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Albert Cohen, Wolfgang Dahmen, and Ronald DeVore
December 8, 2015

Abstract

This paper is concerned with the performance of Orthogonal Matching Pursuit
(OMP) algorithms applied to a dictionary D in a Hilbert space H. Given an element
f € H, OMP generates a sequence of approximations f,, n = 1,2,..., each of which
is a linear combination of n dictionary elements chosen by a greedy criterion. It is
studied whether the approximations f,, are in some sense comparable to best n-term
approximation from the dictionary. One important result related to this question is
a theorem of Zhang [14] in the context of sparse recovery of finite dimensional sig-
nals. This theorem shows that OMP exactly recovers n-sparse signals with at most
An iterations, provided the dictionary D satisfies a Restricted Isometry Property
(RIP) of order An for some constant A, and that the procedure is also stable in ¢
under measurement noise. The main contribution of the present paper is to give a
structurally simpler proof of Zhang’s theorem, formulated in the general context of
n-term approximation from a dictionary in arbitrary Hilbert spaces H. Namely, it
is shown that OMP generates near best n-term approximations under a similar RIP
condition.

AMS Subject Classification: 94A12, 94A15, 68P30, 41A46, 15A52

Key Words: Orthogonal matching pursuit, best n-term approximation, instance opti-
mality, restricted isometry property.

1 Introduction

Approximation by sparse linear combinations of elements from a fixed redundant family is
a frequently employed technique in signal processing and other application domains. We
consider such problems in a separable Hilbert space H endowed with a norm || - || := || - ||%
induced by the scalar product (-, -) on H X H. A countable collection D = {p, } er C H is

*This research was supported by the ONR Contracts N00014-11-1-0712, N00014-12-1-0561, N00014-
15-1-2181; the NSF Grants DMS 1222715, DMS 0915231, DMS 1222390; the Institut Universitaire de
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Excellence Initiative of the German Federal and State Governments, and RWTH Aachen Distinguished
Professorship, Graduate School AICES.



called a dictionary if it is complete, i.e., the set of finite linear combinations of elements of
the dictionary is dense in H. The simplest example of a dictionary is the set of elements of
a fixed basis of H. But our primary interest is in redundant families. In such a case, there
exists a strict subset of D that is still a dictionary. A primary example of a redundant
dictionary is a frame, e.g., any union of a finite number of bases. Without loss of generality
we shall always assume that the dictionary D is normalized, i.e.,

leylf =1, ~vel.

Given such a dictionary D, we consider the class

%, = 5,(D) = {Z%@v L #(S) < n} CH, n>l (1.1)

yeS

The elements in Y, are said to be sparse with sparsity n. We define
n = inf — Yl
Ou(f)n = Inf [If =gl

which is called the error of best n-term approximation to f from the dictionary D.

An important distinction between n-term dictionary approximation and other forms
of approximation, such as approximation from an n dimensional space, is that the set
>, is not a linear space since the sum of two elements in 3, is generally not in X,
although it is in ¥,,. Thus n-term approximation from a dictionary is an important
example of nonlinear approximation [3] that reaches into numerous application areas
such as adaptive PDE solvers, image encoding, or statistical learning. It also serves as
a performance benchmark in compressed sensing that better captures the robustness of
compressed sensing than results on exact sparse recovery (see [2]).

While there are many themes in n-term dictionary approximation, our interest here is
in analyzing the performance of greedy algorithms for generating n-term approximations
to a given target element f € H. There are numerous papers on this subject. We
refer the reader to the survey article [9] as a general reference. Our particular interest
is in understanding what properties of the dictionary D guarantee that these algorithms
perform similarly to best n-term approximation.

These algorithms and best n-term approximation have a simple description when the
dictionary D is an orthonormal or, more generally, a Riesz basis of H. In this case, the
best n-term approximations to a given f € H are realized by expanding f in terms of the

basis as
f= ey (1.2)

vyel

and retaining n terms from this expansion which correspond to the largest (in absolute
value) coefficients. The typical greedy algorithm will construct the same approximations.
The situation is much less clear when dealing with more general dictionaries.

In the case of general dictionaries, algorithms for generating n-term approximations
are typically built on some form of greedy selection

Ok =Py, k=1,2,..., (1.3)
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of elements from D and then using a linear combination of ¢y,...,y, as the n-term
approximation. The standard greedy algorithm (called the Pure Greedy Algorithm) makes
the initial selection ¢ as any element such that

1 = Argmax [(f, p)|. (1.4)
peD

This gives the approximation f; := (f,¢1)p1 to f and the residual r; := f — fi.
Given that ¢q,...,pr_1 have been selected, and an approximation f,_; from Fjy_; :=
span{ 1, ..., r_1} has been constructed, the next dictionary element ¢y, is chosen as the

best match of the residual
Tk—1 = f - fk*la (15)

in the sense that
o = Argmax |(rp_1, )| (1.6)
yel

There exist different ways of forming the next approximation fj resulting in different
greedy algorithms. We focus our attention on Orthogonal Matching Pursuit (OMP), which
forms the new approximation as

fe = Puf, (1.7)

where Py is the orthogonal projector onto Fj,. OMP is also called the Orthogonal Greedy
Algorithm. More generally, we analyze the Weak Orthogonal Matching Pursuit (WOMP)
where the choice of ¢y, is only required to satisfy

[(re—1, or)| = K max|(re—1, 5)]; (1.8)
vel

where k €]0, 1] is a fixed parameter, which is a more easily implemented selection rule in
practical applications. Once this choice of ¢, ..., p; is made, then f; is again defined
as the orthogonal projection onto Fj. Notice that the WOMP algorithm includes OMP
when one chooses k = 1.

The main interest of the present paper is to understand what properties of a dictionary
D guarantee that the approximation rate of WOMP after O(n) steps is comparable to the
the best n-term approximation error o, (f), at least for a certain range n < N. A related
question, but less demanding, is to understand when WOMP is guaranteed to exactly
recover f whenever f € 3, in O(n) steps for a suitable range of n. This is sometimes
referred to as sparse recovery. It is known that both of these questions have a positive
answer for the entire range of n whenever D is a Riesz basis for H (see Corollary 1.1 of
[3]).

To give a precise formulation of the type of performance we seek, we define the concept
of instance optimality.

Instance Optimality: We say that the WOMP algorithm satisfies instance optimality
of order N, if there are constants A,C > 0, with A an integer, such that for each f the
outputs f, of WOMP satisfy

1f = fanll < Con(f)n, (1.9)



forn < N with C' an absolute constant.

Dictionaries for which WOMP is instance optimal in the above sense are called greedy
dictionaries in [10]. Notice that if (1.9) is satisfied then it implies a positive solution to
the sparse recovery problem for the same range of n since o,,(f) = 0 when f is in 3,,.

The subjects of sparse recovery and instance optimality have a long history docu-
mented in [10] (see Chapter 2, §2.6). We mention briefly some of the results which serve
to orient the present paper. First note that in order to obtain favorable results requires
extra structure on the dictionary D. The main question to be answered is what is the
weakest assumptions on the dictionary under which sparse recovery or instant optimality
hold. The first positive results were obtained under assumptions on the coherence of a
dictionary D C ‘H defined by

p= (D) :=sup{[{p, )| : ¢, €D, ¢ #Y}.

For sparse recovery, Tropp [12] proved that whenever the dictionary has coherence pu <
Tl—p then n steps of OMP recover any f € ¥, exactly.

For instance optimality, Livschitz [7] proved that whenever p < 20%, then after 2n
steps, the OMP algorithm returns f5, € ¥9, such that

1f = fanll < 30m(f)n- (1.10)

A weaker assumption on a dictionary, known as the Restricted Isometry Property
(RIP), was introduced in the context of compressed sensing [1]. To formulate this property,

we introduce the notation
dc = chgow, (1.11)
yerl’

whenever ¢ = (¢, ) er is a finitely supported sequence. The dictionary D is said to satisfy
the RIP of order n € N with constant 0 < § < 1 provided

(1= 0)lellzz < l|@el* < (1 +0)llellio,  llc]w = #(suppe) < n. (1.12)

Hence this property quantifies the deviation of any subset of the dictionary of cardinality
at most n from an orthonormal set. We denote by 9,, the minimal value of ¢ for which
this property holds and remark that trivially 9,, < d,,.1. It is well-known that a coherence
bound

w(D) < (n—1)"" (1.13)

implies the validity of RIP(n) for §,, < (n — 1)u, but not vice versa [12].

In [14], Tong Zhang proved that OMP exactly recovers finite dimensional n-sparse
signals, whenever the dictionary D satisfies a Restricted Isometry Property (RIP) of order
An for some constant A, and that the procedure is also stable in ¢? under measurement
noise. There is a simple way to extend Zhang’s theorem to more general settings. Our
interest is in the following result on instance optimality for WOMP in a general Hilbert
space.

Theorem 1.1 Given the weakness parameter k < 1, there exist fized constants A, C,d*,
such that the following holds for all n > 0: if D is a dictionary in a Hilbert space H for
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which RIP((A + 1)n) holds with a1y, < 0%, then, for any target function f € H, the
WOMP algorithm returns after An steps an approximation fa, to f that satisfies

If = fanll < Conlf)u (1.14)

The values of A, C, k, and §* for which the above result holds are coupled. For example,
it is possible to have a smaller value of A at the price of a larger value of C or of a smaller
value of 0*. Similarly, a smaller weakness parameter x can be compensated by increasing
A.

The two main differences between Zhang’s original theorem and Theorem 1.1 is the
treatment of WOMP in place of OMP and the formulation for dictionaries in a Hilbert
space rather than the original compressed sensing formulation. Theorem 1.1 can be de-
rived from the original results of Zhang (see [8]) by interpreting the error of best n-term
approximation as a measurement noise. In this way, one version of the above result can
be derived from [14] for OMP (x = 1) with 0* = % and A = 30.

There have been several followups to Zhang’s result [8, 11, 5, 6, 13]. These have been
directed at either improving the formulation of the result (for example better constants),
extending the result to a more general setting, such as Banach spaces, or simplifying
the proof. For example, [6], gives the same proof as Zhang, but with different constants
0 = % and A = 12,. The paper [5] gives an extension to cover the case of the WOMP.
Regarding Theorem 1.1, similar results on instance optimality have been derived in [§]
and [11], for the so-called weak Chebyshev greedy algorithm in the more general Banach
space setting. In the case that the Banach space is a Hilbert space these results coincide
with the WOMP of Theorem 1.1. All of these these extensions and modifications utilize
the same structure of proof as in the original proof of Zhang.

The main purpose of the present paper is to provide a conceptually more elementary
proof for Theorem 1.1. Namely, the proof in [14] and [6] is based on an induction argument
which involves an additional inner auxiliary greedy algorithm at each iteration (initialized
from a non trivial sparse approximation in each inner loop). Our proof avoids using
this auxiliary step. We give the new proof in the following section. We then give some
observations that can be derived from Theorem 1.1. We note that our proof is not fighting
to obtain the best known constants in Zhang’s theorem or its generalization Theorem 1.1.

In this paper, we shall sometimes use the notation ®*v = ((v, ¢,)) er for any v € H,
and cp to denote, for any ¢ = (¢,),er and T C I', the sequence whose entries coincide
with those of ¢ on T" and are 0 otherwise.

Remark 1.2 Our results are formulated in the framework of an arbitrary Hilbert space
H, which is in general infinite dimensional, and the dictionary D has countably infinite
cardinality. This raises the question of the practical implementation of OMP or WOMP,
since (1.6) involves the search of a maximum within an infinite sequence. In most applica-
tions, this problem can be solved by exploiting estimates on the numerical size of the inner
products |(ry_1, )|, which can be obtained from a-priori estimates for the inner products
[(f, 04| and [(p~,u)|. For example, in the case where the dictionary is a wavelet or Ga-
bor frame, smoothness properties of f imply specific estimates for [(f, p4)|. Such a-priori
estimates typically allow one to reduce the mazimum search in (1.6) to a finite subset of
D.



Remark 1.3 The RIP property is usually formulated and proved in a finite dimensional
context, typically for certain classes of random matrices [6]. Here, we formulate RIP in a
possibly infinite dimensional context. Fxamples of dictionaries from infinite dimensional
Hilbert spaces that satisfy RIP include certain redundant frames. As a simple example,
for the space H = L*([0,1]), consider the dictionary D consisting of the non-harmonic
trigonometric functions

en(t) = exp(i2want), n € Z, (1.15)

for some fixred 0 < a < 1. With the notation a = 1 — ¢, it is then readily seen that for
n # m one has the coherence property
exp(i2re(m —n)) — 1 €

[(ens em)| = 2ma(n —m) = 1—¢ (1.16)

which is known to imply RIP of order n with constant § = (n—1)7= <1 fore < % Note
that iof D is a Riesz basis in some Hilbert space, then, after proper normalization of the
basis vectors, RIP holds at any order n with a fixed 6 that depends on the Riesz constants.
Thus, in such a case and if 0 is sufficiently small, Theorem 1.1 shows that near-best
n-term approximations can be produced by application of OMP or WOMP for arbitrary
high values of n. This is an interesting alternative to the natural strategy that consists in
retaining the n largest components of f in the Riesz basis, since the computation of these
components requires manipulating the dual basis which may not have a simple expression.

The remainder of the paper is organized as follows. Section 2 is devoted to the proof of
Theorem 1.1 while we conclude in Section 3 with some consequences of this theorem , in
particular, highlighting the relation to instance optimal decoders in compressed sensing.

2 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. We begin with the following elemen-
tary lemma which guarantees the existence of near best n-term approximations from a
dictionary.

Lemma 2.1 Let D be a dictionary in a Hilbert space H that satisfies RIP(2n). Then,
(i) the set X, of all n-term linear combinations from D is closed in H.
(ii) For each f € H, € >0, there exists a g € X, such that

If =gl < A+ e)onlf)n- (2.1)

Proof: To prove (i), we let (¢%)r>0 be a sequence of elements from Y, that converges in
‘H towards some g € H. We may write

¢ = dck = c{jgpv, (2.2)
~el

with ||c¥||o < n. For any € > 0, there exists K such that

lg" —d'll <e, k1=K (2.3)
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From RIP(2n), it follows that
€

V1=10y,

which shows that the sequence (c¥);>¢ converges in ¢2 to some ¢ € 2. In particular, we
find that

lc* —!le < (2.4)

lim cf; =c, el (2.5)

k—+o00

If ¢, # 0 for more than n values of 7y, we find that ||c*||0 > n for k sufficiently large which
is a contradiction. It follows that g = ZWGF Cyipy € .

To prove (ii), let g* € ¥, be such that ||gy — f|| = on(f)n. If 0,(f) > 0, then g = g~
will satisfy (i) if k is sufficiently large. On the other hand, if o, (f) = 0, then ¢g* — f,
k — oo. By (i) f € ¥, and so we can take g = f. a

2.1 Reduction of the residual

Our starting point in proving Theorem 1.1 is the following lemma from [14] which quan-
tifies the reduction of the residuals generated by the WOMP algorithm under the RIP
condition. In what follows, we denote by

Sk = {1, %} (2.6)

the set of indices selected after k£ steps of WOMP applied to the given target element
f € H, and denote as before the residual by r, = f — fi.

Lemma 2.2 Let (fx)r>1 be the sequence of approximations generated by the WOMP al-
gorithm applied to f, and let g = ®z with z supported on a finite set T'. Then, if T is not
contained in Sy, one has

2(1-90)
2 o 2 R ( 2 s A2 9.7
[ ll™ < el #(T\Sk)(nr’“” 1f = 9gll%), (2.7)
where 6 = Ou(rus,) 5 the corresponding RIP-constant and k €)0,1] is the weakness

parameter in the WOMP algorithm.

The above lemma quantifies the reduction of ||| at each iteration, provided that T is
not contained in Sy and that ||f — g|| < ||rx||. Note that in the case when T C S, we
then have ||7x]| < ||f — g||. For the convenience of the reader, we recall the proof of this
lemma at the end of this section.

At this point, we depart from the arguments in [14] with the goal of providing a simpler
more transparent argument. An immediate consequence of Lemma 2.2 is the following.

Proposition 2.3 Assume that for a given A > 0 and 6* < 1, RIP((A + 1)n) holds with
Satiyn < 6%, If g = @z, where z is supported on a set T' such that #(T') < n, then for
any non-negative integers (j,m, L) such that 0 <#(T'\ S;) < m and j +mL < An, one
has

rjmel® < e 0 12 |1 f = gl (2.8)



Proof: By Lemma 2.2, if ¢ = ®z where z is supported on a set T" such that #(7) < n,
then for any non-negative integers (j, m, L) such that #(7°\ S;) < m and j +mL < An,
one has

mL
1= R2(1=8%)/m)" max{0, ) ~ I — g}

max{0, [7jme||* = If —glI*} <
—H2 _S%
< e U max{0, [|r 12 — || f — gl1%}

where we have used the fact that #(7°\ S;) < m for all [ > j. This gives (2.8) and
completes the proof of Proposition 2.3. O

Proof of Theorem 1.1: We fix f and use the abbreviated notation
on i =0n(f)u, n>0. (2.9)
We first observe that the assertion of the theorem follows from the following.
Claim: If 0 < k < n satisfies
74k < 204, (2.10)

and is such that o, < %, then there exists k < k' < n such that
HTA/C’H < 20’kl. (211)

Indeed, assuming that this claim holds, we complete the proof of the Theorem as
follows. We let k be the largest integer in {0,...,n — 1} for which [|rag| < 20y. Since
Ioll = 00 = || f||, such a k exists. Since k is maximal, according to the claim, we must
have o}, < 40,, and therefore

17 4n]l < [[raxll < 203 < 80, (2.12)

we see that (1.14) holds with C' = 8.
We are therefore left with proving the claim. For this, we fix

1
== 2.1
5= (213)

and 0 < k < n such that (2.10) holds and such that o, < Zt. Let & < K < n be the first

integer such that ox < %t. By (ii) of Lemma 2.1 we know that for any B > 1 there is a
g € Xk with || f — g|| < Bok. Therefore, g has the form

g=0z2=Y 2, #(T)=K. (2.14)

yeT

The significance of K is that on the one hand
B
If —gll < Bog < 7k (2.15)

while on the other hand
O S 40'[(,1. (216)
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To eventually apply Proposition 2.3 for the above g and 7 = Ak, we need to bound
#(T \ Sar) with A yet to be specified. To this end, we write K = k + M, with M > 0,

and observe that if S C T is any set with #(5) = M and gg := Zyes 2~ then

B
lgsll = [If = (9= gs)l = IIf — gll = o, — Bog = (1 —~ Z)ak, (2.17)

where we have used the fact that g — gs € 3. Using RIP, we obtain the following lower
bound for the coefficients of g: for any set S C T of cardinality M, we have

B\?2 . 7
(1=7) ot < lgsl < (1489 D[22 = 2 |52 (2.18)
veS vyeS

Next define S, to be the set of the M smallest coefficients in absolute value of g. Then
for any S C T with #(S) > M, one has (zwes 127‘2)/<27€Sg ‘Zv|2) > #(S)/M, and

hence,
6 B\2#(S) 2
~yES
Now, we consider the particular set S := T \ Sax. For such a set, if we write
g — far = Z 2Py (2.20)
YETUS A

we find that Z, = z, when v € S. Therefore, if #(5) > M,
6 B\2#(S) , -2
YETUS A

and the above bound combined with the RIP implies

1_5*@ 1_§2ﬁ2< _ 2 <« _ 2
( 2(1—-7) ok <llg— farl® < (lg = £l + llral)

2
< (Bog + 204)* < (% + 2> oz,

Since 0* = 1/6 this gives the bound

2
?)
~— M < 13M, (2.22)
(1-%)

where the second inequality is obtained by taking B sufficiently close to 1.

We proceed now verifying the claim with ¥ = K — 1 when K — 1 > k and with
k' = k + 1 otherwise. In the first case we can use the reduction estimate provided by
Proposition 2.3 with j = Ak in combination with (2.16) to deal with the term ||rax| in
(2.8). When K = k + 1, however, we cannot bound ||7 || directly in terms of a o; for
some [ > k. Accordingly, we use Proposition 2.3 in different ways for the two cases.

#(T\ Sar) < g<z+

9



In the case where M > 2, ie., K —1 > k, we apply (2.8) with j = Ak, m = 13M and
L = [4k7?]. Indeed Ak + Lm = Ak + 13M[4x~%] < An holds for k + M < n whenever
A > 13[4k%]. Moreover, notice that for such an A

AK—1)=Ak+ AM - 1) > Ak + %AM = Ak + é—?ZAk + Lm, (2.23)
whenever
A >26[4k77]. (2.24)
This gives

Irag—nll® <1 ansoml?
< e Bl + 1f = gll?
< 6—10/3402 + B20f(
< e 640} | + Boj_,
<doy_y,

where we have used (2.16) in the fourth inequality, and the last inequality follows by
taking B sufficiently close to 1. We thus obtain (2.11) for the value ¥’ = K — 1 > k.
In the case M =1, 1i.e., K = k+ 1, we apply (2.8) with j = Ak, m = 13 and

L =[6k"7].

In fact, from (2.22) we know that #(7°\ Sax) < 13 and An > A(k+1) > Ak +mL for A
satisfying (2.24). This yields

Irages 1> < 1rakeme|?
< e Prarll> +1f — gl
< de o} T BZJkH

(46*5 + 75 > op.

This implies that S441) contains T'. Indeed, if it missed one of the indices v € T', then
we infer from the RIP,

(L=0%z <llg— fagrnll?
< (If = gll + lIragenll)?

<BO‘K +4/4e 5 + 1—60k>
( + \/46*5+f—6> op.
)

On the other hand, we know from (2.19) that

IN

6 B\2
;(1 - Z> o < |27 (2.25)

10



2 2
which for B sufficiently close to 1 is a contradiction since g (1—%) > g(%jﬂ [4e=d + 113—;) )
This implies that ||ra@11)|| < ok41, and therefore (2.11) holds for the value &' = k + 1.
This verifies the claim and hence completes the proof of Theorem 1.1. O

Proof of Lemma 2.2: First observe that, since r, = f — P, f is the orthogonal projection
error,

il = 1f = Prsa fIP?
= |If = PefI? = (Px = Piga) f1?
< lrell* = K, @)

Therefore, it suffices to prove that ||rg|* — [(rk, ¢4,.,)|* is bounded by the right hand side
of (2.7) which amounts to showing that

(L= 0)llrell* = If = gllI*) < 57T\ Se) (i, o) (2.26)

We may assume that ||rg|| > || f — g|| otherwise there is nothing to prove. To prove (2.26),
we first note that

2lg = Sl Vllrell> = I1f —gl> < llg = fill®> + llrell® = I1f — gll?
= llg = full? + Irell® = llg = fe — mell
<29 = fe.e)| = 2|{g, k)|

This is the same as )
(g, &)

lg — full*
If we write f, = ®c”*, with c* supported on S, then the numerator of the right side
satisfies

(g, i)l = [Pz, 74)]|

= |(zsg, 71k )0, |

lrell® =11 f = gll* < (2.27)

< |lzs;

AR

< K_1||ZS,‘§||Z1|<TIC7 907k+1>|

< KTVHET SO llzsg llea | (rrs 03000
<K WA\ Sp)llz — el (res o)
On the other hand, recalling that = dx(s,ur), the denominator satisfies by the RIP,
lg = full* = [ ®(z = M)[* > (1 = &) ||z — |7 (2.28)
Therefore we have obtained

(T\ Se)l{re; oyepi)

#
2 2

(2.29)

which is (2.26). O
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3 Near-best n-term approximations

We close this paper with some remark concerning the type of near-best n-term approxi-
mations that can be obtained using WOMP.

Let us observe first that Theorem 1.1 does not give that f, is a near-best n-term
approximation in the form

||f - fn” S C()an(f>7'b (31)

where n is now equal on both sides of the inequality. However, a simple postprocessing of
fan by retaining its n largest components in absolute value does satisfy (3.1).

Theorem 3.1 Under the assumptions of Theorem 1.1, let fa, = ®cA™ be the output of
WOMP after An steps. Let T C T', #(T) = n, be a set of indices corresponding to n
largest (in abolute value) entries of cA". Define f: € X, to be the element obtained by
retaining from fa, only the n-terms corresponding to the indices in T'. Then,

If = fall < Cou(fn, (3.2)

where the constant C* depends on the constant C' in Theorem 1.1 and on the RIP-constant
O(At+1)n-

Proof: By Lemma 2.1, there exists a ¢ with ||c||,, < n, such that

If — @c| < 204(f)n. (3.3)

It follows that
1

V1= 90t

Since || — c£"||4, < ||eA™ — ¢||,, We have

C+2

V1=t

lc — ¢l < |[Pc — || <

on(f) (3.4)

le—cile < fle— ™o+ e — e
< 2fc— Mg, (3.5)
which, by (3.4), provides
. . 2(C +2
e = ctlle < 2c — e < —2CF2D o (). (3.6)
1 —dcatiyn

The approximation ®c4" is in ¥, and satisfies

2./1 + 5(A+1)n(C + 2)
1 —dati)n

I = ®ei| < 200(Fe + (et — o) < (2+ JoulPw (37)

which proves (3.2). O
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Remark 3.2 When asking instead for recovering the signal c from f = ®c one should
note though that the best n-term approzimation of cA™ provided by WOMP is not neces-
sarily a near-best approximation to the signal c in (2. The recovery of ¢ from f = ®c up
to o,(c)e2, also called instance optimality in 2, was discussed in [2] where it is proved that
this objective cannot be attained under general RIP conditions. Nevertheless, the results
in [2] combined with Zhang’s theorem also show that, in the finite-dimensional setting,
instance-optimality in €* holds for any c with high probability when the sensing matrices
are drawn from standard families of random matrices.
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