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Nowadays, virtualization is present in almost all computing infrastructures. Thanks to VM migration and server consolidation, virtualization helps in reducing power consumption in distributed environments. On another side, Dynamic Voltage and Frequency Scaling (DVFS) allows servers to dynamically modify the processor frequency (according to the CPU load) in order to achieve less energy consumption. We observe that while DVFS is widely used, it still generates a waste of energy. By default and thanks to the ondemand governor, it scales up or down the processor frequency according to the current load and the different predefined threshold (up and down). However, DVFS frequency scaling policies are based on advertised processor frequencies, i.e. the set of frequencies constitutes a discrete range of frequencies. The frequency required for a given load will be set to a frequency higher than necessary; which leads to an energy waste. In this paper, we propose a way to emulate a precise CPU frequency thanks to the DVFS management in virtualized environments. We implemented and evaluated our prototype in the Xen hypervisor.

I. INTRODUCTION

Nowadays, cloud computing is one of the widely used IT solutions for distributed services. Almost 70% of companies are interested in it and 40% of them plan to adopt it within one year [START_REF] Ezaki | Integrated management of virtualized infrastructure that supports cloud computing: Serverview resource orchestrator[END_REF]. Cloud computing can be defined as a way of sharing hardware or/and software resources with clients according to their needs. The idea of cloud computing is to simulate an unlimited set of resources for users and to guarantee a good Quality of Service(QoS), while optimizing all relevant costs [START_REF] Young | Analysis of virtualization technologies for high performance computing environments[END_REF].

Cloud computing mainly relies on virtualization. Virtualization consists of providing concurrent and interactive access to hardware devices. Thanks to his live migration properties, it is possible to migrate applications on a few number of computers, while ensuring good QoS and security isolation. This advantage is highly exploited by cloud computing to effectively manage energy consumption and to efficiently manage resources [START_REF] Armbrust | A view of cloud computing[END_REF].

Recent advances in hardware design have made it possible to decrease energy consumption of computer systems through Dynamic voltage and frequency scaling (DVFS) [START_REF] Weiser | Scheduling for reduced cpu energy[END_REF]. DVFS is a hardware technology used to dynamically scale up or down the processor frequency according to the governor policy and the workload demand.

Knowing that, the processor power consumption is related to the frequency processor and its voltage [START_REF] Seo | Tsb: A dvs algorithm with quick response for general purpose operating systems[END_REF], increasing or decreasing processor frequency will influence the general power consumption of a system. In this context, the choice of the processor frequency is of great importance. Furthermore, DVFS aims at setting the CPU frequency to the first available one capable of satisfying the current load to avoid wastage. However, there may be situations where the selected frequency is still the subject of wastage because it is higher than the required frequency.

In this paper, we explore and propose a way to emulate a precise desired processor frequency in a virtualized and single-core environment. After presenting the context and the motivation of our work in section 2, we will describe our contributions in section 3. In section 4, we present experiments to validate our proposal. After a review of related works in section 5, we conclude the article in Section 6.

II. CONTEXT AND MOTIVATION

In this section, we present some concepts of virtualization, DVFS and how this later is applied in virtualized systems.

A. Context 1) Virtualization: According to a general observation, the rate of server utilization was around 20% [START_REF] Gmach | An integrated approach to resource pool management: Policies, efficiency and quality metrics[END_REF]. Thanks to virtualization, the rate has increased and allows efficient server utilization. Indeed, virtualization is a software-based solution for building and running simultaneously many operating systems (called guest OS or Virtual Machine) on top of a "classic" OS (called host OS). A special application, named Virtual Machine Monitor (VMM) or hypervisor emulates the underlying hardware and interprets communications between guests OS and devices.

Among existing virtualization technologies, we adopt paravirtualization as the base of our experience. With paravirtualization, the VMM is placed between the hardware and the host OS. Guest OS is modified to use optimized instructions (named hypercall ) from VMM to access hardware.

Paravirtualization is used because of its good VM performance and its implementation on all types of processors. In fact, with full virtualization, VM performance is more than 30% degraded [START_REF] Marinescu | State of the art in autonomic computing and virtualization[END_REF]. Meanwhile Hardware-assisted virtualization requires specific processors though the performance of guest OS are close-to-native performance.

Paravirtualization is highly adopted and vulgarized by Xen [START_REF] Barham | Xen and the art of virtualization[END_REF] and VMWare ESX Server [START_REF]Vmware esx web site[END_REF]. In this context, our work is based on Xen platform because it is prevalent in many computing infrastructures, as well as in the vast majority of our previous work.

2) Dynamic Voltage and Frequency Scaling (DVFS):

Today, all processors integrate dynamic frequency/voltage scaling to adjust frequency/voltage during runtime. The decision to change the frequency is commanded by the current processor's governor. Each governor has its own strategy to perform frequency scale. According to the configured policy, governor can decide to scale processor speed to a specific frequency, the highest, or the lowest frequency.

Several governors are implemented inside the Linux kernel. Ondemand governor changes frequency depending on CPU utilization. It changes frequency from the lowest (whenever CPU utilization is less than a predefined (low therehold) to the highest and vice-versa. Performance governor always keeps the frequency at the highest value while slowest CPU speed is always set by powersave governor. Conservative governor decreases or increases frequency step-by-step through a range of frequency values supported by the hardware. Userspace governor allows user to manually set processor frequency [START_REF] Miyakawa | Process oriented power management[END_REF]. In order to control CPU frequency, governors use an underlying subsystem inside the kernel called cpufreqq [START_REF] Pallipadi | The ondemand governor: past, present and future[END_REF]. Cpufreq provides a set of modularized interfaces to allow changing CPU frequency. Cpufreq, in turn, relies on CPUspecific drivers to execute requests from governors.

As aforementioned, effectively usage of DVFS brings the advantage of reducing power consumption by lowering processor frequency. Moreover, almost all computing infrastructures possess multi-core and high frequency processors. Thus, the benefit from using DVFS has been realized and achieved in many different systems.

The next section describes the motivation of this work.

B. Motivation

During the last decade, several efforts have been made in order to find an efficient trade-off between energy consumption/resources management and applications performance. Most of them relies on DVFS, and are highly explored due to the advent of new modern powerful processors integrating this technology.

According to the ondemand governor (the default governor policy implemented by DVFS), the CPU frequency is dynamically changed depending on the CPU utilisation. With this governor, the highest available processor frequency is set when the CPU load is greater than a predefined threshold (up threshold). When the load decreases below the threshold, the processor frequency is decreased step by step until the one capable of satisfying the current process load is found. However, in most CPUs, the DVFS technology provides a reduced number of frequency levels (in the order of 5) [START_REF] Buchert | Accurate emulation of CPU performance[END_REF]. This configuration might not be enough for some experiments. Suppose a virtualized muti-core processor Intel(R) Xeon(R) E5520 with 2.261 GHz and the DVFS technology enable. Consider its six frequencies levels distributed as follows: 1.596 GHz, 1.729 GHz, 1.862 Ghz, 1.995 Ghz, 2.128 GHz and 2.261 GHz. Assume the host OS with a global load which needs 1.9285 Ghz to be satisfied. Knowing that the computation of the best execution time of an application is made on a basis of the maximum frequency of a processor, scheduling it with a lower frequency would end up with a lower than expected performance. From the SLA point of view and because of the non-existence of the expected frequency, the ondemand governor will set the CPU frequency to the first one, higher that the required frequency, capable of satisfying the current load. Precisely in our example, the ondemand governor will set the processor frequency to 1.995 GHz.

However, it would be more beneficial in terms of energy to assign to the processor the exact required frequency. Indeed, the DVFS technology consists of concurrently lowering the CPU voltage and the CPU frequency. By lowering them, the current total energy consumption of the system is globally decreased [START_REF] Dolz | A simulator to assess energy saving strategies and policies in hpc workloads[END_REF]. To improve this well-known energy management, we will realise some adjustments on the DVFS technology. Hence, instead of setting the CPU frequency to the first higher available frequency, we decided to emulate some of the nonexistent CPU frequency according to the system needs.

Concretely, emulating a CPU frequency, in our work, consists of executing the processor successively on the available frequencies around the desired CPU frequency. Our emulation process is essentially based on the conventional operation of the DVFS. The use of the DVFS possesses as asset the fact of generating no overhead while switching between frequencies because it has been done in the hardware.

The next section describes our contributions.

III. CONTRIBUTION

As previously mentioned, the main idea of this paper is to emulate a CPU processor frequency based on periodic oscillations of frequencies between two levels of successive frequencies. This extension will suggest a way of decreasing power consumption in virtualized systems while keeping good VM performance. The next section will expound our approach and the implementation we made.

A. Our appraoch

Our approach is two folds: (1) To determine the exact processor frequency need by the current load and (2) to emulate it if necessary.

Let's assume a host with several VMs running on it. Suppose that they generate a global load of W host . Consider that we need our CPU to be running at processor frequency of f host to satisfy the current load (W host ). However, the desired processor frequency f host is not present among the available processor frequencies of our host. This frequency need to be emulated.

A weighted average can be defined as an average in which each quantity to be averaged is assigned a weight. These weightings determine the relative importance of each quantity on the average. Weightings are the equivalent of having that many similar items with the same value involved in the average. Indeed, the emulation of CPU processor is based on weighted average of CPU frequency around the frequency to emulate. Although it is possible to determine in advance the neighboring processor frequencies, the computation of the execution time for each of them is not realistic.

Firstly, we need to determine the required frequency and later the both frequencies around the desired one. Assume that f high and f low are the frequency above and below the desired frequency respectively. To emulate f host , we need to compute our load during t high at f high and during t low at f low so that the required frequency f host is the weighted-average of f high with t high as weight and f low with t low as weight. It means that:

f host = (f high × t high ) + (f low × t low ) t high + t low (1) 
Unfortunately, it is not possible to determine beforehand the exact execution times allowing to fulfill the equation 1. Instead of considering t high and t low as the execution time, we exploited it as the occurrence count. Meaning that to emulate f host , the processor needs to be executed t high times in higher frequency f high and t low times in lower frequency f low .

It is important to note that, the real execution time at each processor frequency level can be computed as follows: N umberOccur × T ickDuration . Where N umberOccur represents either t high or t low and T ickDuration the duration of each tick of reconfiguration.

To validate this assumption, let's consider the small example of II-B. By executing our processor, once on the lower frequency (that means at 1.862 Ghz) and once on the higher frequency (that means 1.995 Ghz), we will obtain the required frequency (1.9285 Ghz). It means that:

f host = 1.995×1+1.862×1 1+1 = 1.9285
As aforementioned, the number of executions at each processor frequency cannot be known at the beginning of the experiments. It must be dynamically computed.

The next section presents our implementation.

B. Implementation

In this section, we address the design and the implementation choices of our frequency emulator, and the conditions of his exploitation.

Our implementation is two folds: (1) checking the appropriate processor frequency for the current load and (2) emulating If it is not existing.

1) Appropriate processor frequency: By default DVFS advertises a discrete range of processor frequencies. It means that, only a fixed and predefined number of processor frequencies are available.

To fulfill the first aspect of our work (determine the adequate frequency), we assume that, on each processor, it is possible to have a continuous range of frequencies. Knowing that the difference between two successive frequencies is practically identical, we virtually subdivided them into 3 (value obtained thanks to analysis and successive experiments). Indeed, this subdivision allowed the obtaining of the more moved closer frequencies. This nearness at the level of the frequencies so allowed to satisfy at best the processor's loads.

Assuming that the frequency range is now continuous, it is then always possible to have a precise processor frequency for a given load. The return of the suitable processor frequency is made according to the frequency ratio presented in our proposal in [START_REF] Barham | Xen and the art of virtualization[END_REF]. Indeed, at each tick of the scheduler, a monitoring module gathers the current CPU load of each VM. It then aggregates the total Absolute load of all the VM and computes the new processor frequency and the frequencies surrounding it, as depicted in the algorithm below (Listing 1) where

• LFreq[]: represents a table of 3 processor frequencies classified as follows: the required frequency and the surrounding ones (higher and lower respectively)

• VFreq: value obtained after the division of the interval between consecutive frequencies by 3. It is used to obtain some virtual processor frequencies.

• Freq[]: represents the available processor frequencies.

The table is sorted in descending order.

We iterate on the processor frequencies (line 2). Following our assumption regarding frequencies (it will be validated in section IV-B1), we compute for each frequency the frequency ratio (line 3) and check if the computing capacity of the processor at that frequency can absorb the current absolute load (line 6). If the current frequency can not satisfy the load, we iterate on virtual processor frequencies (line 22 to line 29). By the end of the algorithm, if the required frequency is not among the known frequency of the processor, it is immediately emulated.

2) Processor frequency emulation:

The emulation is based on the cumulative functions principle. It is convenient to describe data flows by means of the cumulative function f(t), defined as the number of elements seen on the flow in time interval [0, t]. By convention, we take f(0) = 0, unless otherwise specified. Function f is always wide-sense increasing, it means that f (s) ≤ f (t) for all s ≤ t.

Suppose 2 wide-sense increasing functions f and g, the notation f + g denotes the point-wise sum of functions f and g.

(f + g)(t) = f (t) + g(t) (2) 
Notation f ≤ (=, ≥) g means that f (t) ≤ (=, ≥) g(t) for all t [START_REF] Boudec | Network calculus: a theory of deterministic queuing systems for the internet[END_REF].

To exploit this notion, we defined 3 cumulative frequency functions: CumF high (t), CumF low (t) and CumF host (t). Where CumF high (t), CumF low (t) and CumF host (t) represent the functions for the higher processor frequency , the lower and the required processor frequency respectively. In our case, we defined the cumulative frequency corresponding to a particular value as the sum of all the frequencies up to and including that value. Meaning that: CumF high (t) = t k=0 f high . At each tick of the scheduler and for each frequency involved (including the emulated frequency) in the emulation of the frequency, we compute its cumulative frequency (Listing 2). The computation of each cumulative frequency is executed as follow:

• Initially, the cumulative frequencies functions are equal to zero (their initial value). This value is reinitialized when the current load need a different frequency or when the current one is already emulated (line 17),

• At each tick, the cumulative frequency of the emulated frequency (CumF host (t)) is incremented by its value: CumF host (t) + = f host (line 7 and line13),

• At each tick, only one frequency is set (either f high or f low ). The choice of the frequency is carried out as follows:

• The sum of CumF high (t) and CumF low is computed according to the equation 2 and the result is compared to CumF host (t) (line 3), • If the sum is lower than CumF host (t), then the processor frequency is set to f high during the next quantum (line 6), • Else, if the sum is higher than CumF host , the processor frequency is set to f low during the next quantum (line 12), • If both are equal, the desired frequency was emulated and the different cumulative frequencies are reinitialized (line 17).

Through these iterations and these oscillations, we managed to emulate our desired frequency. It should be mentioned that, the emulated frequency and the neighboring frequencies are obtained with the algorithm presented in Listing 1.These later (table LFreq[]) are passed as a parameter to the algorithm below.

For instance, if we consider our example of section II-B, the goal was to emulate a processor frequency of 1.9285 Ghz. The surrounding frequencies are 1.995 Ghz and 1.862 Ghz. The execution of the algorithm of Listing 2 is as follows (Table I ) 

Listing 2. Emulate processor frequency

During this execution, we remind that there is a trigger in charge of the computation of the absolute load and the notification of the current desired frequency. This situation also leads to a reinitialization of all the cumulative frequencies value.

The next section presents some experiments to validate our proposal.

IV. VERIFICATION OF OUR PROPOSAL

We previously presented our approach and its implementation in the default Xen credit scheduler. In this section, we will present the experiment environment, the application scenario and some experiments to validate our proposition.

A. Experiment environment and scenario

Our experiments were performed on a DELL Optiplex 755, with an Intel Core 2 Duo 2.66GHz with 4G RAM. We run a Linux Debian Squeeze (with the 2.6.32.27 kernel) in a single processor mode. The Xen hypervisor (in his 4.1.2 version) is used as virtualization solution. The evaluation described below was performed with an application which computes an approximation of π. This application is called π-app. In this scenario, we aim at measuring an execution time.

B. Verification 1) Proportionality:

In our validation, we rely on one main assumption: proportionality of frequency and performance. This property means that if we modify the frequency of the processor, the impact on performance is proportional to the change of the frequency. This proportionality is defined by:

F i F max = T max T i (3) 
which means that if we decrease the frequency from F max down to F i , the execution time will proportionally increase from T max to T i . For instance, if F max is 3000 and F i is 1500, the frequency ratio is 0.5 which means that the processor is running 50% slower at F i compared to F max . So if we consider an application that runs in 10 mn at F max , the same application will be completed at 10 0.5 = 20mn at F i .

To validate this proportionality rule, we the following experiment. We ran different π-app workloads at different processor frequencies and measured the execution times, allowing us to verify the proportionality of frequency ratios and execution time ratios. Figure 1 gives some of the results we obtained, which shows that frequency ratios and execution time ratios are very close, as assumed in equation 3. The first part of our validation consists on validate our approach of emulation. For this validation, we executed our πapp application initially at 2.4 Ghz. Based on our proposal, we will execute the same computation by emulating the frequency 2.4 Ghz. We started by a well-known frequency for this workshop, but others experiences not presented here emulate the non-existent frequency. According to figure 2, the execution time of the π-app is about 410 Units. While emulating the same processor frequency, we obtained an execution time of 415 Units, as depicted by the figure 3. Based on this first use case, we can validate our approach. Furthermore, with similar experiences (not presented here), we have proved that the oscillation of the frequency in non intrusive.

The second part consists of validating the emulation of a non-existent frequency. We executed our π-app application of the maximum frequency (figure 4 )and we recorded its execution time for future comparisons (Cf. Table II ). Then, we choose two of our virtual processor frequencies (2.222 Ghz and 2.576 GHz); we have emulated them to execute our application (respectively figure 5 and figure 6). Their execution time is used for comparison with the expected execution time according to our proportionality rule (Cf. Table II). The expected time formula is:

T i = Fmax×Tmax Fi
Thanks to this scenario, we can validate our implementation approach. After execution, we can conclude that the real execution time are almost equal to the expected time. Further evaluations are to be done in order to identify the possible weaknesses/advantages of this proposal.

The next section presents the related works. consolidation consists on gathered multiples VMs (according to their load) on top of a reduced number of physical computers [START_REF] Vogels | Beyond server consolidation[END_REF].

In [START_REF] Verma | Server workload analysis for power minimization using consolidation[END_REF], Verma et al. aims at minimizing power consumption using consolidation after server workload analysis. They design two new consolidation approaches based respectively on, peak cluster load and correlation between applications before consolidating. Mueen et al. Strategy for power reduction consists in categorizing servers in pools according to their workload and usage. After categorizing, server consolidation is executed on all categories based on their utilization ratio in the data center [START_REF] Uddin | Server consolidation: An approach to make data centers energy efficient and green[END_REF].

As for the live migration, it consists of migrating a VM from a physical host to another without shutting down the VM. Korir et al [START_REF] Sammy Korir | Energy efficient security preserving vm live migration in data centers for cloud computing[END_REF] proposes a secure solution of power reduction based on live migration and server consolidation. Their security constraints are related to VM migration. Indeed, critical challenge of VM live migration appears when VM is still running when migration is in process. Well known attacks, such as Time-of-heck to time-of-use (TOCTTOU) [START_REF] Bishop | Checking for race conditions in file accesses[END_REF] and replay attack, can be launched. In their solution, they design a live migration solution capable of avoiding VM to be exposed to eventual attacks.

One of the most rising approaches in power reduction is Dynamic voltage and frequency scaling(DVFS) [START_REF] Lee | Run-time voltage hopping for low-power realtime systems[END_REF], where voltage/frequency can be dynamically modified according to the CPU load. In [START_REF] Laszewski | Power-aware scheduling of virtual machines in dvfs-enabled clusters[END_REF], the authors design a new scheduling algorithm to allocate VMs in a DVFS-enabled cluster by dynamically scaling the voltage. Precisely, Laszewski et al. minimizes the voltage of each processor of physical machine by scaling down their frequency. In addition, they schedule the VMs on those lower voltage processors while avoiding to scale physical machine to high voltage.

In general, those previous approaches only are focused on well-known processor frequency. In [START_REF] Buchert | Accurate emulation of CPU performance[END_REF], Blucher et al. suggests some approaches of the CPU performance emulator. Precisely, they propose and evaluate three approaches named as : CPU-Hogs, Fracas and CPU-Gov. CPU-Hogs consists of a CPU-burner process which burn and degrades the initial CPU processor according to a predefined percentage. CPU-Hogs has the disadvantage of being responsible for deciding when CPUs will be available for user processes. With Fracas, every decision is made by the scheduler. With Fracas, one CPUintensive process is started on each core. Their scheduling priorities are then carefully defined so that they run for the desired fraction of time. CPU-Gov is a hardware based solution base. It consists on leveraging the hardware frequency scaling to provide emulation by switching between the two frequencies that are directly lower and higher than the requested emulate.

Although, those approaches are related to the CPU performance, they aim at emulating a predefined known processor frequency. Concretely, their goal is the answer this question: Given a CPU (characterized by its CPU performance for example), how can we emulate another CPU with a precise characteristics? Their emulation is done once and experiments are executed on it. In our case, it consists of a realtime emulation of CPU and it constitutes a base for an energy aware resources management.

VI. CONCLUSION AND PERSPECTIVES

With the emergence of cloud computing environments, large scale hosting centers are being deployed and the energy consumption of such infrastructures has become a critical issue. In this context, two main orientations have been successfully followed for saving energy:

• Virtualization which allows to safely host several guest operating systems on the same physical machines and more importantly to migrate guest OS between machines, thus implementing server consolidation,

• DVFS which allows adaptation of the processor frequency according to the CPU load, thus reducing power usage.

We observe that DVFS is mainly used, but still generates a waste of energy. In fact, the DVFS frequency scaling policies are based on advertised processor frequency. By default and thanks to the ondemand governor, it scales up or down the processor frequency according to the current load and the different predefined threshold (up and down). However, the set of frequency constitutes a discrete range of frequency. In this case, the frequency required for a specific load will almost be scaled to a frequency higher than expected; which leads to a non-efficient use of energy.

In this paper, we proposed a technique which addresses this issue. With our approach, we are able to determine and allocate a more precise processor frequency according to the current load. We subdivided the interval between two frequencies of the processor into tinier virtual frequencies. This leads to simulate a continuous processor frequency range. With this configuration and the ratio proportionality rule, it is thus almost possible to set the suitable frequency for a given load. Furthermore, thanks to oscillations, made possible through the principle of cumulative frequency, between the frequencies surrounding the desired one, it was possible to emulate a nonexistent frequency.

Our proposal was implemented in the Xen hypervisor running with its default Credit scheduler. Different scenarios were used to validate our assumptions and our proposal.

Our main perspective is to sustain this proposal with a real world benchmark before a complete validation. Furthermore, we aim to investigate and address the issue of energy conserving while eventually exploiting this operation.
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1Listing 1 .

 1 void computeNewFreq(int LFreq[], int VFreq) { 2 for (i=1; i<=fmin; i++) { 3 int ratio = Freq[i]/Freq[1Algorithm for computing the adequate processor frequency and the surrounding frequencies

  ⇒ SetFreq(0, LFreq[START_REF] Young | Analysis of virtualization technologies for high performance computing environments[END_REF]); CumFL = 1.862 ; NumFL = 1; CumFH = 1.995 CumF = 3.857 ; NumbFH = 1, SumFreq = 3.857Step 3 SumFreq = CumF ⇒ Init NumFL = 1 and NumFH = 1

Fig. 1 .

 1 Fig. 1. Proportionality of frequency and execution time 2) Validation: Our textbed advertises the following processor frequency: 2.66GHz, 2.40GHz, 2.13GHz, 1,86GHz and 1.60GHz.

Fig. 2 .Fig. 3 .

 23 Fig. 2. Execution of π-app at 2.4Ghz

Fig. 4 .Fig. 5 .Fig. 6 .

 456 Fig. 4. Execution of π-app at maximum frequency

TABLE I .

 I ALGORITHM VALIDATIONThis execution validates the number of time needed to emulate 1.9285 Ghz as presented in section III-A.

	1 void EmulateFrequency(int LFreq[], int CumFH,int CumFL,
		int CumF,int cpuid) {
	2	int SumFreq;
	3	SumFreq = CumFH + CumFL;
	4	
	5	if (SumFreq < CumF){
	6	SetFreq(cpuid,LFreq[1]);
	7	CumF += LFreq[0];
	8	CumFH += LFreq[1];
	9	}
	10	else{
	11	if (SumFreq > CumF){
	12	SetFreq(cpuid,LFreq[2]);
	13	CumF += LFreq[0];
	14	CumFL += LFreq[2];
	15	}
	16	else{
	17	CumF = CumFH = CumFL = 0;
	18	}
	19	}
	20 }