with local yet overlapping
supports, such as wavelet bases. One interesting observation following from our analysis is that
for certain relevant examples, the use of the Karhunen-Loève basis for the representation of b
might be suboptimal compared to other representations, in terms of the resulting summability
properties of (‖uν‖V )ν∈F . While we focus on the diffusion equation, our analysis applies to
other type of linear PDEs with similar lognormal dependence in the coefficients.
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1 Introduction

1.1 Approximation of high-dimensional parametric PDEs

Parametric partial differential equations equations have the general form

D(u, y) = 0, (1)

where u 7→ D(u, y) is a partial differential operator that depends on a parameter vector y =

(yj)j=1,...,J ranging in a certain domain U ∈ RJ , where J ≥ 1 is fixed. Assuming well-posedness of
the problem in some Banach space V , the solution map

y 7→ u(y), (2)

is defined from the parameter domain U to the solution space V .
Equations of this type arise both in stochastic and deterministic modeling, depending on the

nature of the parameters yj which may either be random or deterministic variables. In both settings,
one main computational challenge is to approximate the entire solution map y 7→ u(y) up to a
prescribed accuracy, with reasonable computational cost. This task has been intensively studied
since the 1990s, see in particular [14, 15, 20, 22] for general treatments. It becomes very challenging
when the number of parameters J is large due to the curse of dimensionality. Ideally, one would
like to design numerical methods that are immune to the growth of J , which in principle amounts
to treat the case of countably many variables, that is,

y = (yj)j≥1 ∈ U ⊂ RN. (3)

This problem has been the object of much attention in recent years [3, 4, 7, 8, 9, 16, 13, 19].
Sparse polynomial methods are based on approximations to u of the form

uΛ(y) :=
∑
ν∈Λ

uνy
ν , (4)

where Λ ⊂ F is a finite set of (multi-)indices ν = (νj)j≥1 ∈ F and yν =
∏
j≥1 y

νj
j . In the case of

an infinite number of parameters, the index set F denotes the (countable) set of all sequences of
nonnegative integers which are finitely supported (i.e. those sequences for which only finitely many
terms are nonzero). Note that the polynomial coefficients uν are functions in V , and therefore the
construction of uΛ requires in principle the computation of #(Λ) such functions.

One particularly relevant example is the model elliptic PDE

−div(a∇u) = f, (5)

set on a bounded Lipschitz domain D ⊂ Rd with homogeneous Dirichlet boundary conditions (in
typical applications d = 1, 2, 3), where a = a(y) is a diffusion coefficient that depends on y, and
where f ∈ H−1(D) is fixed. The so-called affine case refers to a diffusion coefficient of the form

a(y) = ā+
∑
j≥1

yjψj , (6)
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where ā and the (ψj)j≥1 are given functions from L∞(D). In this case, the yj typically range on
finite intervals which upon renormalization of ā and ψj can be assumed to be [−1, 1]. Therefore the
parameter domain is the infinite-dimensional box

U := [−1, 1]N, (7)

and well-posedness of the problem in V = H1
0 (D) is ensured for all y ∈ U by the so-called uniform

ellipticity assumption ∑
j≥1

|ψj(x)| ≤ ā(x)− r, x ∈ D, (8)

for some fixed r > 0. For this model problem, convergence results have been obtained for polynomial
approximations uΛn , where #(Λn) = n, constructed by best n-term truncation of infinite polynomial
expansions, either of Taylor or Legendre type, that is, by retaining the n coefficients of largest norms
in such expansions.

A striking result, first established in [8] under the uniform ellipticity assumption, states that
whenever the sequence (‖ψj‖L∞)j≥1 is `p summable for some 0 < p < 1, then such n term poly-
nomial approximations converge with rate n−s in L∞(U, V ) where s := 1

p − 1. For the Legendre
approximations, an improved rate n−s, with s := 1

p −
1
2 , is achieved in L2(U, V, µ) where µ is

the multivariate uniform measure, that is, in the mean-square sense if the yj are i.i.d. uniformly
distributed variables. These results have been extended to a large range of linear or nonlinear para-
metric PDEs [7, 9] where y is again ranging in the infinite dimensional box U . They heavily rely
on the holomorphy of the solution map y 7→ u(y) in each variable yj .

1.2 Elliptic PDEs with lognormal coefficients

In the present paper, we focus our attention on the so-called lognormal case for the elliptic PDE
(5). In this case, the diffusion coeffient a is of the form

a = exp(b), (9)

where b is a random function of the form

b = b(y) =
∑
j≥1

yjψj , (10)

defined from a given sequence (ψj)j≥1 of functions in L∞(D), with y = (yj)j≥1 a sequence of i.i.d.
N (0, 1) variables. Thus, the parameter vector y now ranges over the unbounded domain

U := RN. (11)

We work with the usual product measure space given by

(U,B(U), γ) = (RN,B(RN), γ), (12)

3



where B(U) = B(RN) denotes the Σ-algebra generated by the Borel cylinders and γ the tensorized
Gaussian probability measure.

We discuss further several conditions on the family (ψj)j≥1 which ensure that the series in (10)
converges almost surely in L∞(D). Under such conditions, b(y) is a Gaussian random variable
with values in L∞(D). By the Lax-Milgram lemma, the associated weak solution u(y) of (5) with
a = a(y) = exp(b(y)) is a random variable with values in V = H1

0 (D).
One frequently used approach that leads to this framework is by starting with b = (b(x))x∈D

defined as a centered Gaussian process over the domain D, with prescribed covariance function

Cb(x, x
′) := E

(
b(x)b(x′)

)
, x, x′ ∈ D. (13)

One then obtains a representation of the form (10) by considering the Karhunen-Loève decomposi-
tion

b = b(ξ) =
∑
j≥1

ξjϕj . (14)

Here (ϕj)j≥1 are the L2-orthonormal basis of eigenfunctions of the integral operator with kernel Cb
and ξj are independent centered Gaussian variables. One then sets

yj := λ
−1/2
j ξj and ψj := λ

1/2
j ϕj , λj := E(ξ2

j ). (15)

Here again, conditions on (ψj)j≥1 are needed in order to ensure that the series in (10) converges
almost surely in L∞(D).

In this paper, we prefer to start with b defined through (10) for a more general family (ψj)j≥1. In
particular we want to consider cases where the family (ψj)j≥1 in (10) is nonorthogonal and therefore
differs from a normalized Karhunen-Loève basis of b. One typical example is the case where b is
a one-dimensional Brownian motion, which has a natural expansion in terms of the nonorthogonal
Schauder basis. As shown later in this paper, this representation appears to be more efficient than
the Karhunen-Loève expansion in terms of the resulting best n-term polynomial approximation
rates.

In contrast to the affine model, the lognormal model is intrinsically stochastic: it reflects the
situation where the diffusion coefficient a is allowed to become arbitrarily small or large (unlike in the
affine case with the uniform ellipticity assumption), however with the probability being controlled
by the Gaussian distribution. In this case, the relevant polynomial expansion is the orthonormal
Hermite series,

u =
∑
ν∈F

uνHν , uν :=

∫
U
u(y)Hν(y) dγ(y), Hν(y) =

∏
j≥1

Hνj (yj), (16)

where the univariate Hermite polynomials Hk are normalized in L2(R, dg), with g denoting the stan-
dard Gaussian density. Note that (Hν)ν∈F is an orthonormal basis for the Hilbert space L2(U,R, γ).
The coefficients uν are well defined in V and the above series converges in the Bochner space
L2(U, V, γ) associated to L2(U,R, γ) whenever u belongs to L2(U, V, γ).
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Note that a function u : y 7→ u(y) in L2(U, V, γ) may also formally be viewed as a function
(x, y) 7→ u(x, y) := u(y)(x) of both variables x ∈ D and y ∈ U , and the inner product between two
functions u, v ∈ L2(U, V, γ) has the expression

〈u, v〉 =

∫
U

∫
D
∇u(x, y) · ∇v(x, y) dx dγ(y), (17)

where the operator ∇ is always meant in the x variable. In order to simplify notation, we shall
systematically avoid mentioning the x variable, except when necessary, by simply writing the above
integral as

〈u, v〉 =

∫
U

∫
D
∇u(y) · ∇v(y) dγ(y). (18)

The lognormal model and its approximation have been studied in various papers, e.g. [1, 5, 11,
12, 16, 13, 17, 19, 21]. Sufficient conditions for the finiteness of moments E(‖u(y)‖kV ) at all orders
0 ≤ k < ∞ have been established, either by assuming smoothness properties of the covariance
kernel Cb or by assuming a summability property for the sequence (‖ψj‖L∞(D))j≥1, see for example
[5, 11, 19]. Since

E
(
‖u(y)‖2V

)
= ‖u‖2L2(U,V,γ) =

∑
ν∈F
‖uν‖2V , (19)

the finiteness of the second moment is a necessary and sufficient condition for the `2 summability
of the sequence (‖uν‖V )ν∈F and the convergence of the Hermite series in L2(U, V, γ). However, in
order to prove convergence rates for the best n-term truncation

uΛn :=
∑
ν∈Λn

uνHν , (20)

of (16), where Λn denotes the set of indices corresponding to the n largest ‖uν‖V , we need to study
the `p summability properties of (‖uν‖V )ν∈F for p < 2. For example, if this sequence is proven to
be `p summable, then a direct application of Stechkin’s lemma [10, 8, 7], implies

‖u− uΛn‖L2(U,V,γ) =
(∑
ν /∈Λn

‖uν‖2V
)1/2

≤ C(n+ 1)−s, (21)

where s := 1
p −

1
2 and C :=

∥∥(‖uν‖V )ν∈F
∥∥
`p(F)

.
The first and currently the only available result concerning `p summability of Hermite coeffi-

cients, in the infinite dimensional framework, has been established in [19] and reads as follows.

Theorem 1.1 For any 0 < p ≤ 1, if (j‖ψj‖L∞)j≥1 ∈ `p(N) then (‖uν‖V )ν∈F ∈ `p(F).

The Hermite coefficients studied in [19] are actually different from those defined in (16), since
the authors are interested in a specific approximation process, namely the Galerkin method. One
specific difficulty in this approach is the fact that the bilinear form

B(u, v) =

∫
U

∫
D
a(y)∇u(y) · ∇v(y) dγ(y), (22)
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is not continuous and coercive on L2(U, V, γ). This particular issue has been dealt with in papers
such as [5, 13, 16, 12]. The approach from [16], which is also used in [19], is based on a modified
bilinear form where γ is replaced by an auxiliary Gaussian measure. The Galerkin error can then
be estimated by the `2 tails of modified Hermite coefficients corresponding to a further auxiliary
Gaussian measure. However, inspection of the proof of Theorem 1.1 in [19] shows that it also holds
for the standard Hermite coefficients. Note that this issue is specific to the Galerkin method, and
does not occur in pseudo-spectral or least-squares methods.

In the present paper, we only consider the classical Hermite coefficients in (16), since our main
interest is to obtain general polynomial approximation results for the solution map, that may further
serve as a benchmark for any numerical method based on such approximations.

The above Theorem 1.1 is comparable to those obtained in [8] for Taylor and Legendre coefficients
in the affine case, except for the appearance of the additional factor j in front of ‖ψj‖L∞ , which
makes the summability assumption more restrictive. On the one hand, it is quite remarkable that
such a result exists, since the complex variable arguments used in the affine case, based solely on
holomorphy of the solution map, are not sufficient to control the Hermite coefficients. The proof
of the above result in [19] relies, instead, on estimates for the mixed partial derivatives of u up to
some finite order m related to p. On the other hand, the type of assumptions used in this result
indicates that it is not in the sharpest possible form as we now explain.

First, the above result does not cover `p summability for 1 < p < 2, which one might expect to be
obtainable under weaker assumptions. Second, and more importantly, the summability conditions
imposed on the ‖ψj‖L∞ in these results become quite strong and artificial in the case when the
supports of these functions do not overlap too much.

As a relevant example for this second point, consider the case where the (ψj)j≥1 are a wavelet
basis on the domain D. In this case it is more natural to index such bases according to (ψλ)λ∈∇,
where λ is a scale-space index following the usual terminology, such as in [6]. With the notation
l = |λ| for the scale level, there are O(2dl) wavelets at this level and each of them has support of
diameter O(2−l). The supports of wavelets at a given scale l have finite overlap, in the sense that
any x ∈ D is contained in the support of at most M wavelets of level l where M is independent of
x and l. We assume that the L∞ norms of the wavelets only depend on the scale level, that is,

‖ψλ‖L∞ = cl, |λ| = l. (23)

It is well known that the geometric rate of decay of the wavelet contributions, as the scale level
grows, reflects the amount of smoothness in the expansion (or the smoothness of the correlation
function in the case of a random series). It is thus natural to study the situation where cl is of the
form

cl := C2−αl, (24)

for some given α > 0. Then, it can be checked, for example using the arguments from [5], which
are recalled further in §2, that for arbitrary α > 0 and C > 0, the bound (24) implies that the
solution map has bounded moments E

(
‖u(y)‖kV

)
for all 0 ≤ k < ∞. Indeed, this follows from
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the Lax-Milgram lemma and the fact that E
(
exp(k‖b(y)‖L∞)

)
is finite. The particular case k = 2

implies that the Hermite coefficient sequence (‖uν‖V )ν∈F belongs to `2(F), provided only that
α > 0. However, if we want to use the above mentioned result from [19] to prove `p summability of
this sequence for values of p < 2, the appearance of the factor j, suddenly, requires the very strong
constraint α > 2d which implies a strong smoothness condition on the diffusion coefficients.

The above wavelet example reveals a gap in the currently available analysis: `2 summability can
be obtained under mild assumptions on the smoothness of the diffusion coefficient, while proving
`p summability for p < 2 by the existing results immediatley imposes much higher smoothness (in
the sense of the required decay of ‖ψj‖L∞ as j →∞). The goal of the present paper is to propose
a sharper analysis, which removes this gap. Let us mention that the same gap occurs, in a slightly
less pronounced form, for the Legendre coefficients in the affine case, an issue which we recently
adressed in [2].

1.3 Main results and outline of the paper

The main result of our paper for the model elliptic equation (5) with lognormal diffusion coefficient
is the following.

Theorem 1.2 Let p < 2 and let q = q(p) := 2p
2−p . Assume that there exists a positive sequence

(ρj)j≥1 such that
sup
x∈D

∑
j≥1

ρj |ψj(x)| <∞. (25)

and
(ρ−1
j )j≥1 ∈ `q(N). (26)

Then, the solution map y 7→ u(y) belongs to Lk(U, V, γ) for all 0 ≤ k <∞. Moreover, (‖uν‖V )ν∈F ∈
`p(F). In particular, best n-term Hermite approximations converge in L2(U, V, γ) with rate n−s

where s = 1
p −

1
2 = 1

q .

This theorem gives a significant improvement over Theorem 1.1 in the case where the functions
ψj do not overlap too much. First of all, in the case of disjoint supports, the first condition in
Theorem 1.2 is met when ρ−1

j := ‖ψj‖L∞ . Therefore, it implies that, for all 0 < p < 2 the
`p summability of (‖uν‖V )ν∈F follows from the assumption that (‖ψj‖L∞)j≥1 is `q summable for
q = q(p) := 2p

2−p . Note that q(p) > p for any p > 0 and that

lim
p→2

q(p) = +∞, (27)

which shows that almost no decay of (‖ψj‖L∞)j≥1 is required as p gets closer to 2. Secondly, as is
shown later in this paper, we can also use Theorem 1.2 to treat the above mentioned wavelet case,
and obtain `p summability results with p < 2 for any smoothness index α > 0. Finally, even in the
case of arbitrarily supported ψj , we establish as a corollary of Theorem 1.2 that the `p summability
of (‖uν‖V )ν∈F follows from the `q summability of (‖ψj‖L∞)j≥1 with q := 2p

2−p , which again represents
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a significant improvement over the condition in Theorem 1.1, since this `q summability follows by
Hölder’s inequality from the `p summability of (jβ‖ψj‖L∞)j≥1 for some β > 1

2 .
Let us mention that a result analogous to Theorem 1.2 has been established in [2] for Taylor

and Legendre coefficients in the affine case, under the additional uniform ellipticity assumption.
A common feature with the present paper is that one key ingredient of both proofs consists in
establishing certain weighted `2 estimates for the coefficients ‖uν‖V which further translate into `p

estimates by Hölder’s inequality. However, establishing such weighted `2 estimates for the Hermite
coefficients in the present lognormal cases uses completely different techniques than those in [2]. In
particular, similar to [19], we only rely on the study of mixed partial derivatives ∂µu for a limited
order ‖µ‖`∞ ≤ r, while the estimates in [2] exploit all orders µ ∈ F . Let us also mention that, while
we focus on the diffusion equation, inspection of our proofs reveals that our main results can be
extended to other types of linear elliptic or parabolic PDEs with similar lognormal dependence of
the coefficients.

The rest of our paper is organized as follows. We begin in §2 by revisiting conditions which
ensure that y 7→ u(y) is a measurable map with values in V and with finite moments E

(
‖u(y)‖kV

)
for all 0 ≤ k < ∞. We introduce a sufficient assumption in terms of the convergence in L∞(D) of
the series

∑
j≥1 ρj |ψj | for a positive sequence (ρj)j≥1 which satisfies the summability property∑

j≥1

exp(−ρ2
j ) <∞. (28)

This is a very weak condition on the sequence (ρj)j≥1 and in particular always holds under the
assumptions in Theorem 1.2.

As a first step in the proof of Theorem 1.2, we relate in §3 the norms ‖uν‖V of Hermite coefficients
with ‖∂µu‖L2(U,V,γ) for relevant values of µ. This leads us to an identity between certain weighted
`2 norms of both quantities. As mentioned above, while all ν ∈ F are considered for the Hermite
coefficients, only limited order ‖µ‖`∞ ≤ r are considered for the partial derivatives. As a second
step, we obtain in §4 bounds on the previously introduced weighted `2 norms of the ‖∂µu‖L2(U,V,γ)

under the assumption that
∑

j≥1 ρj |ψj(x)| is bounded by a relevant constant. Finally, we combine
these ingredients in §5 to complete the proof of Theorem 1.2.

In §6, we derive various consequences of Theorem 1.2 corresponding to the different cases outlined
above for the functions (ψj)j≥1: (i) disjoint or finitely overlapping supports, (ii) wavelets, (iii)
arbitrary supports. We discuss, in all three cases, the improvements over Theorem 1.1.

We conclude in §7 with an interesting observation which follows from our analysis, in the par-
ticular case where b is a Brownian motion. For this case we compare the convergence of the best
n-term truncation of Hermite series when using either the Karhunen-Loève representation or the
Schauder basis representation for b. The first representation satisfies by construction an L2 orthog-
onality between the ψj , while the second one does not. Due to the limited amount of smoothness of
b, the assumptions of Theorem 1.2 do not hold for the Karhunen-Loève representation, so that no
algebraic convergence rate can be established for the resulting polynomial approximation with our
currently available techniques. In contrast, we can obtain an algebraic convergence rate when using
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the Schauder representation, by exploiting the local support properties of the basis functions. This
hints that, in relevant practical cases, the Karhunen-Loève representation might be suboptimal in
terms of the resulting polynomial approximation rates for the solution map y 7→ u(y) in L2(U, V, γ).

Let us stress that our results only quantify the approximability of the solution map. They should
therefore be viewed as benchmark for concrete numerical methods. The development of numerical
methods that provably meet such benchmarks will be the object of further investigation.

2 Measurability and integrability of the solution map

The first question we investigate is what conditions on (ψj)j≥1 guarantee that the solution map
y 7→ u(y) is in Lk(U, V, γ), i.e. it is measurable with values in V and satisfies

E
(
‖u(y)‖kV

)
=

∫
U
‖u(y)‖kV dγ(y) <∞. (29)

We recall that a function from a measurable space to a Banach spaceB is measurable (also sometimes
called µ-measurable, or Bochner-measurable, or strongly measurable), if and only if it is the almost
everywhere pointwise limit of a sequence of simple functions.

Recall that u(y) is the weak solution to the diffusion equation

−div(a(y)∇u(y)) = f, (30)

on the bounded domain D with homogeneous Dirichlet boundary condition, for a fixed f ∈ H−1(D),
were

a(y) := exp(b(y)). (31)

The solution u(y) is well defined as an element of V = H1
0 (D) provided that

∑
j≥1 yjψj defines a

function b(y) ∈ L∞(D). In such a case, by the Lax-Milgram lemma, we have

‖u(y)‖V ≤ C‖a(y)−1‖L∞ ≤ C exp(‖b(y)‖L∞), C := ‖f‖H−1 . (32)

This motivates the study of the finiteness of exponential moments of ‖b(y)‖L∞ which we formulate
for any given 0 ≤ k <∞ as follows.

Property Mk: The map y 7→ b(y) is measurable from U to L∞(D), and the exponential mo-
ment E

(
exp(k‖b(y)‖L∞)

)
is finite.

According to (32), we find that Property Mk implies the finiteness of the k-th moment E(‖u(y)‖kV ).
Several types of conditions on b have been introduced in the literature [5, 11, 19] which are sufficient
to guarantee that Property Mk holds.

One first approach requires that b = (b(x))x∈D is a Gaussian random field with some minimal
smoothness, in the sense of a smoothness assumptions on the covariance kernel Cb. Indeed, if Cb
belongs to the Hölder space Cβ(D ×D) for some β > 0, that is, there exists C > 0 such that

|Cb(x, x′)− Cb(z, z′)| ≤ C(|x− z|β + |x′ − z′|β), x, z, x′, z′ ∈ D, (33)
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then, following the argument of Proposition 2.1 in [5], we first find by using the Kolmogorov conti-
nuity theorem that there exists a version of b with trajectories almost surely in Cα(D) for α < β/2.
By application of Fernique’s theorem, see Proposition 2.3 of [5], we then find that

E
(
exp(λ‖b‖2L∞)

)
≤ E

(
exp(λ‖b‖2Cα)

)
<∞, (34)

for some sufficiently small λ > 0. This implies that E(exp(k‖b‖L∞)) is finite for all 0 ≤ k < ∞.
Note that when b has the representation (10), its covariance kernel is then given by

Cb(x, x
′) =

∑
j≥1

ψj(x)ψj(x
′), (35)

and therefore we may analyze the smoothness of Cb through that of the individual ψj . A strategy
to establish that b with representation (10) is almost surely in a Hölder space Cκ for some κ > 0

is discussed in [18, 11]. It assumes that the ψj are individually in Cα for some α > 0, and that for
some 0 < δ < 2, ∑

j≥1

‖ψj‖2L∞ <∞ and
∑
j≥1

‖ψj‖2−δL∞C
δ
j <∞, (36)

where Cj is a constant such that |ψj(x) − ψj(x
′)| ≤ Cj |x − x′|α. Then, using the Kolmogorov

continuity theorem, one establishes that b belongs almost surely to Cκ for κ < αδ/2, see Corollary
7.22 in [11] (one can also easily check that (36) implies (33) with β = δ).

A second approach for guaranteeing Property Mk does not assume any smoothness on the ψj ,
but instead the summability property ∑

j≥1

‖ψj‖L∞ <∞. (37)

Then, as observed in [19], we find that for all 0 ≤ k <∞,

E
(
exp(k‖b(y)‖L∞)

)
≤ E

(
exp
(
k
∑
j≥1

|yj |‖ψj‖L∞
))

=
∏
j≥1

E
(
exp(k|yj |‖ψj‖L∞)

)
<∞, (38)

since for a standard Gaussian variable t and a positive quantity s one has

E
(
exp(s|t|)

)
=

2√
2π

∫ +∞

0
exp

(
st− t2

2

)
dt = e

s2

2
2√
2π

∫ +∞

−s
e−

t2

2 dt ≤ exp

(
s2

2
+

2√
2π
s

)
. (39)

Neither of these two types of conditions imply each other. Indeed, on the one hand, if (ψj)j≥0

is a smooth wavelet basis of L2(D) ordered from coarser to finer scale, Cβ smoothness of Cb holds
whenever ‖ψj‖L∞ ≤ Cj−

β
2d , which is not sufficient to ensure that (‖ψj‖L∞)j≥1 belongs to `1(N) if

β
2d ≤ 1. This shows that (33) may hold while (37) may fail. Also note that, for the same reason,
the criterion (36) is sufficient but not necessary for (33) to hold. On the other hand, if the ψj are
discontinuous, we cannot hope that Cb has Hölder smoothness while (‖ψj‖L∞)j≥1 could belong to
`1(N), which shows that (37) may hold while (33) and (36) may fail. Note that the exclusion of
discontinuous ψj is problematic when one needs to model sharp interfaces in the diffusion media.
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We also remark that conditions (36) and (37) are artificially strong when the supports of the ψj
do not overlap, or only partially overlap. This motivates us to introduce a third condition which
better takes into account the support properties of the ψj , and does not enforce them to be Hölder
continuous.

Assumption A: There exists a strictly positive sequence ρ = (ρj)j≥1 such that the series
∑

j≥1 ρj |ψj |
converges in L∞(D) and ∑

j≥1

exp(−ρ2
j ) <∞. (40)

Note that since the ρj are strictly positive, the summability of the exp(−ρ2
j ) also implies that

ρ0 := inf
j≥1

ρj > 0. (41)

We shall make use of the following elementary lemma.

Lemma 2.1 If (αj)j≥1 is a sequence of numbers from [0, 1[ that belongs to `1(N), then, there is a
constant c > 0 and M0 ≥ 1 such that

∞∑
j=1

αMj ≤ e−cM , M ≥M0. (42)

Proof: We first consider the case when
∑∞

j=1 αj < 1. In this case, (42) follows withM0 = 1 because
‖(αj)j≥1‖`M ≤ ‖(αj)j≥1‖`1 , for any M ≥ 1. Hence, with c = − ln ‖(αj)j≥1‖`1 , we arrive at (42). To
prove the general case, we first choose K so that

∑
j>K αj ≤ 1/2. If M0 > 1 is sufficiently large

then
∞∑
j=1

αM0
j =

K∑
j=1

αM0
j +

∑
j>K

αM0
j ≤ 3/4, (43)

where we used the case already proven for estimating the second term. Since αMj = (αM0
j )M/M0 we

know from the comparison of `p norms

∞∑
j=1

αMj ≤ (3/4)M/M0 , M ≥M0. (44)

and the result follows. �

We now prove that Assumption A guarantees the measurability and finiteness of the exponential
moments of the map y 7→ b(y).

Theorem 2.1 Assumption A implies that Property Mk holds for any 0 ≤ k <∞.

11



Proof: Let us consider a sequence (ρj)j≥1 such that (40) holds. For any t ≥ 0, the complement Ect
of the event

Et :=
{
y : sup

j≥1
ρ−1
j |yj | ≤ t

}
, (45)

has measure

γ(Ect ) ≤
∞∑
j=1

γ{y : |yj | > tρj} ≤
2

ρ0

√
2π

∞∑
j=1

exp

(
−
t2ρ2

j

2

)
, (46)

where we have used the univariate Gaussian tail bound∫
|s|>B

g(s)ds ≤ 2

B
√

2π
e−

B2

2 , B > 0. (47)

Therefore, application of Lemma 2.1 with αj = exp(−ρ2
j ) shows that

γ(Ect ) ≤ Ce−ct
2
, t ≥ t0, (48)

for certain constants C, c, t0. In particular the event

E := ∪t≥0Et =
{
y : sup

j≥1
ρ−1
j |yj | <∞

}
, (49)

has full measure, i.e.
γ(E) = 1. (50)

We next introduce for J ≥ 1 the truncation

bJ(y) =
J∑
j=1

yjψj . (51)

The mapping y 7→ bJ(y) is measurable from U to L∞(D) since it is a continuous L∞-valued function
of the variables (y1, . . . , yJ). We observe that if Assumption A holds, then, for any y ∈ E , we may
define b(y) as the limit in L∞(D) of bJ(y) since

‖bJ(y)− b(y)‖L∞ ≤
∥∥∥∑
j>J

ρj |ψj |
∥∥∥
L∞

sup
j≥1

ρ−1
j |yj | → 0 as J → +∞. (52)

Thus bJ(y) converges to b(y) in L∞(D) for almost every y ∈ U . Therefore y 7→ b(y) is also a
measurable mapping, that is, b(y) is a random variable with values in L∞(D).

In addition, for any s ≥ 0 and y ∈ Es, we may write

‖b(y)‖L∞ ≤ CAs, CA :=
∥∥∥∑
j≥1

ρj |ψj |
∥∥∥
L∞
. (53)

Hence, for t ≥ 1, we have

P (t) := γ{y : ‖b(y)‖L∞ > t} ≤ γ(Ect/CA) ≤ 2CA

ρ0

√
2π

∞∑
j=1

exp

(
−
t2ρ2

j

2C2
A

)
, (54)
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where we have used (46). From Assumption A, we know that the last sum in (54) is finite when

t = t0 :=
√

2CA. Hence, applying Lemma 2.1 with αj = exp
(
− t20ρ

2
j

2C2
A

)
, and using the fact that

P (t) ≤ 1 for all t ≥ 0, we find that
P (t) ≤ Ce−ct2 , (55)

for suitable c, C > 0 and for all t ≥ 0. Therefore

E
(
exp(k‖b(y)‖L∞)

)
=

∫ +∞

0
k exp(kt)P (t)dt <∞, (56)

for all 0 ≤ k <∞. �

If we next define uJ(y) as the weak solution of (5) with a = aJ(y) = exp(bJ(y)), where bJ is as
in (51), we find that the mapping y 7→ uJ(y) is measurable from U to V since it is a continuous
V -valued function of the variables (y1, . . . , yJ). This continuity stems from the following classical
stability estimate: two weak solutions u and ũ of (5) with diffusion coefficients a and ã, respectively,
satisfy

‖u− ũ‖V ≤ C‖a− ã‖L∞ , C :=
‖f‖V ∗

min{amin, ãmin}2
. (57)

This estimate also shows that the convergence of bJ(y) towards b(y) in L∞(D) for each y ∈ E
implies the convergence of uJ(y) towards u(y) in V for each y ∈ E , which shows that the mapping
y 7→ u(y) is measurable as an almost everywhere limit of measurable mappings, that is, u(y) is a
random variable with values in V . By application of (32), we thus obtain the following result.

Corollary 2.1 Assumption A implies that y 7→ u(y) is measurable with values in V = H1
0 (D) and

that E
(
‖u(y)‖kV

)
is finite for any 0 ≤ k <∞.

Remark 2.1 Assumption A is almost necessary for Property Mk to hold in the case where the
supports of ψj do not overlap, in the sense that Property Mk then implies that

∑
j≥1 ρj |ψj | is

uniformly bounded. In this case, the uniform boundedness of
∑

j≥1 ρj |ψj | for a sequence (ρj)j≥1

which satisfies (40) can be equivalently expressed as follows: there exists CB > 0 such that with
bj := ‖ψj‖L∞, one has ∑

j≥1

exp

(
−CB
b2j

)
<∞. (58)

Indeed, since CA :=
∥∥∥∑j≥1 ρj |ψj |

∥∥∥
L∞

= supj≥1 ρjbj, we have (58) with CB = C−2
A . We then have

γ{y : ‖b(y)‖L∞(D) ≤ t} =
∏
j≥1

γ
{
y : |yj | ≤

t

bj

}
≤
∏
j≥1

(
1− 2t

bj
√

2π
exp

(
−2

t2

b2j

))
, (59)

for any t > 0, where we have used the lower bound∫
|s|>B

g(s) ds ≥
∫
B<|s|<2B

g(s) ds ≥ 2B√
2π

exp(−2B2). (60)

It follows that if (58) does not hold for any CB > 0, then γ{y : ‖b(y)‖L∞(D) ≤ t} = 0 for all t > 0,
which means that ‖b(y)‖L∞(D) =∞ with probability 1 and therefore Property Mk does not hold.
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Remark 2.2 Assumption A always follows from the assumptions of Theorem 1.2. Indeed, if
(ρ−1
j )j≥1 ∈ `q(N) for some q <∞, one can find a positive sequence (δj)j≥1 such that limj→+∞ δj = 0

and such that the sequence defined as ωj := δjρj satisfies
(
exp(−ω2

j )
)
j≥1
∈ `1(N). We then obtain

the validity of Assumption A with the sequence (ωj)j≥0 since∥∥∥∑
j>J

ωj |ψj |
∥∥∥
L∞
≤
(

sup
j>J

δj

)∥∥∥∑
j≥1

ρj |ψj |
∥∥∥
L∞
→ 0, as J → +∞. (61)

3 Hermite expansions and partial derivatives

We are interested in the summability properties of the multivariate Hermite expansion (16). By
Parseval’s identity, the L2 integrability of u(y) with respect to the Gaussian measure γ implies the
`2 summability property ∑

ν∈F
‖uν‖2V <∞. (62)

In order to obtain polynomial approximation results in the mean-square sense, or equivalently, in
L2(RN, V, γ), we need to establish the `p summability∑

ν∈F
‖uν‖pV <∞, (63)

for values of p < 2. For this purpose, we establish L2-integrability properties of the partial deriva-
tives of u. For any V -valued function y 7→ w(y) defined on RN, and j ∈ N, the derivative ∂yjw is
defined as the limit, as h→ 0, of the difference quotient

w(y + hej)− w(y)

h
(64)

provided this limit exists in V , where
ej := (δi,j)i≥1 (65)

is the Kronecker sequence of index j. Higher derivatives ∂νw are defined inductively. For ν ∈ F ,
we use the notation

∂νw =
(∏
j≥1

∂
νj
yj

)
w. (66)

When, νj = 0, the operator ∂νjyj is the identity operator and so the above product has only a finite
number of factors which are not the identity.

We also use the standard notation supp(ν) := {j : νj 6= 0}, as well as

|ν| := ‖ν‖`1 =
∑
j≥1

νj , ν ∈ F , (67)

and
ν! :=

∏
j≥1

νj !, ν ∈ F , (68)
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with the convention that 0! = 1. Furthermore, we use the combinatorial notation,(
ν

µ

)
:=
∏
j≥1

(
νj
µj

)
, µ, ν ∈ F , (69)

with the convention that (
n

m

)
:= 0, if m > n. (70)

In analogy with y = (yj)j≥1, we set ψ = (ψj)j≥1 and use the notation

ψν :=
∏
j≥1

ψ
νj
j , ν ∈ F . (71)

Finally, with ≤ denoting the componentwise partial order between multi-indices, we define

Sµ := {ν ∈ F : ν ≤ µ and ν 6= µ}, µ ∈ F , (72)

which is always a finite set. The following lemma proves that the derivatives ∂νu(y) are elements
of V and gives a recursive way of computing them. While it is implicitly contained in the proof of
Theorem 3.1 in [19], we give it here in an explicit form for completeness.

Lemma 3.1 For any y such that ‖b(y)‖L∞ < ∞, and any nonzero ν ∈ F , the partial derivative
∂νu(y) exists and is the solution of the variational problem∫

D
a(y)∇∂µu(y) · ∇v = −

∑
ν∈Sµ

(
µ

ν

)∫
D
ψµ−νa(y)∇∂νu(y) · ∇v, v ∈ V. (73)

Proof: The proof of this lemma is, in principle, the same as the proof of Theorem 4.2 in [8]. The
only difference is that in the theorem of [8] the assumption is that a is affine in y, whereas now we
assume a = eb with b affine in y. In going further, we indicate only the necessary changes caused
by the different diffusion coefficient.

One begins by establishing the validity of the theorem when µ = ej , for any j ∈ N, by considering
the functions ρh(y) :=

u(y+hej)−u(y)
h , for |h| ≤ 1. Following the reasoning in [8], one derives that ρh

satisfies ∫
D
a(y)∇ρh(y) · ∇v = Lh(v), for all v ∈ V, (74)

where Lh is the linear functional on V given by

Lh(v) := −
∫
D

ehψj − 1

h
a(y)∇u(y + hej) · ∇v. (75)

Using (57), one next proves that Lh → L in V ′ where L is the linear functional

L(v) := −
∫
D
a(y)ψj∇u(y) · ∇v. (76)
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Therefore, taking a limit as h→ 0 in (74) proves the theorem for the case µ = ej . The case of any
general µ ∈ F now follows by a recursive application of this result. �

The recursive formula (73) will be crucial for obtaining sharp estimates for the partial derivatives
∂µu(y). For the time being, we use it to establish the following crude bound

‖∂µu(y)‖V ≤ C exp
(
(2|µ|+ 1)‖b(y)‖L∞

)
, µ ∈ F , (77)

where the constant depends on µ, on the ψj , and on f . In view of Property Mk, this guarantees
the finiteness of all moments E(‖∂µu(y)‖kV ) for all 0 ≤ k <∞.

For the proof of (77), for each y such that ‖b(y)‖L∞ <∞, we introduce a y-dependent equivalent
norm on V ,

‖v‖2a(y) :=

∫
D
a(y)|∇v|2 dx, v ∈ V . (78)

For such y, we have the norm equivalence

exp
(
−‖b(y)‖L∞

)
‖v‖2V ≤ ‖v‖2a(y) ≤ exp

(
‖b(y)‖L∞

)
‖v‖2V . (79)

Using this in conjunction with (73) and v = ∂µu(y), we obtain

‖∂µu(y)‖2V ≤ e‖b(y)‖L∞‖∂µu(y)‖2a(y)

≤ e‖b(y)‖L∞
∑
ν∈Sµ

(
µ

ν

)( ∏
j∈supp(µ−ν)

‖ψj‖
µj−νj
L∞

)
‖∂νu(y)‖a(y)‖∂µu(y)‖a(y)

≤ Cµ e2‖b(y)‖L∞‖∂µu(y)‖V
∑
ν∈Sµ

‖∂νu(y)‖V ,

with a constant Cµ > 0. Applying this recursively, starting from the estimate (32) for ‖u(y)‖V , we
obtain (77).

The following result relates the L2 norms of the mixed derivatives of u up to some given order
r with weighted `2 norms of the Hermite coefficients.

Theorem 3.1 Let r ≥ 0 be an integer and let ρ = (ρj)j≥1 be a sequence of positive numbers.
Assume that Property Mk hold for all 0 ≤ k <∞. Then∑

‖µ‖`∞≤r

ρ2µ

µ!

∫
U
‖∂µu(y)‖2V dγ(y) =

∑
ν∈F

bν‖uν‖2V , (80)

where
bν :=

∑
‖µ‖`∞≤r

(
ν

µ

)
ρ2µ. (81)

The weights bν can also be expressed as

bν =
∏
j≥1

( r∑
l=0

(
νj
l

)
ρ2l
j

)
. (82)
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Proof: With the normalization in L2(R, dg) that we have chosen for the univariate Hermite poly-
nomials, we have the Rodrigues formula

Hn(t) =
(−1)n√
n!

g(n)(t)

g(t)
. (83)

As a consequence, for m ≤ n and sufficiently smooth univariate functions v with square-integrable
derivatives, integration by parts yields

vn :=

∫
R
v Hn g dt =

(−1)n√
n!

∫
R
v g(n) dt =

√
(n−m)!

n!

∫
R
v(m)Hn−m g dt. (84)

By Parseval’s identity, we thus have

1

m!

∫
R
|v(m)|2 g dt =

∑
n≥m

n!

m!(n−m)!
|vn|2 =

∑
n≥0

(
n

m

)
|vn|2, (85)

where in the last step we have made use of our notational convention (70).
For ν, µ ∈ F with µ ≤ ν, applying the same reasoning to the tensor product Hermite coefficients

uν , we obtain

uν = 〈u,Hν〉 =

√
(ν − µ)!

ν!
〈∂µu,Hν−µ〉 . (86)

Concerning the integration by parts, note that, as a consequence of (77), Property Mk allows us to
proceed as in (84). By Parseval’s identity, summation over ν ∈ F with ν ≥ µ thus gives

1

µ!

∫
U
‖∂µu(y)‖2V dγ(y) =

∑
ν≥µ

ν!

µ!(ν − µ)!
‖uν‖2V =

∑
ν∈F

(
ν

µ

)
‖uν‖2V , (87)

where we have again used (70). Multiplying this identity by ρ2µ and summing over µ with ‖µ‖`∞ ≤ r
gives ∑

‖µ‖`∞≤r

ρ2µ

µ!

∫
U
‖∂µu(y)‖2V dγ(y) =

∑
‖µ‖`∞≤r

∑
ν∈F

(
ν

µ

)
ρ2µ‖uν‖2V =

∑
ν∈F

bν‖uν‖2V , (88)

that is, (80) with bν as defined in (81). The equivalent expression of bν , given in (82), immediately
follows by factorization in (81). �

4 Estimates of the partial derivatives

In view of Theorem 3.1, estimating certain weighted `2 norms of the sequence (‖uν‖V )ν∈F amounts
to estimating related weighted `2 norms of the sequence(∫

U
‖∂µu(y)‖2V dγ(y)

)
‖µ‖`∞≤r

, (89)

which we next address.
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4.1 Estimates for fixed y

Recalling the norm ‖ · ‖a(y) defined in (78), we first fix y and estimate the relevant weighted `2

norms for the sequence
(
‖∂µu(y)‖a(y)

)
‖µ‖`∞≤r

.

Theorem 4.1 Let r ≥ 1 be an integer. Assume that there exists a positive sequence (ρj)j≥1 such
that

sup
x∈D

∑
j≥1

ρj |ψj(x)| =: K < Cr :=
ln 2√
r
. (90)

Then, there exists a constant C that depends on K and r, such that∑
‖µ‖∞≤r

ρ2µ

µ!
‖∂µu(y)‖2a(y) ≤ C ‖u(y)‖2a(y), (91)

for all y satisfying ‖b(y)‖L∞ <∞.

Proof: For k ≥ 0, we define Λk := {µ ∈ F : |µ| = k, ‖µ‖`∞ ≤ r} and

σk :=
∑
µ∈Λk

ρ2µ

µ!
‖∂µu(y)‖2a(y). (92)

We prove that
σk ≤ σ0δ

k, (93)

for a fixed δ < 1. Since σ0 = ‖u(y)‖2a(y), the theorem follows from this by summing over k.
We introduce the notation

ε(µ, ν) :=

√
µ!√
ν!

ρµ−ν |ψ|µ−ν

(µ− ν)!
, (94)

where |ψ|ν :=
∏
j≥1 |ψj |νj . From (73), recalling the notation (72), we have

σk ≤
∫
D

∑
µ∈Λk

∑
ν∈Sµ

ε(µ, ν)a(y)
ρν |∇∂νu(y)|√

ν!

ρµ|∇∂µu(y)|√
µ!

, (95)

and thus, by Cauchy-Schwarz inequality,

σk ≤
∫
D

∑
µ∈Λk

(∑
ν∈Sµ

ε(µ, ν)a(y)
|ρν∇∂νu(y)|2

ν!

)1/2(∑
ν∈Sµ

ε(µ, ν)a(y)
|ρµ∇∂µu(y)|2

µ!

)1/2

. (96)

For µ ∈ Λk, define Sµ,` := {ν ∈ Sµ : |µ− ν| = `}. We have

∑
ν∈Sµ

ε(µ, ν) =
k∑
`=1

∑
ν∈Sµ,`

ε(µ, ν). (97)
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Now, from (90), we have∑
ν∈Sµ,`

ε(µ, ν) ≤ r`/2
∑
ν∈Sµ,`

ρµ−ν |ψ|µ−ν

(µ− ν)!
≤ r`/2

∑
|τ |=`

ρτ |ψ|τ

τ !

= r`/2
( ∞∑
j=1

ρj |ψj(x)|
)`

= r`/2
1

`!
K`.

Inserting this into (97) we find that∑
ν∈Sµ

ε(µ, ν) ≤ e
√
rK − 1 ≤ e

√
rCr − 1 = 1. (98)

Inserting this into (96), and applying the Cauchy-Schwarz inequality, we obtain

σk ≤
∫
D

∑
µ∈Λk

(∑
ν∈Sµ

ε(µ, ν)a(y)
|ρν∇∂νu(y)|2

ν!

)1/2(
a(y)
|ρµ∇∂µu(y)|2

µ!

)1/2

≤
∫
D

(∑
µ∈Λk

∑
ν∈Sµ

ε(µ, ν)a(y)
|ρν∇∂νu(y)|2

ν!

)1/2(∑
µ∈Λk

a(y)
|ρµ∇∂µu(y)|2

µ!

)1/2

.

We treat the first factor in the last integral by interchanging summations in µ and ν. For this
purpose, we introduce, for any ` ≤ k − 1 and ν ∈ Λ`, the set

Rν,k := {µ ∈ Λk : ν ∈ Sµ}. (99)

By a similar argument as above for the set Sµ,`, we find that∑
µ∈Rν,k

ε(µ, ν) ≤ r(k−`)/2 1

(k − `)!
Kk−`. (100)

It follows that

σk ≤
∫
D

(k−1∑
`=0

r(k−`)/2 1

(k − `)!
Kk−`

∑
ν∈Λ`

a(y)
|ρν∇∂νu(y)|2

ν!

)1/2(∑
µ∈Λk

a(y)
|ρµ∇∂µu(y)|2

µ!

)1/2

.

(101)
If we now apply the Cauchy-Schwarz inequality on the integral we obtain

σk ≤
(k−1∑
`=0

1

(k − `)!
(
√
rK)k−`σ`

)1/2
σ

1/2
k . (102)

In other words,

σk ≤
k−1∑
`=0

1

(k − `)!
(
√
rK)k−`σ`. (103)

Now pick δ < 1 such that K/δ ≤ Cr. By induction, we prove that σk ≤ σ0δ
k for all k ≥ 0. This is

clearly true for k = 0 and assuming it has been proven for k − 1, we find

σk ≤ σ0

k−1∑
`=0

1

(k − `)!
(
√
rK)k−`δ` ≤ σ0δ

k
k−1∑
`=0

1

(k − `)!
(
√
rCr)

k−` ≤ σ0δ
k(e
√
rCr − 1) = σ0δ

k, (104)

which advances the induction. This establishes (93) and completes the proof of the theorem. �
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4.2 Integral estimates

Combining (79) with Theorem 4.1, we obtain the following result.

Theorem 4.2 Let r ≥ 1 be an integer. Assume that there exists a positive sequence (ρj)j≥1 such
that

sup
x∈D

∑
j≥1

ρj |ψj(x)| =: K < Cr :=
ln 2√
r
. (105)

Assume in addition that Property M4 holds. Then we have∑
‖µ‖`∞≤r

ρ2µ

µ!

∫
U
‖∂µu(y)‖2V dγ(y) <∞. (106)

Proof: We apply (79) with v = ∂µu(y) and obtain

‖∂µu(y)‖2V ≤ exp
(
‖b(y)‖L∞

)
‖∂µu(y)‖2a(y). (107)

This gives∑
‖µ‖`∞≤r

ρ2µ

µ!

∫
U
‖∂µu(y)‖2V dγ(y) ≤

∫
U

exp
(
‖b(y)‖L∞

) ∑
‖µ‖`∞≤r

ρ2µ

µ!
‖∂µu(y)‖2a(y) dγ(y)

≤ C1

∫
U

exp
(
‖b(y)‖L∞

)
‖u(y)‖2a(y) dγ(y)

≤ C1

∫
U

exp
(
2‖b(y)‖L∞

)
‖u(y)‖2V dγ(y)

≤ C2

∫
U

exp
(
4‖b(y)‖L∞

)
dγ(y), (108)

where the second inequality uses Theorem 4.1, the third inequality uses (79) again, and the last
inequality uses (32). From Property M4, the last integral is finite and the proof of the theorem is
complete. �

5 Summability of Hermite coefficients

According to Theorem 3.1, the conclusion of Theorem 4.2 also gives the weighted `2 summability
estimate ∑

ν∈F
bν‖uν‖2V <∞. (109)

Using Hölder’s inquality, for 0 < p < 2 and q := 2p
2−p we thus have∑

ν∈F
‖uν‖pV ≤

(∑
ν∈F

bν‖uν‖2V
)p/2(∑

ν∈F
b−q/2ν

)1−p/2
. (110)

The following result allows us to control the second factor.
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Lemma 5.1 Let 0 < p < 2 and q := 2p
2−p and let (ρj)j≥1 be a positive sequence such that

(ρ−1
j )j≥1 ∈ `q(N). (111)

Then, for any positive integer r such that 2
r+1 < p, the sequence (bν) defined in (81) for this r

satisfies ∑
ν∈F

b−q/2ν <∞. (112)

Proof: The sum under consideration can be rewritten in factorized form as∑
ν∈F

b−q/2ν =
∑
ν∈F

∏
j≥1

( r∑
l=0

(
νj
l

)
ρ2l
j

)−q/2
=
∏
j≥1

∑
n≥0

( r∑
l=0

(
n

l

)
ρ2l
j

)−q/2
, (113)

provided we can show that the product on the right side is finite. Now,

∑
n≥0

( r∑
l=0

(
n

l

)
ρ2l
j

)−q/2
≤
∑
n≥0

[(
n

n ∧ r

)
ρ

2(n∧r)
j

]−q/2
≤ 1 + ρ−qj + . . .+ ρ

−(r−1)q
j + Cr,qρ

−rq
j , (114)

with the constant

Cr,q :=
∑
n≥r

(
n

r

)−q/2
= (r!)q/2

∑
n≥0

[
(n+ 1) · · · (n+ r)

]−q/2
. (115)

We have Cr,q < ∞ if and only if q > 2/r, which holds precisely under our assumption p > 2
r+1 .

Since ρj → ∞, there exists J such that ρj > 1 for all j > J . For such j, we can bound the right
side of (114) by 1 + (Cr,q + r− 1)ρ−qj . Hence, returning to (113), for a finite constant C depending
on w, we have ∑

ν∈F
b−q/2ν ≤ C

∏
j>J

(
1 + (Cr,q + r − 1)ρ−qj

)
, (116)

where the product on the right side converges because
∑

j≥1 ρ
−q
j <∞. �

We are now ready to prove our main result.

Proof of Theorem 1.2: By our assumptions, we are given a positive sequence (ρj)j≥1 such that

sup
x∈D

∑
j≥1

ρj |ψj(x)| <∞ and (ρ−1
j )j≥1 ∈ `q(N), q :=

2p

2− p
. (117)

We choose r as the minimal integer satisfying 2
r+1 < p. Since the sequence ρj can be rescaled

by multiplying by an arbitrary constant without affecting (117), we can assume without loss of
generality that

sup
x∈D

∑
j≥1

ρj |ψj(x)| < ln 2√
r
. (118)
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Since, as noted in Remark 2.2, (ρ−1
j )j≥1 ∈ `q(N) implies Assumption A, by Theorem 2.1 we conse-

quently also have Property Mk for all k. We can thus combine Theorems 3.1 and 4.2 to obtain∑
ν∈F

bν‖uν‖2V =
∑

‖µ‖`∞≤r

ρ2µ

µ!

∫
U
‖∂µu(y)‖2V dγ(y) <∞. (119)

Using this together with Lemma 5.1 in (110), we arrive at the conclusion. �

Remark 5.1 As stated in Theorem 1.2, application of Stechkin’s lemma gives that the best n-term
approximation polynomials

uΛn :=
∑
ν∈Λn

uνHν , (120)

obtained by retaining the indices of the n largest ‖uν‖V , satisfy the estimate

‖u− uΛn‖L2(U,V,γ) <∼ n−s, (121)

where s := 1
p −

1
2 = 1

q . There is, however, a more direct and constructive way of retrieving this
convergence rate, namely taking instead Λn to be the set of indices corresponding to the n smallest
values of the weights bν which appear in (109). We then directly obtain that

‖u− uΛn‖L2(U,V,γ) ≤ sup
ν /∈Λn

b−1/2
ν

(∑
ν∈F

bν‖uν‖2V
)1/2

<∼ d∗n+1, (122)

where (d∗n)n≥1 is the decreasing rearrangement of the sequence (b
−1/2
ν )ν∈F . As seen in Lemma 5.1,

this sequence belongs to `q(F) which implies that d∗n <∼ n−s with s := 1
q .

6 Examples

In this section, we present several examples of applications of Theorem 1.2 corresponding to different
support properties of the (ψj)j≥1. In each case, we discuss which range of `q summability of the
sequence (‖ψj‖j≥1)j≥1 implies `p summability of the sequence (‖uν‖V )ν∈F for some p < 2.

6.1 Finitely overlapping supports

We say that the family (ψj)j≥1 has finitely overlapping supports if and only if there exists an integer
M such that for every x ∈ D,

#{j : ψj(x) 6= 0} ≤M. (123)

One example with M = 1, which corresponds to disjoint supports, is the set of characteristic
functions

ψj = cjχDj , (124)

with some normalizing factor cj , when (Dj)j≥1 is a partition of D. Another example with M ≥ 1 is
the set of Lagrange finite element basis functions of a given order k ≥ 1, associated to a conforming
simplicial partition of D.
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For such families, we find that the choice

ρ−1
j := ‖ψj‖L∞ , (125)

yields
sup
x∈D

∑
j≥1

ρj |ψj(x)| ≤M, (126)

and therefore condition (25) in Theorem 1.2 is satisfied. We thus obtain the following immediate
corollary.

Corollary 6.1 Let (ψj)j≥1 be a family with finitely overlapping supports, and let 0 < p < 2. If
(‖ψj‖L∞)j≥1 belongs to `q(N) for q = q(p) := 2p

2−p , then (‖uν‖V )ν∈F belongs to `p(F). In particular,
best n-term Hermite approximations converge in L2(U, V, γ) with rate n−s where s = 1

p −
1
2 = 1

q .

As already observed, we always have q(p) > p, which shows that there is in this case an im-
provement in the summability properties of (‖uν‖V )ν∈F over those of (‖ψj‖L∞)j≥1. For example,
`2 summability of (‖ψj‖L∞)j≥1 implies `1 summability of (‖uν‖V )ν∈F , and therefore convergence
of best n-term Hermite approximations with rate n−1/2.

6.2 Wavelets

For a general wavelet bases on a domain D ⊂ Rd, we adopt the notation (ψλ), used for example in
[6], where λ concatenates the scale and spatial indices, with the convention that the scale level l of
ψλ is denoted by |λ|, i.e., |λ| := l. Thus, there are O(2dl) wavelets at level l and the wavelets at
each given scale have finite overlap. This means that for all x ∈ D,

#{λ : |λ| = l and ψλ(x) 6= 0} ≤M, (127)

for some fixed M > 0 independent of l. We consider wavelets normalized such that

‖ψλ‖L∞ = cl = C2−αl, |λ| = l, (128)

for some fixed C > 0 and α > 0. Using the finite overlapping property, we find that for any
0 < κ < α the sequence

ρλ := 2κ|λ|, (129)

satisfies
sup
x∈D

∑
λ

ρλ|ψλ(x)| ≤ CM
∑
l≥0

2(κ−α)l <∞, (130)

which is (25) in Theorem 1.2.
Note that if we order our wavelet basis from coarse to fine scale, we find for the resulting system

(ψj)j≥1 and sequence (ρj)j≥1 the algebraic behaviour

‖ψj‖L∞ ∼ j−α/d, (131)
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and
ρj ∼ jκ/d. (132)

We thus obtain from Theorem 1.2 the following immediate corollary.

Corollary 6.2 Let (ψj)j≥1 be a wavelet basis with the normalization (128). If (‖ψj‖L∞)j≥1 belongs
to `q(N) then (‖uν‖V )ν∈F belongs to `p(F) for all p such that 2p

2−p > q. In particular, the best n-term
Hermite approximations converge in L2(U, V, γ) with rate n−s for all s < 1

q .

Proof: Since (‖ψj‖L∞)j≥1 belongs to `q(N), we know that qα > d. Since for the given p, we have
q∗ := 2p

2−p > q, we can take κ ∈] dq∗ , α[ and (ρλ) as defined in (129) for this κ. Then, the conditions
of Theorem 1.2 are satisfied for this sequence of weights and for q∗. Hence, (‖uν‖V )ν∈F belongs to
`p(F). This also gives that the approximation rate is n−s with s = 1/p− 1/2 = 1/q∗. By adjusting
p, we can take q∗ < q as close to q as we wish, thereby establishing the rate of convergence n−s for
all s < 1/q. �

Note that if we use sufficiently smooth wavelets, the decay property (128) is equivalent to the
property that the correlation function Cb belongs to the Besov space Bα

∞(L∞(D)), which coincides
with the Hölder space Cα when α is non-integer, and therefore b is almost surely in the Hölder
space Cβ for β < α/2. Thus, we also infer from Theorem 1.2 that if Cb belongs to the Besov space
Bα
∞(L∞(D)) for some α > 0, best n-term Hermite approximations converge in L2(U, V, γ) with rate

n−s for all s < α/d.

6.3 Arbitrary supports

We finally consider functions ψj with arbitrary supports, including the case of globally supported
functions such as the Fourier basis. Let us assume that (‖ψj‖L∞)j≥1 ∈ `q(N) for some 0 < q < 1.
We then find that the choice

ρj := ‖ψj‖q−1
L∞ , (133)

obviously satisfies (25). We also find that (ρ−1
j )j≥1 belongs to `r(N) for r := q

1−q . Therefore,
applying Theorem 1.2, we find that (‖uν‖V )ν∈F ∈ `p(F) when p satisfies r = 2p

2−p or equivalently
1
q = 1

p + 1
2 . Therefore, we obtain the following immediate corollary.

Corollary 6.3 Let (ψj)j≥1 be a family of functions with arbitrary support, and let 0 < p < 2. If
(‖ψj‖L∞)j≥1 belongs to `q(N) with 1

q = 1
p + 1

2 , then (‖uν‖V )ν∈F belongs to `p(F). In particular, best
n-term Hermite approximations converge in L2(U, V, γ) with rate n−s for s = 1

q − 1.

Note that if (jβ‖ψj‖L∞)j≥1 ∈ `p(N) for some β > 1
2 , an application of Hölder’s inequality shows

that (‖ψj‖L∞)j≥1 belongs to `q(N) with 1
q = 1

p + 1
2 . Therefore, the above corollary represents an

improvement over the condition (j‖ψj‖L∞)j≥1 ∈ `p(N) from [19].
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7 Non-optimality of the Karhunen-Loève representation

The previous examples illustrate the role of the support properties of the functions (ψj)j≥1 when
analyzing the convergence rate of best n-term Hermite approximations for the map y 7→ u(y). In
particular, they reveal that faster convergence rates can be obtained in the case of locally supported
functions.

We now discuss a concrete example which illustrates this phenomenon for the approximation
of a PDE with given lognormal coefficients, when we use two different representations of these
coefficients. Here we take

D =]0, 1[, (134)

and therefore consider the equation

−(au′)′ = f, u(0) = u(1) = 0. (135)

We take a = exp(b) where b is a Brownian bridge, that is, a Gaussian process with covariance given
by

Cb(x, x
′) = min{x, x′} − xx′. (136)

There exists two simple explicit representations for this process.

1. The Karhunen-Loève representation is determined by the eigenfunctions and eigenvalues of
the covariance operator, which have the form

ϕj(x) :=
√

2 sin(πjx) and λj :=
1

π2j2
, j ≥ 1, (137)

so that after normalization, we obtain the representation

b(y) =
∑
j≥1

yjψj , ψj(x) :=

√
2

πj
sin(πjx), (138)

where the yj are i.i.d. standard Gaussian random variables.

2. The Levy-Ciesielki representation uses the Schauder basis functions, which are the primitives
of the Haar functions, namely

ψl,k(x) = 2−l/2ψ(2lx− k), k = 0, . . . , 2l − 1, l ≥ 0, (139)

where ψ(x) := max{0, 1/2−|x−1/2|}. Then setting ψj = ψl,k when j = 2l+k, we have again

b(y) =
∑
j≥1

yjψj , (140)

where the yj are i.i.d. standard Gaussian random variables.
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If we use the Karhunen-Loève representation, the analysis carried in this paper does not allow
us to establish any `p summablity of (‖uν‖V )ν∈F for p < 2. Indeed, due to the global nature of
the functions ψj we need to rely on Corollary 6.3 which requires that (‖ψj‖L∞)j≥1 ∈ `q(N) for
some q < 1, which does not hold since this sequence is not `1 summable. Note however that `2

summability is ensured since E(‖u(y)‖2V ) <∞.
In contrast, when using the Levy-Ciesielski representation, which is essentially of wavelet type

with α = 1
2 in (128), we can rely on Corollary 6.2 which shows that (‖uν‖V )ν∈F belongs to `p(F)

for all 1 < p < 2. In particular, best n-term Hermite approximations converge in L2(U, V, γ) with
rate n−s for all 0 < s < 1.

This example reveals that for a given lognormal process, the Karhunen-Loève representation of
the Gaussian process might not be optimal in terms of the resulting convergence rates of the best
n-term Hermite approximation. One heuristic explanation of this fact is that the Karhunen-Loève
representation is optimal in a very specific sense: it minimizes the mean-square L2(D)-error when
truncating b by the J first terms in its expansion. However, in the present setting of the elliptic
diffusion equation, the relevant norm for approximating the functions a and b is not the L2 norm,
but rather the L∞ norm for which the Karhunen-Loève representation has no particular optimality
property.
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