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Ranking-based Semantics for Argumentation

Frameworks

Leila Amgoud and Jonathan Ben-Naim

IRIT – CNRS⋆⋆

Abstract. An argumentation system consists of a set of interacting arguments

and a semantics for evaluating them. This paper proposes a new family of seman-

tics which rank-orders arguments from the most acceptable to the weakest one(s).

The new semantics enjoy two other main features: i) an attack weakens its target

but does not kill it, ii) the number of attackers has a great impact on the accept-

ability of an argument. We start by proposing a set of rational postulates that such

semantics could satisfy, then construct various semantics that enjoy them.

1 Introduction

Argumentation is a reasoning model based on the construction and evaluation of inter-

acting arguments. The most popular semantics were proposed by Dung in his seminal

paper [6]. Those semantics as well as their refinements (e.g. in [3, 5]) partition the pow-

erset of the set of arguments into two classes: extensions and non-extensions. Every

extension represents a coherent point of view. An absolute status is assigned to each

argument: accepted (if it belongs to every extension), rejected (if it does not belong

to any extension), and undecided if it is in some extensions and not in others. Those

semantics are based in particular on the following considerations:

Killing: The impact of an attack from an argument b to an argument a is drastic, that
is, if b belongs to an extension, then a is automatically excluded from that extension

(i.e., a is killed).
Existence: One successful attack against an argument a has the same effect on a as

any number of successful attacks. Indeed, one such attack is sufficient to kill a, several
attacks cannot kill a to a greater extent.
Absoluteness: The three possible status of the arguments are absolute, that is, they

make sense even without comparing them with each other.

Flatness: All the accepted arguments have the same level of acceptability.

These four considerations seem rational in applications like paraconsistent reason-

ing. For example, the killing consideration makes sense in this application, because

arguments are formulas and attacks correspond to contradictions, and it is natural to

consider that one contradiction is lethal.

However, in other applications, e.g. decision-making, some of these considerations

are debatable. First, the killing principle is problematic in decision-making, because an

attack does not necessarily kill its target, but just weakens it. Suppose for instance that

the two following arguments a and b are exchanged by two doctors:
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a: The patient should have a surgery since he has cancer.
b: The statistics show that the probability that a surgery will improve the state of the

patient is low.

In this case, the attack from b only weakens a, it does not kill a. The doctor may
still choose to do the surgery since it gives (a small) chance for the patient to survive.

Next, the existence consideration is also debatable. Suppose a seller provides the

following argument a in favor of a given car:

a: This car is certainly powerful since it is made by Peugeot.
b1: The engines of Peugeot cars break down before 300000km.
b2: The airbags of Peugeot cars are not reliable.
b3: The spare part is very expensive.

If the buyer receives the argument b1 against Peugeot (thus against a), then he ac-
cepts less a. The situation becomes worse if he receives b2 and b3. Indeed, the more
arguments he receives against a, the less his confidence in a.

The flatness consideration is also debatable in decision-making. Suppose for exam-

ple that a is not attacked, b is attacked only by a, and c is attacked only by b. Then, a
and c are both accepted and have the same level of acceptability. But, in applications
like decision-making, it is reasonable to consider that an attack from a non-attacked

node (or any number of non-attacked nodes) does not kill the destination node. So, b is
only weakened, which means that its attack against c should have some effect, that is,
the level of acceptability of c should be lower than that of a.

To sum up, existing semantics may be well-suited for reasoning but not for applica-

tions like decision-making. In the present paper, we propose a new family of semantics

that are based on the following graded considerations:

Weakening:Arguments cannot be killed (however, they can be weakened to an extreme

extent). As a consequence, an attack from an argument b to an argument a always

decreases the degree of acceptability of a (possibly only by an infinitesimal amount).
The greater the acceptability of b, the greater the decrease in the acceptability of a.
Counting: The more numerous the attacks against a, the greater the decrease in the
acceptability of a.
Relativity: The degrees of acceptability of the arguments are relative, that is, they do

not make sense when they are not compared with each other.

Graduality: There is an arbitrarily large number of degrees of acceptability.

In our approach, a semantics is a function that transforms any argumentation graph

into a ranking on its set of arguments: from the most accepted to the weakest one(s).

Our first step consists in proposing formal postulates, each of which is an intuitive and

desirable property that a semantics may enjoy. Our postulates are based on the four

informal graded considerations described earlier: weakening, counting, relativity, and

graduality. Such an axiomatic approach allows a better understanding of semantics and

a more precise comparison between different proposals. We investigate dependencies

and compatibilities between postulates. In a second step, we construct two ranking-

based semantics satisfying certain postulates.



2 Ranking-based semantics

An argumentation framework consists of a set of arguments and a set of attacks between

them. Arguments represent reasons to believe in statements, doing actions, etc. Attacks

express conflicts between pairs of arguments. In what follows, both components are

assumed to be abstract entities.

Definition 1 (Argumentation framework) An argumentation framework is an ordered

pair A = 〈A,R〉, where A is a finite set of arguments and R a binary relation on A
(i.e.,R ⊆ A×A). We callR an attack relation and aRb means that a attacks b.

We turn to the notion of attacker:

Notation Let A = 〈A,R〉 be an argumentation framework and a ∈ A. We define that

Arg(A) = A and AttA(a) = {b ∈ A | bRa}. When the context is clear, we write

Att(a) for short. The same goes for all notations.

As in classical approaches to argumentation [6], since arguments may be conflict-

ing, it is important to evaluate them and to identify the ones to rely on for inferring

conclusions (in case of handling inconsistency in knowledge bases) or making deci-

sions, etc. For that purpose, we propose ranking-based semantics which rank-order the

set of arguments from the most acceptable to the weakest one(s). Thus, unlike exist-

ing semantics which assign an absolute status (accepted, rejected, undecided) to each

argument, the new approach compares pairs of arguments.

Definition 2 (Ranking) A ranking on a set A is a binary relation � onA such that:�
is total (i.e., ∀ a, b ∈ A, a � b or b � a) and transitive (i.e., ∀ a, b, c ∈ A, if a � b
and b � c, then a � c). Intuitively, a � b means that a is at least as acceptable as b. So,
b 6� a means that a is strictly more acceptable than b.

We emphasize that, unlike in certain other works, the equal-or-more acceptable ar-

gument in an expression of the form a � b is on the left-hand side (i.e., a takes prece-
dence over b; the rank of a is above that of b; etc.).

Definition 3 (Ranking-based semantics) A ranking-based semantics is a function S

that transforms any argumentation frameworkA = 〈A,R〉 into a ranking on A.

A ranking should not be arbitrary, but should obey some postulates. By postulate,

we mean any reasonable principle, be it very general or very specific.

3 Postulates for semantics

First of all, a ranking on a set of arguments should be defined only on the basis of the

attacks between arguments, it should not depend on the identity of the arguments (at

least when the data only consist of nodes and arrows). So, our first postulate says that

two equivalent argumentation frameworks should give rise to two equivalent rankings.

Let us first define the notion of equivalence between two argumentation frameworks.



Definition 4 (Isomorphism) Let A = 〈A,R〉 and A
′ = 〈A′,R′〉 be two argumenta-

tion frameworks. An isomorphism from A to A
′ is a bijective function f from A to A′

such that ∀ a, b ∈ A, aRb iff f(a)R′f(b).

We define formally our first postulate and then exemplify it.

Postulate 1 (Abstraction) A ranking-based semantics S satisfies abstraction (Ab) iff
for any two frameworks A = 〈A,R〉 and A

′ = 〈A′,R′〉, for any isomorphism f from

A toA′, we have that ∀ a, b ∈ A, 〈a, b〉 ∈ S(A) iff 〈f(a), f(b)〉 ∈ S(A′).

Example 1 Consider the two argumentation frameworks depicted in the figure below.

a b c d

The postulate (Ab) ensures that the ranking relation between a and b is the same as the
one between c and d.

It is worth pointing out that extension-based semantics (i.e., Dung’s semantics) obey

in some sense this postulate. For instance, both argumentation frameworks of Example 1

have one preferred extension containing the non-attacked argument (a, resp. c).

The second postulate states the following: the question whether an argument a is at
least as acceptable as an argument b should be independent of any argument c that is
neither connected to a nor to b, that is, there is no path from c to a or b (ignoring the
direction of the edges). Let us first define the independent parts of an argumentation

framework.

Definition 5 (Weak connected component) A weak connected component of an ar-

gumentation framework A is a maximal subgraph of A in which any two vertices are

connected to each other by a path (ignoring the direction of the edges). We denote by

Com(A) the set of every argumentation framework B such that B is a weak connected

component ofA or the graph union of several weak connected components of A.

We turn to our second postulate and to an example.

Postulate 2 (Independence) A ranking-based semantics S satisfies independence (In)
iff for every argumentation framework A, ∀ B ∈ Com(A), ∀ a, b ∈ Arg(B), 〈a, b〉 ∈
S(A) iff 〈a, b〉 ∈ S(B).

Example 1 (Cont) Assume that the two graphs of Example 1 constitute a single ar-

gumentation framework. Then, (In) ensures that the ranking relation between a and b
(and the one between c and d) remains the same after the fusion of the two frameworks.

Given our weakening principle (detailed in the introduction), it is natural to con-

sider that a non-attacked argument is more acceptable (and thus ranked higher) than

an attacked argument. In other words, there is no full reinstatement for arguments. The

third postulate reflects this idea.



Postulate 3 (Void Precedence) A ranking-based semantics S satisfies void precedence

(VP) iff for every argumentation framework A = 〈A,R〉, ∀ a, b ∈ A, if Att(a) = ∅
and Att(b) 6= ∅, then 〈b, a〉 /∈ S(A).

Example 1 (Cont) (VP) ensures that a is ranked higher than b, and c higher than d.

Non-attacked arguments are also favored by extension-based semantics. They be-

long to any extension under grounded, complete, stable, and preferred semantics. Thus,

they are accepted. However, they may have the same status (accepted) as attacked argu-

ments (which are defended). Let us consider the following example.

Example 2 Assume the argumentation framework depicted in the figure below.

a b c

The grounded extension of this framework is {a, c}. The arguments a and c are both

accepted whereas b is rejected. Our approach ranks a higher than c since c is attacked,
thus weakened. Thus, it ensures a more refined treatment of arguments.

Since an attack always weakens its target, the next postulate states that having at-

tacked attackers is better than having non-attacked attackers (assuming the number of

attackers is the same). In other words, being defended is better than not being defended.

First, we formally introduce the notion of defender:

Notation Let A = 〈A,R〉 be an argumentation framework and a ∈ A. We denote

by DefA(a) the set of all defenders of a in A, that is, DefA(a) = {b ∈ A | ∃c ∈
A, cRa and bRc}.

Next, we turn to the postulate and to an example.

Postulate 4 (Defense Precedence) A ranking-based semanticsS satisfies defense prece-

dence (DP) iff for every argumentation frameworkA = 〈A,R〉, ∀a, b ∈ A, if |Att(a)| =
|Att(b)|, Def(a) 6= ∅, and Def(b) = ∅, then 〈b, a〉 /∈ S(A).

Example 3 Consider the argumentation framework depicted in the figure below.

h c e

a b

d g

Both arguments a and b have two attackers. The two attackers of b are not attacked,

thus they are strong. However, a is defended by h, thus the attacker c is weakened. To
sum up, a has one strong and one weak attacker, while b has two strong attackers. So,

(DP) ensures that a is ranked higher than b.

The two next postulates are based on both the weakening and the counting prin-

ciples: the more the attackers of an argument a are numerous and acceptable, the less

a is acceptable. The first postulate, called counter-transitivity, corresponds to a large



version of this combined principle, the second one, called strict counter-transitivity,

corresponds to a strict version.

More precisely, counter-transitivity says that an argumenta should be ranked at least
as high as an argument b, if the attackers of b are at least as numerous and acceptable as
those of a. Let us first introduce a relation that compares sets of arguments on the basis
of a ranking on the arguments.

Definition 6 (Group comparison) Let � be a ranking on a set A of arguments. For

all A,B ⊆ A, 〈A,B〉 ∈ Gr(�) iff there exists an injective function f from B to A such

that ∀ a ∈ B, f(a) � a. Intuitively, 〈A,B〉 ∈ Gr(�) iff the elements of the group A are

at least as numerous and acceptable as those of B.

To put the emphasize on the meaning of Gr(�), we derive the following fact:

Proposition 1 Let � be a ranking on a set A of arguments andA,B ⊆ A. If 〈A,B〉 ∈
Gr(�), then:

– |A| ≥ |B|;
– for all b ∈ B, ∃a ∈ A such that a � b.

We are ready to formally state the postulate based on argument-group comparisons:

Postulate 5 (Counter-Transitivity) A ranking-based semantics S satisfies the postu-

late counter-transitivity (CT) iff for every argumentation framework A = 〈A,R〉,
∀ a, b ∈ A, if 〈Att(b), Att(a)〉 ∈ Gr[S(A)], then 〈a, b〉 ∈ S(A).

Example 3 (Cont) (CT) ensures that a is ranked at least as high as b.

Strict counter-transitivity is another mandatory postulate in our approach. Loosely

speaking, it says that an argument a should be ranked strictly higher than an argument
b, if the attackers of b are more numerous or more acceptable than those of a.

Definition 7 (Strict group comparison) Let � be a ranking on a set A of arguments.

For all A,B ⊆ A, 〈A,B〉 ∈ Sgr(�) iff there exists an injective function f from B to A
such that the two following conditions hold:

∀ a ∈ B, f(a) � a;
|B| < |A| or ∃ a ∈ B, a 6� f(a).

Intuitively, 〈A,B〉 ∈ Sgr(�) iff the elements of A are strictly better than those of B
from a global point of view based on both cardinality and acceptability.

Postulate 6 (Strict Counter-Transitivity) A ranking-based semanticsS satisfies strict

counter-transitivity (SCT) iff for every argumentation frameworkA = 〈A,R〉, ∀ a, b ∈
A, if 〈Att(b), Att(a)〉 ∈ Sgr[S(A)], then 〈b, a〉 /∈ S(A).

Example 3 (Cont) (SCT) ensures that a is strictly more acceptable than b.

We turn to situations where the cardinality of the attackers and their quality (i.e.,

acceptability) are opposed. Here is an example.



Example 4 Consider the argumentation framework depicted in the figure below.

h c

a e b

g d

If one non-attacked attacker is sufficient to kill an argument (which is the case in

most approaches to argumentation), then the argument a should naturally be ranked

higher than b. But, in our approach, as explained in the introduction, no number of

attacked or non-attacked attackers can kill an argument. They can just weaken it. Con-

sequently, in this example, a is attacked by two weakened arguments, while b is attacked
by one strong argument. As usual, we have to make a choice: give precedence to cardi-

nality over quality (i.e. two weakened attackers are worse for the target than one strong

attacker), or on the contrary give precedence to quality over cardinality.

In certain applications such as decision-making, both options are reasonable. For

example, suppose we have to buy a car and we are considering a red one and a blue one.

In addition, the arguments of Example 4 correspond to the following statements:

b = The red car has got 5 stars out of 5 in our favorite car magazine;

e = The magazine does not take into account the fact that the red car is 1000 euros

more expensive than the blue one;

a = The blue car has got 5 stars out of 5 in our favorite car magazine;
c = The magazine does not take into account the fact that there is a probability of 0.5

that the blue car engine breaks down before 300000km. The reparations would cost

2000 euros;
h = A friend of ours is a mechanic. He would offer us a 10% discount on engine repa-

ration;
d = The magazine does not take into account the fact that there is a probability of 0.5

that the blue car will be stolen from us before 10 years. The insurance will pay for

another blue car, but there is a deductibility provision of 2000 euros;
g = In our neighborhood, the rate of motor vehicle theft is 10% lower than the average.

In this example, it is intuitive to consider that b is more acceptable than a. Indeed,
it is obvious that the group {c, d} is stronger than the singleton {e}, despite the fact
that the former is slightly weakened by h and g. Now, suppose that the argument e is
replaced by the following one:

e = The magazine does not take into account the fact that the red car is 4000 euros

more expensive than the blue one.

This time it is intuitive to consider that a is more acceptable than b.
To summarize, with abstract nodes and arrows as arguments and attacks, the out-

come of Example 4 is debatable. We can give precedence to cardinality over quality

(i.e. b is more acceptable than a) or on the contrary give precedence to quality over

cardinality (i.e. a is more acceptable than b). Both options are rational. We turn to two

axioms representing these two choices.

First, cardinality precedence says that an argument a should be ranked higher than
an argument b, if the attackers of a are less numerous than those of b.



Postulate 7 (Cardinality Precedence) A ranking-based semantics S satisfies cardi-

nality preference (CP) iff for every argumentation frameworkA = 〈A,R〉, ∀ a, b ∈ A,

if |Att(a)| < |Att(b)|, then 〈b, a〉 /∈ S(A).

Next, quality precedence says that an argument a should be ranked higher than an
argument b, if at least one attacker of b is ranked higher than any attacker of a.

Postulate 8 (Quality Precedence) A ranking-based semanticsS satisfies quality prece-

dence (QP) iff for every argumentation framework A = 〈A,R〉, ∀ a, b ∈ A, if there

exists c ∈ Att(b) such that ∀ d ∈ Att(a), 〈d, c〉 /∈ S(A), then 〈b, a〉 /∈ S(A).

The last postulate says that, all other things remaining equal, a distributed defense is

better than a focused one. This postulate is not at all mandatory. It simply represents a

reasonable choice that one can make in very specific situations. More precisely, the idea

is to compare two arguments having the same number of attackers and the same number

of defenders. In addition, each defender attacks exactly one attacker. The postulate says

that, in this case, the best kind of defense is the totally distributed one, i.e. each defender

attacks a distinct attacker. In some sense, there is no “overkill”.

First, we formally define what is a simple and distributed defense.

Definition 8 (Simple/distributed defense) LetA= 〈A,R〉 be an argumentation frame-
work and a ∈ A.

The defense of a in A is simple iff every defender of a attacks exactly one attacker of

a.
The defense of a in A is distributed iff every attacker of a is attacked by at most one

argument.

We are ready to define our last postulate:

Postulate 9 (Distributed-Defense Precedence) A ranking-based semantics S satisfies

distributed-defense precedence (DDP) iff for any argumentation frameworkA = 〈A,R〉,
∀ a, b ∈ A such that |Att(a)| = |Att(b)| and |Def(a)| = |Def(b)|, if the defense

of a is simple and distributed and the defense of b is simple but not distributed, then

〈b, a〉 /∈ S(A).

Let us illustrate these concepts on the following example.

Example 5 Consider the argumentation framework depicted in the figure below.

l h c e j

a k b

g d i

The two arguments a and b have the same number of defenders: Def(a) = {h, g} and

Def(b) = {e, k}. However, the defense of a is simple and distributed while the defense

of b is simple but not distributed. The postulate (DDP) ensures that a is more acceptable

than b, despite the fact that the defenders of a are weaker than those of b.



4 Relationships between postulates

So far we have proposed a set of postulates that are suitable for defining a ranking-

based semantics in argumentation theory. In the present section, we briefly study their

dependencies, as well as their compatibilities (i.e., whether they can be satisfied together

by a semantics). We start by showing that the postulates (CT), (SCT), (VP) and (DP) are
not independent.

Proposition 2 Let S be a ranking-based semantics:

if S satisfies (SCT), then it satisfies (VP);
if S satisfies both (CT) and (SCT), then it satisfies (DP).

Let us now check the compatibility of the postulates. Unsurprisingly, (CP) and
(QP) cannot be satisfied together. Example 4 already illustrates this issue. Indeed, (QP)
prefers a to b, while (CP) prefers the converse.

Proposition 3 No ranking-based semantics can satisfy both (CP) and (QP).

In the next section, we construct a ranking-based semantics showing the following

compatibility result:

Proposition 4 The postulates (Ab), (In), (CT), (SCT), (CP), and (DDP) are compatible.

5 Discussion-based and Burden-based semantics

This section introduces two semantics satisfying most of our postulates, namely those

that are compatible with (CP).

The first semantics, called discussion-based semantics, is centered on a notion of

linear discussion similar to ‘argumentation line’ in [8]. A linear discussion is a sequence

of arguments such that each argument attacks the argument preceding it in the sequence.

Definition 9 (Linear discussions) Let A = 〈A,R〉 be an argumentation framework

and a ∈ A. A linear discussion for a in A is a sequence s = 〈a1, . . . , an〉 of elements
of A (where n is a positive integer) such that a1 = a and ∀ i ∈ {2, 3, . . . , n} aiRai−1.

The length of s is n. We say that: s is won iff n is odd; s is lost iff n is even.

Let us illustrate this notion on an example.

Example 5 (Cont) Two won linear discussions for the argument a are e.g., s1 = 〈a〉
and s2 = 〈a, d, g〉 and one lost linear discussion is, for instance, s3 = 〈a, c, h, l〉.
Similarly, three won linear discussions for the argument b are s′1 = 〈b〉, s′2 = 〈b, j, e〉
and s′3 = 〈b, j, k〉 and one lost discussion is s′4 = 〈b, i〉.

The basic idea behind the semantics is the following: for every argument a, for
every positive integer i, we count the number of linear discussions for a of length i. We

positively count the lost discussions and negatively count the won discussions. So, in

any case, the smaller the number calculated, the better the situation for a.



Definition 10 (Discussion count) Let A = 〈A,R〉 be an argumentation framework,

a ∈ A, and i a positive integer. We define that:

DisAi(a) =

{

−N if i is odd;
N if i is even;

where N is the number of linear discussions for a inA of length i.

Example 5 (Cont) The following table provides the discussion counts DisAi of the two

arguments a and b.

i a b
1 -1 -1
2 2 2

3 -2 -2
4 1 0

Our strategy is to lexicographically rank the arguments on the basis of their won

and lost linear discussions.

Definition 11 (Discussion-based semantics) The ranking-based semantics Dbs trans-

forms any argumentation framework A = 〈A,R〉 into the ranking Dbs(A) on A such

that ∀ a, b ∈ A, 〈a, b〉 ∈ Dbs(A) iff one of the two following cases holds:

∀ i ∈ {1, 2, . . .}, Disi(a) = Disi(b);
∃ i ∈ {1, 2, . . .}, Disi(a) < Disi(b) and ∀ j ∈ {1, 2, . . . , i− 1}, Disj(a) = Disj(b).

Example 5 (Cont) For every i ∈ {1, 2, 3}, Disi(a) = Disi(b). However, Dis4(a) >
Dis4(b). Thus, 〈a, b〉 /∈ Dbs(A), i.e., b is strictly more acceptable than a.

At first sight, the infinite character of the set {1, 2, . . .} of all positive integers may
look like an issue from a computational point of view. Indeed, Disi(a) may never stop
evolving. This is due to the possible presence of cycles in the argumentation framework.

But, if Disi(a) never stops evolving, it evolves cyclically. So, we strongly conjecture
that there exists a threshold t such that if ∀ i ≤ t, Disi(a) = Disi(b), then ∀ i > t,
Disi(a) = Disi(b). Such an equality-ensuring threshold would be dependent on the

length of the longest elementary cycle in the argumentation framework. This threshold

would be useful to write a program implementing our discussion-based semantics.

Note also that the computation can simply be done up to a fixed step t. The greater
t, the closer the ranking obtained to the actual discussion-based ranking.

Next, the postulates represent theoretical validations for our semantics:

Theorem 1 Dbs satisfies (Ab), (In), (CT), (SCT), and (CP).

From Proposition 2, it is immediate that Dbs satisfies additional postulates:

Corollary 1. Dbs satisfies (VP) and (DP).

Theorem 2 Dbs does not satisfy (DDP).



Next, we show that Dbs treats odd and even length cycles in a similar way:

Proposition 5 LetA = 〈A,R〉 be an argumentation framework. Suppose thatA takes

the form of a unique cycle, i.e. there exists an enumeration 〈a1, . . . , an〉 of A (without

repetition and where n is a positive integer) such that ∀i ∈ {1, 2, . . . , n−1}, Att(ai) =
{ai+1}, and Att(an) = {a1}. Then, ∀ a, b ∈ A, 〈a, b〉 ∈ Dbs(A).

The second semantics, called burden-based semantics, satisfies (DDP). It follows a
multiple steps process. At each step, it assigns a burden number to every argument. In

the initial step, this number is 1 for all arguments. Then, in each step, all the burden

numbers are simultaneously recomputed on the basis of the number of attackers and

their burden numbers in the previous step. More precisely, for every argument a, its
burden number is set back to 1, then, for every argument b attacking a, the burden
number of a is increased by a quantity inversely proportional to the burden number of b
in the previous step. More formally:

Definition 12 (Burden numbers) Let A = 〈A,R〉 be an argumentation framework,

i ∈ {0, 1, . . .}, and a ∈ A. We denote by BurAi(a) the burden number of a in the ith

step, i.e.:

Buri(a) =

{

1 if i = 0;
1 +Σb∈Att(a)1/Buri−1(b) otherwise.

By convention, if Att(a) = ∅, then Σb∈Att(a)1/Buri−1(b) = 0.
Let us illustrate this function on the following example.

Example 2 (Cont) The burden numbers of each argument are summarized in the table

below. Note that these numbers will not change beyond step 2.

Step i a b c
0 1 1 1

1 1 2 2

2 1 2 1.5
...

...
...

...

We lexicographically compare two arguments on the basis of their burden numbers.

Definition 13 (Burden-based semantics) The ranking-based semantics Bbs transforms

any argumentation framework A = 〈A,R〉 into the ranking Bbs(A) on A such that

∀ a, b ∈ A, 〈a, b〉 ∈ Bbs(A) iff one of the two following cases holds:

∀ i ∈ {0, 1, . . .}, Buri(a) = Buri(b);
∃ i ∈ {0, 1, . . .}, Buri(a) < Buri(b) and ∀ j ∈ {0, 1, . . . , i− 1}, Burj(a) = Burj(b).

As for the discussion-based semantics, an equality-ensuring threshold probably ex-

ists for the burden-based semantics. Such a threshold would make possible an exact

computation, despite the fact that {0, 1, . . .} is infinite.

Note that both semantics (Dbs and Bbs) do not take into account possible depen-

dencies between an argument and one of its attackers, nor the dependencies between



two attackers. Actually, Dbs and Bbs rank the arguments only on the basis of the struc-

ture obtained by “unrolling” the cycles. For example, our semantics do not distinguish

between a loop (e.g. aRa) and a cycle (e.g. aRb, bRa). The notion of dependence is
hard to capture and beyond the scope of this paper. Our goal in the present paper is

essentially to introduce a new kind of semantics, basic postulates for it, and instances

satisfying those postulates.

We turn to the postulate-based analysis of Bbs:

Theorem 3 Bbs satisfies (Ab), (In), (CT), (SCT), (CP), and (DDP).

From Proposition 2, it satisfies more postulates:

Corollary 2. Bbs satisfies (VP) and (DP).

Let us see on examples how the semantics works.

Example 2 (Cont) According to Bbs, the argument a is strictly more acceptable than c
which is itself strictly more acceptable than b.

Note that Bbs returns a more refined result than Dung’s semantics. Indeed, the set

{a, c} is a (preferred, grounded, stable) extension according to [6]. Our approach refines
the result by ranking a higher than c since it is not attacked. This does not mean that
Bbs semantics coincides with Dung’s ones. The following example shows that the two

approaches may return different results since they are grounded on different principles.

Example 4 (Cont) The argumentation framework has a unique extension {h, g, a, e}
which is grounded, preferred and stable. Thus, the argument b is rejected. Let us now
apply the Bbs semantics on the same framework. The table below provides the burden

numbers of the arguments.

Step i h g c d a e b
0 1 1 1 1 1 1 1

1 1 1 2 2 3 1 2

2 1 1 2 2 2 1 2
...

...
...
...
...
...
...
...

Bbs provides the following ranking: h, g, e � c, d, b � a. Thus, b is more acceptable
than a. The reason is that b has less attackers and Bbs give precedence to the cardinality
of the attackers over their quality.

Example 5 (Cont) According to Bbs, a is strictly more acceptable than b.

Note that in this example, the semantics Dbs returns the converse. This shows that

the two semantics may return very different results. This difference comes from the

postulate DDP which is satisfied by Bbs but violated by Dbs.

As with Dbs, we show next that the Bbs semantics treats odd and even length cycles

in a similar way.



Proposition 6 LetA = 〈A,R〉 be an argumentation framework. Suppose thatA takes

the form of a unique cycle, i.e. there exists an enumeration 〈a1, . . . , an〉 of A (without

repetition and where n is a positive integer) such that ∀i ∈ {1, 2, . . . , n−1}, Att(ai) =
{ai+1}, and Att(an) = {a1}. Then, ∀ a, b ∈ A, 〈a, b〉 ∈ Bbs(A).

6 Related work

There are three works in the literature which are somehow related to our contribution.

The first attempts were done in [1, 2] where the authors identified different principles

and compared existing semantics wrt them. The principles are tailored for extension-

based semantics, and do not apply for ranking-based ones.

The work in [4] is closer to ours. The authors defined a notion of gradual acceptabil-

ity. The idea is to assign a numerical value to each argument on the basis of its attackers.

The properties of the valuation function are unclear. Our approach defines, through a

set of formal postulates, the desirable properties of our semantics.

In [7], Dung’s abstract framework was extended by considering weighted attacks.

The basic idea is to remove some attacks up to a certain degree representing the tol-

erated incoherence, and then apply existing semantics to the new graph(s) by ignoring

completely the weights. This leads to extensions which are not conflict-free in the sense

of the attack relation. Consider the following weighted framework. If one tolerates in-

coherence up to degree 1 (β = 1), then the attack from a to b is ignored. Consequently,
∅ and {a, b} are two β-grounded extensions.

a

c b

1

4

5

This approach is different from ours for several reasons.

First, it does not obey the four graded considerations at the basis of our postulates

and semantics (i.e., weakening, counting, relativity, and graduality), it rather obeys the

four traditional non-graded considerations described in the introduction (i.e., killing,

existence, absoluteness, and flatness). Indeed, weights are only used for deciding which

attacks can be ignored when computing the extensions.

The second main difference stems from the fact that weights of attacks are inputs of

the argumentation system of [7]. In our approach, degrees are located in the output, i.e.

we compute the relative degree of acceptability of each argument. Note that the more an

argument is acceptable, the more the attacks emanating from it are important. However,

this does not mean that weights of attacks are generated. In our approach, the three

arguments a, b and c are equivalent with regard to Bbs and Dbs. Finally, our semantics
can be extended to deal with weighted attacks as input.

7 Conclusion

The paper develops an axiomatic approach for defining semantics for argumentation

frameworks. It proposes postulates (each of which represents a criterion) that a seman-

tics may satisfy. The approach offers thus a theoretical framework for comparing se-

mantics. It is worth emphasizing that only some of the postulates (e.g. abstraction) are



satisfied by Dung’s semantics (when the arguments are ranked on the basis of their sta-

tus, i.e. accepted arguments are ranked above undecided ones, which are ranked above

rejected ones). The other postulates are based on graded considerations which may be

natural in applications like decision-making.

Another novelty of our approach is that it computes the acceptability of arguments

without passing throughmultiple points of view. Its basic idea is to compute a complete

ranking on the set of arguments. The paper proposes two novel semantics that satisfy

the postulates but that do not necessarily return the same results. An important future

work is to find sufficiently many postulates to characterize our semantics.
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