
HAL Id: hal-01239749
https://hal.science/hal-01239749

Submitted on 15 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for equivalence and reduction to minimal
form for a class of simple recursive equations

Bruno Courcelle, Gilles Kahn, Jean Vuillemin

To cite this version:
Bruno Courcelle, Gilles Kahn, Jean Vuillemin. Algorithms for equivalence and reduction to minimal
form for a class of simple recursive equations. Yves Bertot; Gérard Huet; Jean-Jacques Lévy; Gordon
Plotkin. From Semantics to Computer Science Essays in Honour of Gilles Kahn, Cambridge University
Press 1974, From Semantics to Computer Science Essays in Honour of Gilles Kahn, 9780521518253.
�10.1017/CBO9780511770524.009�. �hal-01239749�

https://hal.science/hal-01239749
https://hal.archives-ouvertes.fr

8

Algorithms for equivalence and reduction to
minimal form for a class of simple recursive

equations
Bruno Courcelle, Gilles Kahn, Jean Vuillemin

IRIA Laboria, Rocquencourt, France

Foreword

This document presents a translation for historical perspective of
the paper: “B. Courcelle, G. Kahn, and J. Vuillemin. Algorithmes
d’équivalence et de réduction à des expressions minimales dans une classe
d’équations récursives simples, in, Jacques Loeckx, editor, Automata,
Languages and Programming, volume 14 of Lecture Notes in Computer
Science, pages 200–213. Springer Verlag, 1974”. This text is published
with kind permission of Springer Science and Business Media. This text
was translated from French to English by T. Veldhuizen of Waterloo
University, Canada.

Abstract

In this paper, we describe an algorithm for deciding equivalence in a
domain whose objects are defined by uninterpreted fixpoint equations.
The algorithm is then applied to finding minimal representations of those
objects.

8.1 Introduction

Many recent works, for example [4, 8, 9, 11] use the notion of fixpoint
equation to express semantics of programming languages. We study here
a “pure language of fixpoints” with uninterpreted function symbols,
which omits in particular the conditional operator if-then-else.

In the study of fixpoint equations, of which a typical example is the
equation X = f(X, g(X)), we ask certain questions, for example:

From Semantics to Computer Science Essays in Honour of Gilles Kahn, eds Yves
Bertot, Gérard Huet, Jean-Jacques Lévy and Gordon Plotkin. Published by Cambridge
University Press. c© Cambridge University Press 2009.

169

170 B. Courcelle, G. Kahn and J. Vuillemin

• is the equation X = f(X, g(X)) equivalent to the equation Y =
f(f(Y, g(Y)), g(Y))?

• does there exist a simpler equation equivalent to

Z = g(g(Z))

or to the system {
X = f(Y, g(X), Y)
Y = g(X)

• can the variable X defined by the system{
X = f(X, Y)
Y = g(X, Y)

be defined by a single equation?

In the second section, we study simple recursive equations. We show
the existence of canonical forms characterizing a class of equivalent
equations. The canonical form minimizes the size of the equation in its
equivalence class.

The third section, independent of the first (except where definitions
of syntax and semantics are concerned), studies the same problems for
systems of recursive equations, deriving a notion of canonical form that
minimizes the number of equations in the system. This last problem is
then addressed and resolved.

This work is motivated by a variety of questions such as the study of
recursive datatype definitions in Algol 68 (C. Lewis and B. Rosen [6]),
the formalization of equivalence proofs of parallel programs (G. Kahn
[4]) and the study of decidable sub-theories of the theory of program
schemas.

Other authors (J. Engelfriet [3], C. Pair [10], J. Kral [5]) have indepen-
dently obtained related results in syntactically and semantically different
frameworks.

8.2 Simple recursive equations

For clarity of exposition, we start by defining fixpoint equations in a
single unknown.

Equivalence for simple recursive equations 171

8.2.1 Syntax

Terms are constructed from function symbols {F, G, H, . . .} each having
some arity, and from the variable symbol X by the rules.

(i) Function symbols of arity 0 (or constants) and the symbol X are
terms.

(ii) If T1, T2, . . . , Tn are terms and F is a function symbol of arity n,
then F (T1, T2, . . . , Tn) is a term.

If T is a term, X = T is a fixpoint equation.
In what follows, it is useful to define a partial order ≤ on the set of

terms by the following rules:

(i) For all terms T , we have X ≤ T .
(ii) If T1 ≤ T ′

1, . . ., Tn ≤ T ′
n then F (T1, . . . , Tn) ≤ F (T ′

1, . . . , T
′
n).

For other terms, T1 ≤ T2 if and only if T2 is the result of substituting
in T1 some terms for some occurrences of X.

Example 8.1

F (X, G(X, X)) ≤ F (H(X), G(X, H(X)))

but F (X, G(X, X)) �≤ F (X, H(X)).

When given two terms T and T ′, we can define a lower bound Σ(T, T ′)
such that Σ(T, T ′) ≤ T and Σ(T, T ′) ≤ T ′ in the following manner:

Σ(T,X) = Σ(X, T) = X

Σ(F (T1, T2, . . . , Tn), G(T ′
1, T

′
2, . . . , T

′
m)) = X if F �= G

Σ(F (T1, T2, . . . , Tn), F (T ′
1, T

′
2, . . . , T

′
n)) = F (Σ(T1, T

′
1), . . . ,Σ(Tn, T ′

n))

Example 8.2 Σ(F (X, G(X)), F (G(X), H(X)) = F (X, X)

Notation For a term T in which the letter X occurs m times, we
denote by T{T1, . . . , Tm} the result of substituting the term Ti for the
ith occurrence of X in T , for each i in [1, m].

Lemma 8.3 For all terms T and T ′ there exist terms T1, . . . , Tm and
T ′

1, . . . , T
′
m such that:

T = Σ(T, T ′){T1, . . . , Tm}
T ′ = Σ(T, T ′){T ′

1, . . . , T
′
m}

172 B. Courcelle, G. Kahn and J. Vuillemin

8.2.2 Semantics

(a) We interpret fixpoint equations in a domain D which must satisfy
the following requirements:

(i) The set D is provided with a partial order relation ⊆. We write
≡ for the induced equivalence relation.

(ii) There exists in D a least element ⊥.
(iii) Every denumerable ascending chain has a least upper bound.

This structure, which is slightly less restrictive than that of complete
lattice, used by D. Scott [11], and was also used in [7], [8] and [12].

(b)

(i) With each constant symbol C is associated an element c in D.
(ii) With each function symbol F of arity n is associated a map f

from Dn to D which is monotone and continuous in each of its
arguments. (See R. Milner [7] for a definition of these notions).

(iii) With each term T is associated in a natural way a map t from
D to D, and with the fixpoint equation X = T we associate the
least fixpoint of t:D → D which we again call the least fixpoint
of the equation. It is defined as the upper bound in D of the set
{tn(⊥) | n ≥ 0}. (See again [7]).

Convention We systematically use upper-case letters to designate
syntactic objects, and lower-case letters to designate the associated
semantic objects.

(c) We are now going to construct a canonical interpretation of our
language, which plays the role of the Herbrand universe for first-order
theories. The domain D of the canonical interpretation consists of the set
of infinite sequences of terms {Ti | i ∈ N} constructed with the variable
X such that Ti ≤ Ti+1 for all i ≥ 0.

We now define an order relation ⊆ on D: if τ = {Ti | i ∈ N} and
τ ′ = {T ′

i | i ∈ N} are two elements of D, then τ ⊆ τ ′ if and only if
∀i ∃j Ti ≤ T ′

j .
The minimal element of D is ⊥ = {Ti | ∀i ∈ N, Ti = X}. Every chain

τ1 ⊆ τ2 ⊆ · · · ⊆ τi ⊆ · · · in which τi = {T ′
i | j ∈ N} admits an upper

bound τ =
⋃

i∈N
τi = {T ′

i | i ∈ N} where for all i, T ′
i = T i

ni
, and the

sequence ni chosen so that ∀i(ni ≥ i and T i
ni
≤ T i+1

ni+1
). (There exists

such a sequence since the τi’s form an ascending chain.)

Equivalence for simple recursive equations 173

A constant C is therefore interpreted as the sequence:

c = {Ti | Ti = C, i ∈ N}

The interpretation f of an n-ary symbol F maps n sequences {T i
k | k ∈

N} for i in [1, n] to the sequence {F (T 1
k , T 2

k , . . . , T n
k) | k ∈ N}. It is easy

to verify that we have a legitimate interpretation. (More rigorously, the
interpretation domain that we have considered is D/ ≡).

We write P{A/X} for the result of substituting A for all occurrences
of X in a term P . We can verify that in our canonical interpretation
Y (t) = {T i | i ∈ N} with

T 1 = T and T i+1 = T{T i/X}

The interest in the canonical interpretation arises from the following
lemma:

Lemma 8.4 Two fixpoint equations are equivalent if and only if they
are equivalent in the canonical interpretation.

Proof It suffices to demonstrate that if X = T and X = T ′ are equivalent
in the canonical interpretation c, they must be equivalent in all other
interpretations I.

Let the fixpoints of these equations be Y (t) = {T i | i ∈ N} and
Y (t′) = {T ′j | j ∈ N} in the canonical interpretation. It is easy to verify
that T1 ≤ T2 implies t1(⊥) ⊆I t2(⊥) for all interpretations I. From
∀i ∃j T i ≤ T ′j we deduce

∀i ∃j ti(⊥) ⊆I t′j(⊥)

and by symmetry

∀k ∃l t′k(⊥) ⊆I tl(⊥).

Consequently, in I,
⋃

i∈N
ti(⊥) ≡I

⋃
i∈N

t′j(⊥).

We can now state two technical lemmas that will be useful later.

Lemma 8.5 If two terms F (T1, . . . , Tn) and G(T ′
1, . . . , T ′

m) are equal in
the canonical interpretation, then F = G, n = m, and for all i, Ti = T ′

i

in the canonical interpretation.

Proof Let {T i
k | i ∈ N} and {T ′i

k | i ∈ N} be the interpretations of Tk

and T ′
k. Since:

∀i ∃j F (T i
1, . . . , T

i
n) ≤ G(T ′j

1 , . . . , T ′j
m)

174 B. Courcelle, G. Kahn and J. Vuillemin

from which we deduce F = G, n = m and

∀i ∃j T i
k ≤ T ′j

k (k ∈ [1, n])

and the opposite inequality also holds.

Lemma 8.6 For all terms T and T ′, if Y (t) ⊆ Y (t′) in the canonical
interpretation, then either T = X or Y (t) ≡ Y (t′).

Proof (a) First we define two notions of “depth” of a term T , pmax(T)
and pmin(T):

pmax(X) = pmax(C) = 1

(if C is a constant)

pmax(F (T1, . . . , Tn)) = 1 + max
1≤i≤n

{pmax(Ti)}
pmin(X) = 1 ; pmin(C) = +∞

(if C is a constant)

pmin(F (T1, . . . , Tn)) = 1 + min
1≤i≤n

{pmin(Ti)}

These notions allow us to state the following “alignment” property:
if T1, T2, T3 satisfy T1 ≤ T3 and T2 ≤ T3 and pmax(T1) ≤ pmin(T2)
then T1 ≤ T2. The proof is done easily by structural induction. We can
represent this situation by the following figure:

T

T

T

1

3

2

Equivalence for simple recursive equations 175

(b) Now, given two fixpoints Y (t) = {T i | i ∈ N} and Y (t′) = {T ′i | i ∈
N}, if they satisfy Y (t) ⊆ Y (t′) then ∀i ∃j T i ≤ T ′j .

Let us also show that if we have ∀j ∃i T ′j ≤ T i, if T �= X. Given T ′j ,
we can always find an i such that

pmin(T i) ≥ pmax(T ′j)

It is therefore possible to choose k such that k ≥ j and T i ≤ T ′k. Then
T ′j ≤ T ′k and by the alignment property T ′j ≤ T i. Then Y (t′) ⊆ Y (t).

8.2.3 Normal form and equivalence algorithm

We are going to show that the set of terms leading to equivalent fixpoint
equations is closed under the operation Σ.

Notation If two terms T and T ′ have interpretations t and t′ in
the canonical interpretation, we write σ(t, t′) for the interpretation of
Σ(T, T ′).

Lemma 8.7 If t(a) ≡ t′(a) for some a, then σ(t, t′)(a) ≡ t(a) ≡ t′(a).

Proof By structural induction on T :

(1) If T = X or T = C the property is obvious.
(2) If T = F (T1, . . . , Tn) two cases arise:

• T ′ = X, then Σ(T, T ′) = X and the property holds;
• T ′ = G(T ′

1, . . . , T
′
m) and so necessarily F = G, m = n and

t′i(a) = ti(a) for all i in [1, n]. By the induction hypothesis,
σ(ti, t′i)(a) = ti(a) and therefore

t(a) = f(σ(t1, t′1)(a), . . . , σ(tn, t′n)(a)) = σ(t, t′)(a).

Lemma 8.8 If two terms T and T ′ have the same fixpoint, then Σ(T, T ′)
also has the same fixpoint. In other words Y (t) ≡ Y (t′) implies Y (t) =
Y (σ(t, t′)).

Proof We have Y (t) ≡ t(Y (t)) ≡ Y (t′) ≡ t′(Y (t′)) ≡ t′(Y (t)).
By Lemma 8.7 we obtain σ(t, t′)(Y (t)) = Y (t) and by minimality
Y (σ(t, t′)) ⊆ Y (t). Lemma 8.6 therefore implies:

176 B. Courcelle, G. Kahn and J. Vuillemin

• either Y (σ(t, t′)) ≡ Y (t) and the proof is finished;
• or Σ(T, T ′) ≡ X, but this is compatible with Y (t) = Y (t′) only if

T = T ′ = X in which case we again have Y (σ(t, t′)) = Y (t).

We are now ready to show (non-constructively) the existence of a
minimal form for the set of terms leading to equivalent fixpoint equations.

We write ‖T‖ for the size of a term T , defined recursively by:

(1) ‖X‖ = 0
(2) ‖F (T1, . . . Tn)‖ = 1 +

∑n
i=1 ‖Ti‖.

Lemma 8.9 In the set E(T) = {T ′ | Y (t′) ≡ Y (t)} of terms having the
same least fixpoint as T , there exists an element T ∗ of minimal size.

Proof Let T1 and T2 be two different terms of E(T) of minimal size. Then
T1 and T2 are inevitably incomparable, otherwise, from Lemma 8.3, one
of the two would be of size strictly less than the other. But then, again
‖Σ(T1, T2)‖ < ‖T1‖ from the lemma. Since E(T) is closed under Σ by
Lemma 8.8, T1 and T2 cannot be minimal.

For the moment, Lemma 8.9 does not allow the construction of T ∗,
but we will present a syntactic relation between all the terms having the
same fixpoint as T ∗. We write T ′ → T ′′ for the relation defined by these
axioms:

(i) (T → T

(ii) T → U (T → U{{X/T}}

where the notation U{{X/T}} indicates that some occurrences of X in
U have been replaced by T . We write D(T) = {U | (T → U}.

Theorem 8.10 The set E(T) of terms having the same least fixpoint as
T is identical to the set D(T ∗) = {U | (T ∗ → U} of terms deriving
from the minimal element T ∗ of E(T).

Proof Of course E(T) = E(T ∗). The fact that D(T ∗) ⊆ E(T ∗) is already
known (for example cf. [10]). We now show that E(T ∗) ⊆ D(T ∗): let
T ′ be a term of minimal size belonging to E(T ∗) and not to D(T ∗).
We necessarily have T ∗ ≤ T ′ because T ∗ is a normal form. So, T ′ =
T ∗{T1, . . . Tk}. Since T ′ is in E(T ∗), we have

Y (t∗) ≡ Y (t′) ≡ t′(Y (t′)) ≡ t′(Y (t∗)).

Equivalence for simple recursive equations 177

Therefore t∗(Y (t∗)) = t′(Y (t∗)).

From Lemma 8.5, we deduce Y (t∗) ≡ ti(Y (t∗)) for i ∈ [1, k]. By
minimality and with Lemma 8.6, we obtain Y (ti) = Y (t∗). But since the
Ti’s are smaller than T ′ they are by hypothesis in D(T ∗). Consequently
T ′ is in D(T ∗).

Theorem 8.10 implies that the normal form T ∗ of T is a subterm of
T , namely the smallest subterm T ∗ such that T ∗ → T . This gives us an
algorithm for computing this normal form and a decision procedure for
the equivalence of two fixpoint equations. Rather than presenting these
two algorithms in greater detail here, we now proceed to the general
case, that of systems of fixpoint equations.

8.3 Systems of recursive equations

The results obtained in the second section extend to the case of systems
of fixpoint equations: with each system, one can associate a canonical
system of minimal size (the “size” of a system is the sum of the sizes of
its constituting equations). Thus, one obtains an algorithm for deciding
the equivalence of two systems and one can also compute an equivalent
system with a minimal number of equations. However, this last system
is not necessarily unique.

8.3.1 Syntax

We use a set Ξ = {X1, . . . , Xn} of variables.
A system is:

(i) a family of fixpoint equations Xi = Ti, for i = 1, 2, . . . n. The terms
Ti are constructed over the variables Xi, i ∈ [1, n].

(ii) A main variable X1.

A system is said to be connected if all its equations are needed to
compute X1, with the following definition: the equation Xi = Ti and
all the equations necessary for variables of Ti are needed to compute
Xi. The size of a system S = {Xi = Ti | i ∈ [1, n]} is defined by
‖S‖ =

∑n
1 ‖Ti‖ and a system is said to be uniform if for all i, ‖Ti‖ = 1

i.e., if Ti contains a single function symbol.

178 B. Courcelle, G. Kahn and J. Vuillemin

8.3.2 Semantics

If we interpret terms as in Section 8.2.2 in a domain D, then for the
set {Ti | i ∈ [1, n]} one gets an obvious map from Dn to Dn and
thus a fixpoint in Dn. We write Y (xi) for the component of this vector
corresponding to the variable Xi.

Two systems S and S′ are equivalent if, for all interpretations we have
Y (x1) ≡ Y (x′

1). The notion of canonical interpretation extends trivially
and the reader may verify that Lemma 8.4 remains valid.

A system {Xi = Ti | i ∈ [1, n]} is said to be normal if it is not
equivalent to a system {Xj = Tj | j ∈ [1, n]} in which the Tj ’s are
subterms of the Ti and at least one of them is a proper subterm or a
variable.

A proper subterm of T is a subterm of T different from T .
The case of a system containing a single equation, the system is normal

if the equation is in normal form.

8.3.3 Canonical systems

Given a system S = {Xi = Ti | i ∈ [1, n]} we start by constructing a
uniform system S equivalent to it. For example:

S =
{

X1 = F (X1, G(X1, X2))
X2 = H(F (X1, X2))

(main variable X1)

S =

Y1 = F (Y1, Y3)
Y2 = H(Y4)
Y3 = G(Y1, Y2)
Y4 = F (Y1, Y2)

(main variable Y1)

Formally, S is constructed as follows: let us call J = {τi | i ∈ [1, m]}
the set of proper subterms of S (in the case of our example: J =
{X1, X2, F (X1, X2), G(X1, X2)}.) The system S is constructed over new
variables Yi, i ∈ [1, m] associated as follows with elements of J :

(1) If τi = Xi and if Xi = F (τi1 , . . . , τik
) is an equation of S, then

Yi = F (Yi1 , . . . , Yik
) is an equation of S.

(2) If τi = F (τi1 , . . . , τik
) then Yi = F (Yi1 , . . . , Yik

) is an equation of
S.

(3) The main variable of S is the new variable Y1 associated with X1.

Equivalence for simple recursive equations 179

Lemma 8.11 S ≡ S

Lemma 8.12 If S is connected, then S is connected. If S is normal,
then S is normal.

For a uniform system S = {Xi = Fi(Xi1 , . . . , Xik(i)) | i ∈ I} we
compute the equivalence relation over variables defined by Y (xi) ≡
Y (xj) for all interpretations, which we write Xi ≡ Xj . We inductively
define an increasing sequence of subsets of Ξ× Ξ, if Ξ = {Xi | i ∈ I}:

(1) D0 = {(Xi, Xj) ∈ Ξ× Ξ | Fi �= Fj}
(2) Dn+1 = Dn ∪ {(Xi, Xj) ∈ Ξ× Ξ | Fi = Fj ∧

∃m ∈ [1, k(i)] such that (Xim
, Xjm

) ∈ Dn}

Lemma 8.13

(i) There exists an integer l such that Dl =
⋃∞

n=0 Dn.
(ii) Xi ≡ Xj if and only if the pair (Xi, Xj) does not appear in Dl.

Proof (i) The existence of l comes simply from the fact that Ξ is finite.
Let us prove (ii) by Scott induction (cf. [5]) on the formula Φ:∧

{Xi ≡ Xj |(Xi, Xj) �∈ Dl}

First of all,
∧

Ω ≡ Ω. In addition, Φ implies:

Φ{T1/X1, . . . , Ti/Xi, . . . , Tn/Xn}

since (Xi, Xj) �∈ Dl leads to Ti ≡ Tj .

Theorem 8.14 The equivalence of two systems of fixpoint equations is
decidable.

Proof Lemma 8.11 makes it possible to reduce to the case of uniform
systems. If S = {Xi = Ti | i ∈ I} and S′ = {X ′

i = T ′
i | i ∈ I ′}, it is

always possible to ensure that Ξ = {Xi | i ∈ I} and Ξ′ = {X ′
i | i ∈ I ′}

are disjoint and to consider the system

S′′ = {Xi = Ti, X ′
j = T ′

j | i ∈ I, j ∈ I ′}.

The algorithm of Lemma 8.11 tells us whether X1 ≡ X ′
1.

Corollary 8.15 The equivalence T ≡ T ′, where T and T ′ are any terms
on the variables of the two systems S and S′ is decidable.

180 B. Courcelle, G. Kahn and J. Vuillemin

Proof One adds the equations Z = T and Z ′ = T ′ and verifies whether
Z ≡ Z′.

Theorem 8.16 For any system S one can construct a corresponding
equivalent system S′ which is normal, whose size is at most the size of
S and which has no more variables.

Proof Let T be a proper subterm of S, T �= Xi, such that Xi ≡ T . This
equality permits to “reduce” the system S as follows:

• If T is a variable Xj , one replaces everywhere Xj by Xi and
one removes from S the equation defining Xj , Xj = Tj . This
transformation eliminates one variable from the system without
increasing its size. One could also have eliminated Xi instead of
Xj ; this degree of freedom will be exploited later.

• If T is a subterm of size greater or equal to 1, we replace all its
occurrences in S with Xi. The size of the system can only decrease
and the system obtained is equivalent to the initial system.

This construction can only be iterated a finite number of times because
there may be only a finite number of equivalences Xi ≡ T . By definition,
the system which one then reaches is normal.

Example 8.17

S0

X = F (F (X, Y), Z)
Y = G(X, Z)
Z = G(X, G(X, Y)).

One finds that Y ≡ Z. But S0 is equivalent to S1:

S1

{
X = F (F (X, Y), Y)
Y = G(X, Y).

But X ≡ F (X, Y). Hence S1 is therefore equivalent to S2:

S2

{
X = F (X, Y)
Y = G(X, Y).

So S2 is normal.

The construction of Theorem 8.16 can be more easily carried out on
uniform systems where the only proper subterms are variables.

Lemma 8.13 defines an equivalence relation between these variables
and the normal system associated with a uniform system connects to
the equivalence classes.

Equivalence for simple recursive equations 181

Notation If S is uniform, we write n(S) for the normal system to which
it corresponds. With each system S, one associates an equivalent uniform
system S, and Ŝ = n(S) that is normal and uniform.

Lemma 8.18 If R and S are two equivalent, connected systems, then
R̂ = Ŝ.

Proof Of course, the equality between R̂ and Ŝ is understood to be up
to variable renaming. We first show that for each variable Xi of R there
exists a variable X ′

j of S such that Xi ≡ X ′
j , by recurrence. Since R ≡ S

and R ≡ S, we have X1 ≡ X ′
1.

If Xi ≡ X ′
j and Xi = F (Xi1 , . . . , Xin

), X ′
j = F (X ′

j1
, . . . , X ′

jn
), then

Xi1 ≡ X ′
j1

, . . . , Xin
≡ X ′

jn
. Consequently, all the variables necessary to

X1 have a corresponding variable in S. Since R is connected, these are
all the variables of R. Of course, the symmetric property is true:

∀j ∃i X ′
j ≡ Xi

Therefore there exists a bijection between the equivalence classes of
R and S. Since by construction the variables of (respectively) R̂ and Ŝ

are independent, we have R̂ = Ŝ modulo a renaming.

Lemma 8.18 justifies calling the system Ŝ a canonical system.

Theorem 8.19 In the set of systems equivalent to a given system S,
the canonical system Ŝ is of minimal size.

Proof From the construction of S, it is clear that ‖S‖ ≥ ‖S‖. Since
‖S‖ ≥ ‖n(S)‖ = ‖Ŝ‖ and R̂ = Ŝ for all R equivalent to S, Ŝ is of
minimal size.

Remark There may exist multiple equivalent systems of minimal size,
but only one may be canonical, as the following example illustrates:

S1 =

X = F (X, Y)
Y = G(Z)
Z = H(X, Y)

; S2 =
{

X = F (X, Y)
Y = G(H(X, Y))

.

Here, ‖S1‖ = ‖S2‖, S1 ≡ S2 and S1 is canonical.

182 B. Courcelle, G. Kahn and J. Vuillemin

8.3.4 Minimizing the number of equations

One might be interested in a representation of a system that minimizes
not the size but the number of equations. The following example
illustrates that there is not always a unique system that is normal and
minimal (in this sense):

S1 =
{

X = F (X, Y)
Y = G(H(X, Y))

; S2 =
{

X ′ = F (X ′, G(Y ′))
Y ′ = H(X ′, G(Y ′))

.

Thus S1 and S2 are equivalent (X ≡ X ′), normal and each has a
minimum number of equations. But S1 and S2 are not identical up to
renaming of variables.

We now show how to construct all normal systems and all minimal
normal systems.

Definition 8.20 Let S = {Xi = Ti | i ∈ I} and C be a set of variables of
S, C = {Xk | k ∈ K}, containing X1 and having the following property:

∀l ∈ I \K, ∃T (l, C),

a term using only variables of C such that Xl ≡ T (l, C).1

We call an S-cut, denoted by C(S), the system associated with such
a set C:

C(S) = {Xi = T ′
i | Xi ∈ C}

in which T ′
i is obtained from Ti by replacing for all l in I \K the variable

Xl by T (l, C). To a set C containing a minimal number of variables
corresponds a minimal cut.

Theorem 8.21 The normal systems equivalent to S are the cuts of Ŝ.

Proof If R is a cut of Ŝ, then R ≡ S and R is normal otherwise Ŝ would
not be.

If R is normal and R ≡ S, then R is normal since R = R̂ = Ŝ.
But R is a cut of Ŝ if and only if R = Ŝ and R is normal.

Corollary 8.22 The minimal normal systems equivalent to S are the
minimal cuts of Ŝ. Since there are only a finite number of cuts of Ŝ, one
can effectively construct these minimal systems.

1 And by T (l, C) we designate in what follows the least term allowing the definition
of Xl.

Equivalence for simple recursive equations 183

Example 8.23

S =

X = F (F (X, Y), Y)
Y = G(H(X, G(Z)))
Z = H(X, G(Z))

Ŝ =

X = F (X, Y)
Y = G(Z)
Z = H(X, Y)

C1 = {X, Y, Z}, C1(Ŝ) = Ŝ

C2 = {X, Y }, C2(Ŝ) =
{

X = F (X, Y)
Y = G(H(X, Y))

C3 = {X, Z}, C3(Ŝ) =
{

X = F (X, G(Z))
Z = H(X, G(Z))

So, we find the two minimal normal forms of S.

Remark If one starts from a single recursive equation as in the second
section, one always finds a single minimal normal form, the normal form
of this equation.

Example 8.24

S = {X = F (X, G(F (X, G(X, X)), X))}

Ŝ =
{

X = F (X, X ′)
X ′ = G(X, X)

C = {X}, C(Ŝ) = {X = F (X, G(X, X))}.

8.4 Conclusion

In the opinion of the authors, the interest of this work lies not in the
decidability results obtained (which can be with less effort) but in the
methods used, in particular the construction of a canonical domain.

This method was used by B. Courcelle and J. Vuillemin [1] for
functional systems.

Finally, it is possible to consider the results obtained as completeness
results of subtheories of the logic LCF (Logic for Computable Functions)
studied by R. Milner [7].

184 B. Courcelle, G. Kahn and J. Vuillemin

Acknowledgement

Some of the results obtained here were already known by R. Milner,
who collaborated in the early phase of this work. B. Courcelle and J.
Vuillemin thank T. Veldhuizen for the translation.

Bibliography
[1] B. Courcelle and J. Vuillemin, Completeness results for the equivalence of recursive
schemes, Journal of Computer System Science 12:179–197, 1976.
[2] W.P. De Roever, Operational and mathematical semantics for first-order recursive
program schemas, (private communication).
[3] J. Engelfriet, A note on infinite trees, Information Processing Letters 1:229–232,
1972.
[4] G. Kahn, A preliminary theory for parallel programs. (Rapport Laboria no. 6,
January 1973).
[5] J. Kral, Equivalence of modes and the equivalence of finite automata, Algol
Bulletin 35:34–35, 1973.
[6] C.H Lewis and B.K. Rosen, Recursively defined data types: part 1. Proceedings of
the 1st annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 125–138. ACM, New York, 1973.
[7] R. Milner, Models of LCF. Stanford Computer Science Department Report. CS-
332, 1973.
[8] R. Milner and R. Weyrauch, Proving compiler correctness in a mechanized logic.
In B. Meltzer and D. Michie (eds), Machine Intelligence 7, pp. 51–72. Edinburgh
University Press, 1972.
[9] M. Nivat, Sur l’interprétation des schémas de programmes monadiques. Rapport
Laboria No. 1, 1972.
[10] C. Pair, Concerning the syntax of Algol 68, Algol Bulletin 31:16–27, 1970.
[11] D. Scott, Outline of a Mathematical Theory of Computation. Oxford Monograph
PRG-2. Oxford University, 1970.
[12] J. Vuillemin, Proof Techniques for Recursive Programs. PhD thesis, Stanford
Computer Science Department. 1973.

