

An experimental study and model determination of the stiffness of paper folds

C. Pradier, J. Cavoret, D. Dureisseix, C. Jean-Mistral, F. Ville

Dept. of Mech. Eng. & Dvpt. – GMD INSA Lyon LaMCoS U. Lyon / INSA Lyon / CNRS UMR 5259 20 Avenue Albert Einstein 69 621 Villeurbanne, France

March 26, 2015

Workshop on Folding and Creasing of Thin Plate Structures

Advertising slide: CFM 2015!

French Congress on Mechanics is organized

- August 24th- 28th, 2015
- At Lyon

(first) call for abstract ends: April 13th

short abstract (2 pages)

web site http://cfm2015.sciencesconf.org

Mechanics and its interfaces: environment, structural integrity, natural media, acoustics, tribology...

You are welcome!

CONGRÈS FRANCAIS DE MECANIQUE

La Mécanique et ses Interfaces

24 - 28 août **2015**

Motivations

- Folding / unfolding structures
 Deployable panels, adjustable architecture designs
 Medical devices, biomimicry studies
- Paper models
 - Prototyping other material structures Changes in scale and material
- Beyond kinematics (merely pseudo-rigidity assumption)
- Local (macro) paper crease behavior (straight or curved)

Outlines

- Experiments and results In-plane tensile test and anisotropy Crease behavior (monotonous loading)
- Advanced model identification
 Raw data and PCA
 Deterministic vs. variability
- Discussion
 - Anisotropy
 - Variability
- Conclusions and perspectives

Paper standard characteristics

Arjowiggins Conqueror CX22[™] (120 g/m² ECF woodfree pulp uncoated paper) Thanks to J.-M. Baumlin

- Preliminary measurements (ambient temperature 25°C, RH 40%)
 - Mean thickness e = 12 mm
 - ($\Delta e/e$ variability 3.9%, measurement precision 4.8%)
 - Grammage $\rho_s = 116 \text{ g/m}_2$

($\Delta \rho_s / \rho_s$ variability 2.1%, measurement precision 1.7%)

- Tensile in-plane traction test, with DIC for strain field (roughly a factor 2 anisotropy, max shift / max stress < 2.6%)</p>
- No significant dispersion

Crease model

- Macroscopic and phenomenological
 - Quasi-static
 - Monotonic folding path (at a first step)
 - Local behavior
 - Hinge joint with a torsional spring (possibly non linear)

Could be, for the torque C, folding angle α , length L and for a given fold orientation: $C = f(\alpha)L$

Experimental protocol

Single straight crease samples
 Several orientations (longitudinal, transverse, 45°)
 Several lengths (30 mm, 40 mm, 50 mm)

Creasing process

Mark with thumbnail

Open with a roller (5 kg)

Fold again with the same roller

Unfolding path measures
 By increasing weights
 Opening angle α, torque C

Temperature 20.5-21.5°C, RH 38-47%

Face bending neglected

Experimental results

With different orientations (longitudinal, transverse, 45°), lengths $(n_L = 3)$, 43 specimens and 611 experimental points

- For a given fold orientation
 - Fold torque function of opening angle α and fold length *L* expected to be $C(\alpha, L) = k(\alpha)f(L) + \varepsilon$

no a priori knowledge on functions k, f nor on random variable ε

Single-shot identification

Sets of specimens of same length L_{ji} , $j = 1...n_L$ with somehow unstructured data (α_{jii}, C_{ji}) , $i = 1...m_j$ Residuals $\varepsilon_{ji} = C_{ji} - N(\alpha_{ji})\kappa f_j$

With $N(\alpha_{ji})$ the FE-like shape functions, κ the dof vector for the discretization of $k(\alpha)$

For a given fold orientation

Identification is the optimization problem $\min_{k,f} e^2 = \|\varepsilon^2\|_F = \sum_{k,f} e^k$

• Can be iterated on $C(\alpha, L) - k(\alpha)f(L) \approx \overline{k}(\alpha)\overline{f}(L)$

A generalization of the svd, providing a cross-orthogonality of modes and the singular value (contribution of each mode) σ Using a fixed point algorithm to find the best rank-1 approximations

• 1 user parameter: n_{α} number of points for the discretization of $k(\alpha)$

- For a given fold orientation
 - Identified modes $(k(\alpha), f(L))$
 - Model validation
 - 1 predominant mode: no angle-length coupling Quasi-linear f(L): local behavior assumption

n_{α}	$\frac{\sigma_1}{\sqrt{m}}$	$\frac{\sigma_2}{\sqrt{m}}$	$\frac{\sigma_3}{\sqrt{m}}$	$\frac{\sigma_2}{\sigma_1}$	e _{RMS}
2	1.72	0.040	0.006	2.3%	2.4%
5	1.73	0.030	0.013	1.7%	2.1%
11	1.73	0.033	0.022	1.9%	2%
31	1.73	0.046	0.032	2.7%	2%

 α / degree

- For a given fold orientation
 - Influence of user parameter n_{α}
 - Hierarchical modelling Cut-off for the deterministic / random

splitting

For a given fold orientation

- Variability issue
 - Mean of random variable ε is zero (constant field belongs to the FE space)

For a given fold orientation

Variability issue

Dispersion due to the complex folding process and the protocol Part of the phenomenological model

 $k(\alpha) / N$

- For all the fold orientations (crease anisotropy)
 - No neat dependence on the orientation

(N.B. in-plane anisotropy of factor 2)

■ Due to the complex fold process zone? Width ≈ 2.3 thickness

Single identification for all the fold orientations

Single identification for all the fold orientations

Single identification for all the fold orientations

Outlooks and prospects

Anisotropy

Large influence on in-plane tension

Small influence on crease behavior

(first order model: no crease orientation dependence)

Variability

Highly controlled paper making process: reproducibility of tensile tests Uncertainties in the folding process: taking the variability into account Identification of a deterministic part and a variable component Could / should the process be improved?

Outlooks and prospects

Model identification & validation

Locality (linear length dependence, no length-angle cross dependence) One-shot identification procedure with 1 user parameter (n_{α}): hierarchical approach

Model limitations

Limited angle range

Monotonic evolution

No internal variable for damage memory / fatigue / cyclic loading

Applicable to other thin material characterization

Thank you for your attention

Contacts and Structural Mechanics Laboratory

In-plane anisotropy

Tensile tests

Temperature 22-23.5°C, RH 40-45% Lloyd LF Plus machine with 1 kN load cell, 1 mm/min velocity Samples 30 mm wide, 125 mm long Camera & DIC for strain field 8 samples in each direction

In-plane anisotropy

- Tensile tests
 - Roughly a factor 2 anisotropy
 - Max shift / max stress < 2.6%</p>

Only small data dispersion reproducibility controlled process

In-plane anisotropy

Microstructure & manufacturing process weakly entangled and in-plane layered fiber arrangement component, within a softer matrix

Tomograph of a sample [Bloch et al, ESRF beamline ID19 Grenoble]

> Example of fiber orientation distribution for machine-made paper [Sampson, Materials properties of paper as influenced by its fibrous architecture, Int. Mat. Rev. 54(3), 2009]

• Optimization problem • Leads to: $\forall j \in \{1 \dots n_L\}, \quad (\kappa^T M_j \kappa) f_j = \kappa^t c_j$ $M\kappa = c$ • With $M_j = \sum_{i=1}^{m_j} N(\alpha_{ji})^T N(\alpha_{ji}) \quad c_j = \sum_{i=1}^{m_j} N(\alpha_{ji})^T C_{ji}$ $M = \sum_{j=1}^{n_L} f_j M_j f_j \quad c = \sum_{j=1}^{n_L} f_j c_j$

Fixing underdeterminacy with $\sum_{j=1}^{n_L} f_j^2 = 1$.

Can be iterated on $C(\alpha, L) - k(\alpha)f(L) \approx \bar{k}(\alpha)\bar{f}(L)$ Cross-orthogonality of modes $\sum_{j=1}^{n_L} f_j[\bar{\kappa}^T M_j\bar{\kappa}]\bar{f}_j = 0 \quad \text{and} \quad \kappa^T[\sum_{j=1}^{n_L} \bar{f}_j M_j\bar{f}_j]\bar{\kappa} = 0$

Singular value (mode contribution)

$$\sigma = \sqrt{\kappa^T M \kappa} = \sqrt{\kappa^T c}$$

For a given fold orientation

- Variability issue
 - Dispersion due to the complex folding process and the protocol Part of the phenomenological model

Example of a pre-crease cardboard industrial process

Industrial process for crease predefined path (cardboard) [Giampieri et al, A constitutive model for the mechanical response of the folding of creased paperboard, Int. J. Solids Struct. 48(16-17), 2011]

For a given fold orientation

- Variability issue
 - Mean of random variable ε is zero (constant field belongs to the FE space)

Variance

n_{α}	$\frac{\sigma_1}{\sqrt{m}}$	$\frac{\sigma_2}{\sqrt{m}}$	$\frac{\sigma_3}{\sqrt{m}}$	$\frac{\sigma_2}{\sigma_1}$	e _{RMS}	\sqrt{V}
2	1.72	0.040	0.006	2.3%	2.4%	0.196
5	1.73	0.030	0.013	1.7%	2.1%	0.177
11	1.73	0.033	0.022	1.9%	2%	0.176
31	1.73	0.046	0.032	2.7%	2%	0.170

Crease anisotropy

- For all the fold orientations
 - No neat dependence on the orientation
 - Due to the complex fold process zone? Width ≈ 2.3 thickness

[Rolland du Roscoat et al, Estimation of microstructural properties from synchrotron X-rays microtomography and determination of the REV in paper materials, Acta. Mater. 55(8), 2007]

Creasing process

Sectional view of crease

[Nagasawa et al, Effect of crease depth and crease deviation on folding deformation

characteristics of coated paperboard, J. Mat. Proc. Tech. 140(1–3), 2003]

Crease anisotropy

- Single identification for all the fold orientations
 - Representative model
 - Increase in variability

