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Abstract 

Semiconducting nanowires are emerging as a route to combine heavily mismatched 

materials. The nanowire dimensions facilitate the defect-free integration of the two most 

powerful semiconductor classes, group IVs and group III-Vs. These combinations may 

enhance the performance of existing device concepts, and also create new applications. In 

this chapter we review the recent progress in heteroepitaxial growth of III-V andIVmaterials. 

We highlight the advantage of using the small nanowire dimensions to facilitate 

accommodation of the lattice strain at the surface of the structures. Another advantage of 

the nanowire system is that anti phase boundaries are not formed, as there is only one 

nucleation site per wire. In this chapter, we will discuss three different heteroepitaxial III-

V/Si morphologies, III-V nanowires on group IV substrates, and axial and radial 

heterojunctions. Advanced analysis techniques are used tocharacterise the quality of the 

heterointerfaces. Finally, we address potential applications of III-V/Si nanowires. 
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Introduction 

The success of the semiconductor industry originates from the abilityto precisely 

tunethe electronic properties of semiconductor materials. Different approaches are used to 

enhance the functionality of semiconductors, such as impurity doping, alloying, 

heterostructuring, and straining. All these methods are based on the addition of chemical 

elementsto a pure semiconductor. An important example is the invention of the 

GaAs/AlGaAs heterostructure, which has enabled the development of the laser diode and 

the high electron mobility transistor (HEMT).In this chapter we will discuss the combination 

of 2 different classes of semiconductors, group IV, like Si and Ge, and group III-V, like GaAs 

and InP.  We will focus on a relatively new materials system, i.e nanowires (NWs), in which 

strain can be effectively relieved at the surface due to the small dimensions, therefore 

relaxing the requirements on lattice matching.This system thus offers enhanced flexibility 

over the conventional layered structures in combining different semiconductor materials. 

These new combinations may boost the performance of already widely explored device 

concepts, such as transistors and solar cells, but may also open new applications, such as in 

quantum information technology. After a discussion on the different challenges related to 

the combination of Si and III-V semiconductors, we will discuss the growth of III-V nanowires 

on group IV substrates123456789, and then focus on the growth of heterostructures within 

nanowires in the radial1415 and axial10111213directions (Figure 1). 

 

 

Figure 1: Schematic of the different Si/III-V nanowire geometries: III-V nanowire on Si, III-

V/Si core-shell nanowire and III-V/Si axial nanowire. 
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Challenges in epitaxial Si/III-V interfaces 

Silicon is the material platform of microelectronics. Single crystalline Si wafers, up to 

450 mm in diameter, offer a low cost substrate for advanced electronic and 

micromechanical components. Silicon has a high thermal conductivity, is mechanically 

robust, and has a stable oxide. However, silicon has an indirect bandgap (at 1.1 eV) and 

therefore it does not efficiently emit light. This significantly limits the applications of silicon 

in photonic technology. Its isotope 28Si has zero nuclear spin which is particularly attractive 

for quantum information technology, where a single electron spin must be isolated from 

other spins to be used as a quantum bit.  

In contrast, most III-V semiconductors have a direct bandgap and therefore are 

perfectly suited for optoelectronic devices such as light-emitting diodes (LEDs) and solid-

state lasers. Importantly, solar cells of the highest efficiency are made of III-V 

semiconductors because of the high light absorption. Some III-V’s, especially those based on 

the heavier elements, such as indium antimonide, exhibit extremely high electron 

mobility,and very strong spin-orbit interaction, enabling fundamental breakthroughs in 

quantum science and technology such as NW spin-orbit quantum bits (qubits) and Majorana 

fermions.16 Importantly, the electronic properties, such as the band gap energy and the 

carrier mobility, of III-V semiconductors can be tuned by varying the chemical composition 

(e.g. by alloying to form ternary or even quaternary compounds such as InxGa1-xAsySb1-y). 

However, III-V semiconductors have poor mechanical integrity (they are fragile) and some of 

the constituents are in short supply, like indium, which makes them expensive. For a number 

of important applications that will be discussed here it is valuable to combine the best 

properties of Si and III-V semiconductors, but the success depends on the quality of 

heterojunctions between the two semiconductor classes. 

‘Epitaxy’ is derived from the Greek word meaning "ordered upon" and is the 

crystalline deposition of material on a substrate with identical lattice structure and 

orientation. For heteroepitaxial growth, materials with different lattice parameters are 

combined. If the lattice mismatch between the deposited film and the substrate is large, 

typically a few percent, misfit dislocations can be incorporated near the interface. 

Alternatively, add layers may form three-dimensional nuclei to release the strain in order to 

minimize the energy in the system, at the cost of creating more surface. The heterostructure 

growth method that Kroemer and Alferov used was to stack two-dimensional layers of 
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atoms using materials of similar lattice constant and surface energies (to favour layer-by-

layer growth rather than island growth) by Molecular Beam Epitaxy (MBE). This growth 

technique made it possible to produce defect-free bulk GaAs/AlxGa1-xAs heterojunctions. In 

contrast, semiconductors with higher lattice mismatch suffer from the creation of threading 

dislocations, which release the strain accumulated during the formation of a new material 

layer. Dislocations and crystalline defects are the main challenge in crystal growth. They trap 

carriers and behave as recombination centers for photons, which makes them harmful for 

device performance and limits practical semiconductor combinations in bulk two-

dimensional heterostructures. 

In addition to strain, defect formation at the heterointerface can be caused by 

differences in polarity of the two semiconductors, as is the case for instance for silicon and 

gallium phosphide (a group IV/III-V interface). The essence of the problem is that GaP can 

nucleate on Si by either forming Si-P or Si-Ga bonds. Any non-uniformity during growth can 

lead to the formation of nuclei having opposite polarities, and when these nuclei merge a so-

called antiphase boundary(APB) is formed. An APB is a planar defect, in which the regular 

atomic ordering is interrupted; at the boundary the atomic ordering is for instance ‘Ga-P-P-

Ga’ instead of the regular ‘Ga-P-Ga-P’. Importantly, when the surface is uniformly covered 

with one of the precursor elements, APBs can still be formed at monoatomic steps on the 

substrate surface. Along with twins and dislocations APBs are a major limitation that 

specifically reduces the potential of structures that combine Si with III-V semiconductors in 

the bulk. 

Nanowires are one-dimensional crystals with a large aspect ratio. They have a 

diameter of several nanometers and their length can vary from a few micrometers to several 

millimeters. From a materials engineering point of view, the very small cross section of NWs 

is highly advantageous because strain can be elastically released at the interface between 

semiconductors with large lattice mismatch. Rather than producing crystalline defects, the 

atoms adjust their spacing to minimize strain because they are free to expand towards the 

sidewalls of a NW. Moreover, as it will be described below, nanowires grow via a layer by 

layer mechanism which involves a single nucleus per layer. There are therefore no anti phase 

boundaries in nanowires. Thanks to their ability to accommodate strain and the absence of 

APB, nanowires are therefore perfect candidates for III-V/Si heterostructures. 
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III-V nanowires on Si substrates 

III-V nanowirescan be grown on Si substrates by using different growth mechanisms, 

such as selective area growth1718 or by the vapor-liquid-solid (VLS) method.Nanowires grown 

by the VLS mechanism are nucleated from a nanometer sized metal seed or catalyst particle 

that collects the precursor material from the vapour phase, establishing a local 

supersaturation. There are a few examples showing that the metal particle acts as a catalyst 

for the decomposition of the precursor molecules.1920 A vapour pressure of the precursor 

components can be created by means of molecular beam epitaxy (MBE), metal organic 

vapour phase epitaxy (MOVPE) and related techniques, pulsed laser ablationor by simple 

evaporation of the precursor material.  

When the supersaturation has been reached, crystalline material precipitates 

underneath the metal particle. In order to enable epitaxial growth of a nanowire it is of 

crucial importance to have a clean and crystalline substrate surface. Methods to clean Si 

substrates are well established and an etching step with hydrofluoric acid is mostly included. 

The catalytic metal particles are deposited directly after substrate cleaning. So far, Au has 

mainly been used as the active particle, but also alternative metals,oxides and silicides, 

being compatible to standard silicon processing, have been used. Importantly, any exposure 

to air affects the epitaxy, since Au catalyzes the oxidation of Si and tens of nm thick SiO2 

layer forms on top of the Au particle within days already at room temperature21. 

Another method to grow one-dimensional structures is by using selective area 

growth (SAG). Holes are defined in an amorphous dielectric layer, which cover on epitaxial 

substrate. Taking into account that growth only takes place from the opened areas pillar 

structures will be formed. Since no catalyst particle is used with this method, no impurity 

atoms from the catalyst will be incorporated in the semiconductor material. Another 

advantage is that the III-V / Si wire/substrate heterointerface will not be affected by alloying 

of the catalyst particle with the substrate.Such strategy was extended to InAs nanowires 

selectively grown in vertical SiO2 nanotube templates fabricated on Si substrates. After 

removal of the template, the InAs nanowires show an epitaxial relationship with Si and are 

single-crystalline. Misfit dislocations are however present at the InAs/Si interface. (REF) 

Scanning electron microscopy (SEM) can give a first indication of nanowire epitaxy. 

Epitaxial growth results in alignment of the nanowires in specific directions determined by 

the crystal symmetry of the substrate. However, orientation of one-dimensional structures 
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can also be obtained during growth by other mechanisms, such as interaction with external 

fields22 or with a gas flow2324In general, the III-V wires tend to grow in the [111]B 

direction,2526and vertical growth can be induced on [111]B-oriented III-V substrates. We 

should note however that the elemental semiconductors, such as silicon, are not polar, and 

all {111} facets are chemically equivalent. This means that the III-V wires can grow in the four 

<111> directions on a [111] oriented Si substrate;one orientation perpendicular to the 

surface and three orientations having a 19 angle with the surface, and in-plane components 

at 120 from each other.This has, for instance, been observed for the growth of InP on (111) 

oriented silicon substrates3 having a mismatch of 8.1% There are three clearly noticeable 

orientations with in-plane components parallel to the sides of an equilateral triangle. Some 

wires are oriented perpendicular to the surface, and in this top view they appear as small 

bright spots.  

It is possible to terminate a group IV substrate by either a group III or group V 

element using surface reconstructions as has been shown by Fukui6using selective area 

growth. In this way a quasi-polar surface can be formed. This approach has been successful 

in obtaining high yield of vertically oriented III-V nanowires on (111) Si substrates. The 

scanning electron microscopy (SEM) image in Figure 1a shows the high yield obtained with 

this method. 

 

Figure 1.a) SEM image of InGaAs nanowires grown on a Si(111) substrate by using 

selective area growth (SAG). b) TEM image of a InGaAs showing the crystal structure and the 
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planar stacking faults. c) HRTEM image of the InGaAs wire/ Si substrate interface. d) Strain 

map obtained from the image in c) showing the periodic misfit dislocations. 

 

The crystallographic relation between the substrate and an ensemble of nanowires 

can be substantiated by XRD (X-ray diffraction) pole figure measurements.531 To record a 

pole figure, the detector is set at a 2 angle corresponding to one of the lattice spacings, and 

the substrate is rotated continuously around , and stepped around . Pole figures are 

measured for the (111) reflections of the substrate and the wires.In the reference pattern of 

the silicon substrate, plotted in Figure 2c, (111)-spacings were found at four orientations 

typical for a (111)-oriented single crystal (these orientations are reflected by the wire 

orientations as observed with SEM). One set of reflections is in the centre of the pole figure, 

corresponding to the substrate normal, and three sets with =19 and the in-plane angle of 

120 with respect to each other.The pole figure for InP wires grown by MOVPE on Si(111) is 

shown in Figure 2c. The signals associated with the majority of the InP wires, labelled A (i.e., 

about two-thirds of the total signal), matches the pole pattern of the substrate, providing an 

unambiguous signature of heteroepitaxial growth. With such pole figures the epitaxial 

relation between a range of III-V nanowires, such as GaAs, InP, and InAs, with the Si(111) 

substrate has been confirmed.3 The difference in lattice spacings for the GaP/Si system was 

too small to be resolved in the pole figures. 
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Figure 2.a) Cross sectional TEM image of a GaP nanowire grown on a Si(111) substrate by 

using the VLS mechanism. b) HRTEM image of the GaP/Si interface showing the roughness, 

which is induced by alloying of the catalyst particle with the Si substrate prior to growth. c) 

Pole figure of InP wires grown on Si(111).The three-fold symmetry demonstrates the 

epitaxial growth. The three other intense peak show that there are twin planes present in 

the nanowires. 

 

The wire/substrate interface of individual wires can be studied in great detail by 

transmission electron microscopy (TEM). For this study, vertical cross sections were sliced 

with a focused ion beam (FIB) and thinned by argon ion milling. To provide mechanical 

support during this process, the wires were embedded in a microns-thick silicon oxidelayer, 

deposited by spin-on process or by plasma-enhanced chemical vapor deposition (PECVD). 

Figure 2a shows an overview of a cross-sectional TEM image of a GaP wire grown on a 

Si(111) substrate. In Figure 2b the wire/substrate interface was imaged at high-resolution. 

The lattice planes continue from the substrate into the nanowire showing the epitaxial 

relation.It can also been seen that the substrate wire interface is not flat. This is probably 

due to alloying of the Au catalyst particle with Si from the substrate roughening the surface. 

Such alloying can be avoided by using selective area growth. In Figure 1c the flat 

heterointerface between InGaAs/Si has been imaged at high resolution27. The 

heterointerface was apparently free of threading dislocations and antiphase boundaries, but 

had periodical misfit dislocations (see Figure 1d), indicating that the lattice mismatch has 

been plastically relaxed. These dislocation networks were formed only at the 

heterointerface. However, from TEM imaging it is also clear that these wires grown by SAG 

contain many planar stacking faults (Figure 1b). Recently, defect-free wurtzite InP wires have 

beengrown by SAG on corresponding substrates at very high temperatures, which exhibit 

very high optical quality. 

III-V nanowires grown on Si have been explored for many different device 

applications. Recently, high quality field effect transistors (FET) have been demonstrated 

exploiting the high electron mobility of the III-V material and the vertical wire geometry to 

form a gate-around structure as shown in Figure 3a27. The gate around structure minimizes 

short channel effects such as drain-induced barrier lowering (DIBL) as is clear from Figure 3b. 

The III-V/SI heterointerface also allows improving alternative FET principles, such as the 
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tunnel-FET28(REF).Less power is needed to switch a tunnel FET compared to a ‘normal’ FET. By 

using heterostructures there is more freedom in tuning the band alignments between the 

different semiconductors and with this the performance can be optimized. Epitaxial 

integration of III-V with silicon also introduces direct band gap semiconductors into 

electronics. Various opto-electronic applications have been studied including LEDs, lasers 

and photovoltaic cells. Considering the optical quality of state-of-the-art nanowires it can be 

expected that this approach will result in devices, which can be competitive with standard 

III-V technologies, but then epitaxially integrated in silicon. 

 

Figure 3. a) Schematic image of a field-effect transistor device based on an array of 

vertical InGaAs nanowire grown on Si(111). Note that the gate is all-around the nanowire 

channels. b) trans conductance characteristics of the device in a), showing good 

performance. 

 

III-V/IV radial core-shell nanowires 

A number of significant steps in the controlled synthesis of core/shell nanowire 

heterostructures have been recently achieved by various groups. In this review, we illustrate 

some of these results in the cases in which core and shell of the nanowire are grown using 

materials of the groups III-V and IV, as we did in the previous section. To begin with, Algra et 

al. (2011)14 were able to synthetize the first III-V/IV core-shell system consisting of the 

combination of GaP and Si semiconductor materials. This group reported a method for 

transferring the desired crystalline structure from a GaP nanowire to the Si shell. 

Interestingly, such approach allows tailoring the crystalline structure of the shell material by 

suitably growing the core material in specific crystalline phases. 
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In their work, the growth of the GaP nanowires was performed using a metal-vapour 

phase epitaxy (MOVPE) reactor using trimethylgallium (TMGa) and phosphine (PH3) as 

precursors by adding diethylzinc to the gas phase during growth. In particular, a designed 

twinning superlattice in zinc blende crystal structure present in the GaP nanowires was 

epitaxially transferred to the Si shell at 550 °C using SiH6 as a precursor with a partial 

pressure of 3.4×10-3 mbar. This important property allows designing new materials, like 

hexagonal silicon, which are more difficult to achieve in other systems, opening the path to a 

number of important applications. 

Conesa-Boj et al. synthesized GaAs/Si core-shell nanowires by combining molecular 

beam epitaxy (MBE) and plasma enhanced chemical vapour deposition (PECVD)29. The GaAs 

nanowires were first grown in an ultra-high vacuum MBE chamber. After that, the wafers 

containing the original GaAs nanowires were transferred to the PECVD system. Before the 

deposition of the Si the wafers were subjected to a H2 plasma treatment in order to reduce 

the oxide present on the sidewalls of the GaAs nanowires. By adjusting the concentration of 

silane radicals and reactive radicals in the plasma determine the nature of the Si shell.  

 

In figure 4(a) and 4(b) two representative GaAs/Si and GaP/Si nanowires are shown. 

It is remarkable that in this growth approach the shell adopts the same crystalline structure 

as the core material, in these two cases in particular Si adopts the cubic and the hexagonal 

crystalline phases respectively. The insets in figure 4 also show the energy dispersive-X ray 

spectroscopy (EDX) compositional maps that illustrate the presence of the GaAs/Si and 

GaP/Si core-shell heterostructures, respectively. 
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Figure 4. (a) and (b) high-resolution TEM images of a representative GaAs/Si and GaP/Si 

core/shell nanowires respectively. The insets correspond to the EDX compositional map 

confirming the presence of the GaAs/Si and GaP/Si core-shell heterostructures. In these 

maps Si signal is marked in red. 

 

The structural quality of the junction in core-shell nanowires is one of the essential 

requirements that must be satisfied in order to implement such nanostructures in realistic 

nanodevices. It has been extensively demonstrated that one of the main sources of defect 

formation in core-shell systems is due to the lattice mismatch between the shell and the 

core leading to the appearance of misfit dislocations at the core and the shell interface. 

However, both experimental studies and theoretical models of defect formation have been 

mostly restricted to mismatched materials, where the appearance of defects is driven mostly 

by the difference in geometry and crystalline structure of the core and the shell.   

 

As an illustration of the potentialities of structural characterization in core-shell 

systems, Conesa-Boj etal.30combined high-resolution transmission electron microscopy 

(HRTEM) with geometrical phase analysis (GPA) and finite element methods to determine 

and quantify the origin of the lattice distortion in GaAs/Si core-shell nanowires. The 

presence ofedge dislocations in such system produces a localized elastic distortion, in 

particular a tensile line crossing the diameter of the nanowire, which turns out to be around 

4%, see the strain map along the axial directionshown in figure 5(a).  
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As a useful baseline to understand the essential features of the strain field observed 

experimentally, and to identify the three-dimensional structure of the defect, finite element 

(FE) simulations were performed. In particular the effects of an edge dislocation loop were 

simulated, assuming the dislocation loop lying in the (1-11) plane at the core-shell interface 

with Burgers vector b=a/3[1-11], as described the sketched in figure 5(b). Given that the FE 

simulation results were in agreement with the experimental results, this study suggested 

that the two edge dislocations observed in the GPA image are the fingerprints of an edge 

dislocation loop traveling around the nanowire core at the GaAs/Si interface and that the 

localized tensile strain is induced by a looplike dislocation configuration. 

 

Figure 5. (a) Strain field map, where a tensile region crossing the nanowire diameter is visible 

(green line ) and (b) Sketch of the nanowire assuming an edge dislocation loop , lying in a 

(11̅1) plane at the core−shell interface with Burgers vector b = a/3[11̅1]. 

 

In addition to highly mismatched materials, defect formation can also be ubiquitous 

when combining materials with similar lattice parameters. In these cases, the mechanisms of 

defect formation can be tightly related to specific growth process. This phenomenon has 

been explored for instance in the work of S. Conesa-Boj et al.15, who reported it for GaP/Si 

core-shell nanowires. Despite the similar lattice parameters, the presence of defects, in 

particular “crack” defects, was observed. The crack defect can be modelled as a local 

fracture, that is, a region where the separation between two adjacent atomic layers is 

increased, as shown in Figure 6.  
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Figure 6. (a) Low-magnification TEM image of a GaP/Si core-shell nanowire, where 

the stripes with different contrast indicate the presence of cracks defects; (b) high-

resolution TEM image of a lateral of a GaP/Si core-shell nanowire exhibiting a crack defect 

in the Si shell. 

 

In order to reduce the formation of these types of defects, it is important to 

understand how their appearance is related to the details of the growth processes. In this 

case, it has been reported in the literature that the formation of such defects and their 

development into other type of defects is dependent on the brittle to ductile transition 

(BDT) behaviour. In the work we are discussing, different temperatures for the Si shell 

deposition were tested.  

The main point to understand the mechanism for crack formation was that during Si 

shell deposition two different steps in terms of temperature were used. The temperature 

difference was enough to induce local changes of the dilatation coefficient in the crystalline 

structure of the Si shell and thereby allowing the formation of cracks and other kind of 

defects such as stacking faults and Frank-type dislocations.  Such studies have lead to 

propose an alternative growth strategy to achieve defect-free hexagonal Si.  

 

Axial III-V/IV nanowire heterostructures 

Most of axial nanowire heterostructures realized so far involve different materials 

with the same crystal structure or the same material with different crystal structures. Multi-

family semiconductor heterostructures involving different materials with different structures 
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b 
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started to appear only recently, increasing material combinations possibilities. Such novel 

material combinations implicate lattice mismatches ranging from almost 0% up to 10%, 

adding complexity to the system. Increasing mismatches lead to dramatic consequences in 

two dimensional heterostructures when plastic relaxation causes misfit dislocations. F. 

Glas31 studied the effect of the stress relaxation on axial structures regardless of their 

chemistry. He theoretically observed that the critical thickness increases with the reduction 

of the nanowire heterostructure diameter. In other words, the nanowire geometry favours 

elastic relaxation and allows the combination of materials of large lattice mismatch in 

contrast with two dimensional heterostructures. In the particular case of Si/III-V 

heterostructures, geometrical parameters exist in which crystal defects due to strain 

relaxation do not appear, therefore it is theoretically possible to create misfit dislocation 

free Si/III-V axial heterostructures. However, the nature of each semiconductor is a major 

hindrance to axial Si/III-V’s, in particular their chemical bonds and surface energy which have 

a direct influence on the growth mechanisms.  

The first experiments on axial Si and III-V combinations were presented by Dick et al 

in 200710. They focused their investigations on Si/GaP, GaP/Si, GaAs/Si and Si/GaAs 

heterostructure nanowires. The nanowires were grown by MOCVD using standard growth 

parameters for the respective segments. A purging step under H2 of several minutes was 

used to remove precursors from the gas phase. This step also allowed to increase/decrease 

the growth temperature for the next segment. Straight segment were found for Si/GaP and 

Si/GaAs axial nanowires whereas the reverse stacking showed kinks. A thermodynamic 

model was developed and suggested that in analogy to 2D growth, the nanowires 

morphology (straight or kinked) strongly depends on the relative surface energies between 

materials. 

Later in 2012, Hocevar et al.11 published a complete work on multiple axial GaP/Si 

nanowires. The nanowires were grown in a MOCVD reactor at a constant temperature of 

540°C. A growth interruption step was used between GaP and Si growth sequences. After 

the GaP segment growth, the group V source was shut down for several seconds, keeping 

the group III source on. The group III source was then shut down while the Si source was 

opened to grow the Si segment. 

When no growth interrupt was performed between the GaP segment and Si growth 

sequences, all of the Si segments kinked at the GaP/Si interface. The authors suggested that 
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phosphorous atoms prevent Si entering the gold catalyst. As a consequence, Si doesn’t 

uniformly alloy with the liquid gold particle and three-dimensional growth occurs. In 

contrast, when a growth interrupt takes place between GaP and Si growth sequences, all the 

Si segments are straight at the GaP/Si interface (Figure 7a). Phosphorous atoms are removed 

from the surface of the gold either by desorption or by the Ga atoms to form GaP. 

Consequently, Si absorbs uniformly on the Au surface, which results in a uniform Si 

concentration throughout the droplet, and layer-by-layer growth occurs. 

By engineering the growth interrupts between growth sequences, Hocevar et 

al.11achieved Si/GaP (Figure 7b and 8) and multiple GaP/Si heterostructures along the 

nanowire axis. These nanowires exhibit interesting feature: (1) both materials grow from a 

AuGa alloy and (2) the nanowires diameter is smaller along the Si segment diameter than 

along the GaP segment. This diameter variation is mainly explained by the difference in 

contact angles (and therefore surface energies) between the AuGa liquid on a GaP surface 

and on a Si surface. 

Inspired by the GaP/Si heterostructures, Hocevar et al integrated an optical emitter, a GaAs 

segment between GaP barriers along a Si nanowire. The GaAs segments emitted at 1.495 eV 

with photexcited carrier lifetimes over 1 ns, demonstrating a high crystal quality. 

Hillerich et al.32 grew axial GaP/Si and GaAs/Ge nanowires using various equipments 

such as MOCVD, CVD and in-situ UHV TEM. Between two growth sequences (between GaP 

and Si for example), the samples were cooled down to room temperature. High crystalline 

quality GaP/Si and GaAs/Ge segments were grown and crystalline defects formation some 

distance after the interface was investigated. From these experiments, it appeared that the 

droplet geometry drives the growth morphology: if the mismatch between the droplet 

diameter and the nanowire diameter is too high, crystal defects form in the newly grown 

segment. Therefore, by optimizing the growth parameters to minimize the gold droplet 

diameter change during the new growth sequence, straight GaP/Si and GaAs/Ge nanowire 

heterojunctions can be grown. Another strategy to create defect free III-V/Si nanowires 

proposed by Hillerich et al.32is to use an interlayer. They demonstrated that the use of Ge 

layers between GaAs and Si allowed the creation of defect free hybrid GaAs/Si nanowire 

heterostuctures. Conesa-Boj et al29 achieved axial Si/GaAs heterostructures using a gallium-

catalyzed VLS mechanism with a combination of MBE and PECVD techniques. They showed 

crystalline axial growth of Si on GaAs at 250 C substrate temperature and low silane flow 
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(Figure 9). This preliminary work is a major step forward as gold-free nanowires have strong 

potential for future integration of nanowires in CMOS technology. 

Prucnal et al.33 developed a route to create Si/InAs heterostructure nanowires using a 

combination of sequential ion beam implantation and flash lamp annealing. First Si 

nanowires were grown by Au-catalyzed VLS mechanism using a low pressure CVD system. 

The nanowires were then implanted at selected positions with As and In ions with a fluences 

of the order of 1016 ions/cm2 for each element. The chosen ion implantation energies for In+ 

and As+ allowed the depth distribution of In and As atoms to overlap within the Si 

nanowires. The samples were annealed with a flash lamp annealing system to recrystallize 

the nanowires. The obtained InAs quantum dot/Si nanowires showed atomically sharp 

interfaces between Si and zinc blende InAs segments. 

 

 

Figure 7. a) TEM image of GaP on Si heterostructure nanowire grown by Au-assisted VLS. B) 

TEM image of Si on GaP heterostructure nanowire grown by Au-assisted VLS. 
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Figure 8. SEM image of an array of Si on GaP heterostructure nanowires grown by Au-

assisted VLS. 

 

 

Figure 9. TEM image of Si on GaAs heterostructure nanowire grown by Ga-assisted VLS 
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