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LAGRANGIAN/EULERIAN SOLVERS AND SIMULATIONS FOR

VLASOV-POISSON

Sebastien Guisset1, 2, Philippe Helluy3, 4, Michel Massaro4, Laurent Navoret3,4,

Nhung Pham3,4 and Malcolm Roberts3,4

Abstract. We construct a hyperbolic approximation of the Vlasov equation using a method of reduc-
tion [10, 14, 22] in which the dependency on the velocity variable is removed. The reduction relies on a
semi-discrete �nite element approximation in the velocity variable. We apply Gauss-Lobatto numerical
integration in velocity space, reducing the hyperbolic system to a system of transport equations for which
the transport velocities are the Gauss-Lobatto points. The transport equations are coupled through a
zero-order term that represents the electromagnetic forces. We solve the resulting system by a splitting
approach: the homogeneous transport equations are solved by a split semi-Lagrangian method and the
source term is applied independently. We also present preliminary comparisons with another transport
solver based on the discontinuous Galerkin method.

Résumé. Au moyen d'une méthode de réduction décrite dans [10, 14, 22] nous construisons une approx-
imation hyperbolique de l'équation de Vlasov dans laquelle la dépendance en vitesse est supprimée. La
réduction repose sur une semi-discrétisation par éléments �nis dans la variable de vitesse. Nous appliquons
aussi une intégration numérique de Gauss-Lobatto dans l'espace des vitesses. Le sytème hyperbolique se
réduit alors à un système d'équations de transport dont les vitesses sont les points de Gauss-Lobatto. Les
équations de transport sont couplées à travers un terme source d'ordre zéro qui représente la force électro-
magnétique. Nous résolvons le système obtenu par une méthode de splitting: les équations de transport
homogènes sont résolues par un algorithme semi-Lagrangien splitté et le terme source est appliqué indépen-
damment. Nous présentons également des comparaisons préliminaires avec un autre solveur de l'équation
de transport basé sur une approche Galerkin discontinu.

Introduction

The Vlasov-Poisson system is a popular model for the numerical simulation in plasma physics. Solving the Vlasov-
Poisson equation is challenging as it is composed of a time-dependent transport equation in a six-dimensional (x,v)
phase-space coupled with the electric potential equation. Some popular methods for studying this equation are the
particle-in-cell (PIC) method [3] or the semi-Lagrangian approach [7].

In a previous work [22] (see also [10,14]), we constructed a reduced Vlasov-Poisson system where the dependency
in the velocity variable v is removed. The principle is to approximate the distribution function f(x,v, t) in the
velocity variable v with a �nite element interpolation; this semi-discretization transforms the Vlasov equation into
a hyperbolic system for which the unknowns system are the values of f at the interpolation nodes in v. The
hyperbolic system contains a zero order source term that represents the electric force.

Here, we apply the same strategy as in [22] but we replace the exact numerical integration by Gauss-Lobatto
integration in the �nite element approximation. This simpli�es the nature of the hyperbolic system, reducing it to
a system of transport equations for which the velocities are the Gauss-Lobatto points. The spatial transport and
velocity source term are solved separately. The transport equation is solved by a semi-Lagrangian approach [6,7]. We
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present numerical results on the classic test cases of Landau damping and the two-stream instability and evaluate the
conservation properties of the scheme. Finally, we provide preliminary comparisons between the semi-Lagrangian
transport solver and a recently developed discontinuous Galerkin (DG) transport solver.

1. Model reduction of the Vlasov-Poisson equation

We consider the two-dimensional Vlasov equation

∂f

∂t
(x,v, t) + v · ∇xf(x,v, t) + E · ∇vf(x,v, t) = 0. (1)

The unknown is the distribution function f , which depends on the position x ∈ Ωx ⊂ R2, the velocity variable
v ∈ Ωv ⊂ R2 and the time variable t ∈ R. The electric �eld E depends on x and t and is given by

E = −∇xΦ, with −∆xΦ = ρ− ρ. (2)

The charge ρ and the mean value of the charge ρ are given by

ρ(x, t) =

ˆ
v

f(x,v, t)dv, ρ(t) =

´
x,v

f(x,v, t)dxdv

|Ωx|
. (3)

The computational domain is Ω = Ωx×Ωv where Ωv = (−V, V )
2
for some �xed V > 0. We assume periodic boundary

conditions in the space variable. Let nv = (n1
v, n

2
v) be the outward normal vector on the velocity boundary ∂Ωv.

Because the Vlasov equation is a transport equation, it is natural to apply upwind boundary conditions at the
velocity boundary

E(x, t) · nv(v)|v∈∂Ωv
< 0⇒ f(x,v, t)|v∈∂Ωv

= 0. (4)

Using the notation (E · nv)− = min(E · nv, 0), condition (4) is equivalent to

(E · nv)− f(x,v, t) = 0 on ∂Ωv. (5)

Note that the boundary condition is trivially satis�ed when E ·nv ≥ 0. The equations (1)-(2) are supplemented by
an initial condition

f(x,v, 0) = f0(x,v).

We now recall how to obtain the reduction of the Vlasov equation. One �rst expands the distribution function f
on a basis of functions depending on v, {ϕj}j=1,...,P .

f(x,v, t) '
P∑

j=1

wj(x, t)ϕj(v) = wj(x, t)ϕj(v). (6)

(The convention of summation on repeated indices is used.) Several di�erent bases can be used, see for instance [4]
and references therein. Multiplying the Vlasov equation (1) by ϕi, integrating with respect to v

∂twj

ˆ
Ωv

ϕiϕj +∇xwj ·
ˆ

Ωv

vϕiϕj + Ewj

ˆ
Ωv

ϕi∇vϕj = 0. (7)
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Let (E · nv)+ = max(E · nv, 0). Using Green's formula two times, and applying the boundary conditions (5), we
have

Ewj

ˆ
Ωv

ϕi∇vϕj = −Ewj

ˆ
Ωv

∇vϕiϕj + wj

ˆ
∂Ωv

(E · nv)ϕjϕi (8)

= −Ewj

ˆ
Ωv

∇vϕiϕj + wj

ˆ
∂Ωv

(E · nv)
+
ϕjϕi (9)

= Ewj

ˆ
Ωv

∇vϕiϕj − wj

ˆ
∂Ωv

(E · nv)ϕjϕi + wj

ˆ
∂Ωv

(E · nv)
+
ϕjϕi (10)

= Ewj

ˆ
Ωv

∇vϕiϕj − wj

ˆ
∂Ωv

(
E · nv − (E · nv)+

)
ϕjϕi (11)

= Ewj

ˆ
Ωv

ϕi∇vϕj − wj

ˆ
∂Ωv

(E · nv)
−
ϕjϕi (12)

Finally

∂twj

ˆ
Ωv

ϕiϕj +∇xwj ·
ˆ

Ωv

vϕiϕj + Ewj

ˆ
Ωv

ϕi∇vϕj − wj

ˆ
∂Ωv

(E · nv)
−
ϕjϕi = 0. (13)

In this way, we obtain the following Friedrichs systems with sources:

M∂tw +A1∂x1
w +A2∂x2

w +B(E)w = 0. (14)

where w is the vector of P components w = (w1, w2, ..., wP )T and M , A1, A2, B(E) are matrices of dimension
P × P , whose elements are given by

Mi,j =

ˆ
Ωv

ϕiϕj , A1
i,j =

ˆ
Ωv

v1ϕiϕj , A2
i,j =

ˆ
Ωv

v2ϕiϕj , (15)

and

B(E)i,j = E ·
ˆ

Ωv

ϕi∇vϕj −
ˆ
∂Ωv

(E · nv)−ϕjϕi. (16)

The above procedure applies to any choice of velocity basis. As in [14, 22], we use a �nite element interpolation
basis, for other choices we refer to eg [4]. To construct the function basis, we �rst consider a regular square mesh
of Ωv made of �nite elements of degree d. The basis functions are continuous on Ωv and polynomial of degree d in
each square �nite element. Gauss-Lobatto integration points are used in each element to discretize the variation
of f with v. Let Nv be the number of elements in each velocity direction, so that the number of Gauss-Lobatto
points in the mesh is P = (Nvd+1)2. We denote these points {Ni}Pi=1. The basis functions satisfy the interpolation
property

ϕj(Ni) = δij ,

where δij is the Kronecker delta. From the �nite element construction, we also have access to the velocity mesh
connectivity: for a given �nite element index k, 0 ≤ k ≤ N2

v and a local Gauss-Lobatto point index `, 0 ≤ ` ≤ (d+1)2,
we are able to recover the global index i, 0 ≤ i ≤ P , of the Gauss-Lobatto point. In this case, we also use the
notation Ni = Nk,`. For more details we refer to [22], where the construction of the �nite element basis is fully
detailed in the one-dimensional case.

A given function h de�ned on Ωv can be integrated by splitting
´

Ωv
h(v)dv into elementary integrals on the

square �nite elements Qk, k = 1 . . . N2
v ,

ˆ
Ωv

h(v)dv =

N2
v∑

k=1

ˆ
Qk

h(v)dv.

Then by using the Gauss-Lobatto quadrature, we obtain

ˆ
Qk

h(v)dv '
(d+1)2∑
`=1

ωk,`h(Nk,`), (17)
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where ωk,` is the weight associated to Gauss-Lobatto point Nk,` in the quadrature formula. Finally, applying
formula (17) we obtain that the matrices M and Ak are diagonal and given by

Mi,i =
∑

Ni=Nk,`

ωk,` > 0, (18)

and
Ak

i,i = Mi,iV
k
i , Vi = (V 1

i , V
2
i ). (19)

The matrix B(E) is sparse but not diagonal; with the standard numbering of the �nite element interpolation points
its bandwidth is Nvd+ 1. We can also rewrite the system (14) as

∂tw +M−1A1∂x1
w +M−1A2∂x2

w +M−1B(E)w = 0. (20)

where M−1A1 and M−1A2 are diagonal. We call equation (20) the reduced Vlasov model. We observe that thanks
to the choice of the basis functions and the numerical quadrature, the reduced Vlasov model is simply a system of
transport equations that are coupled through the source term M−1B(E)w.

2. Numerical methods for solving the reduced Vlasov model

In this section, we present three methods to solve the reduced Vlasov model on Cartesian meshes. The �nite
volume method (subsection 2.1) and the semi-Lagrangian method (subsection 2.2) rely on a directional-splitting
method to replace the 2D problem by a pair of one-dimensional problems. Let wn be an approximation of w at
time tn, the time discretization is

w∗ −wn

∆t
+M−1A1 ∂x1

wn = 0, (21)

w∗∗ −w∗

∆t
+M−1A2 ∂x2w

∗ = 0, (22)

wn+1 −w∗∗

∆t
+M−1B(E)w∗∗ = 0. (23)

where w∗ and w∗∗ are intermediate unknowns. The discontinuous Galerkin method (subsection 2.3) can be applied
without having to apply the above splitting technique.

2.1. The �nite volume method

A 1D spatial domain of length L is split into Nx cells; the cell Ci is the interval
(
x
i−1/2

, x
i+1/2

)
, i = 1 . . . Nx,

where xi−1/2 = (i− 1/2)∆x and ∆x = L/Nx. We consider a piece-wise constant approximation of the vector w on
the spatial mesh

wn
i ' w(x, tn), x ∈ Ci.

We obtain the following numerical scheme

wn+1
i −wn

i

∆t
= −F(wi,wi+1)− F(wi−1,wi)

∆x
. (24)

Let F denote the slightly upwinded numerical �ux

F(wa,wb) = M−1A1
wa + wb

2
− ε(wb −wa),

where ε is the numerical di�usion coe�cient. This numerical scheme is accurate to O(∆x) when the solution is
su�ciently smooth. Note that the time step is constrained by the CFL condition

∆t = α∆x/V, 0 < α ≤ 1.

For more details we refer to [22].

The method is implemented using the library SELALIB1. The code is parallelized with MPI using a domain
decomposition algorithm and the Poisson equation is solved using a FFT.

1selalib.gforge.inria.fr

http://selalib.gforge.inria.fr/
selalib.gforge.inria.fr
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2.2. The semi-Lagrangian method

We use the same spatial mesh as in subsection 2.1. Since A1 is diagonal, system (21) is a time-discretization of
P one-dimensional transport equations with constant velocities Vi which evolves according to

∂tw + Vi ∂xw = 0. (25)

The semi-Lagrangian scheme is based on the method of characteristics. In our case, the characteristics are straight
lines, so

w(tn+1, x) = w(tn, x− V1,i ∆t). (26)

Then we approximate wn+1
i as w(tn+1, xi) using the equation

wn+1
i = [Πwn]

(
xi − V1,i ∆t

)
, (27)

where Πwn is an interpolation function built from the points (xi,w
n
i ). Several interpolation methods have been

studied (see eg [6]). We perform an interpolation π using either a cubic spline (with accuracy O(∆x3)) or a Lagrange
polynomial with 2r + 1 points (with accuracy O(∆x2r+1)) which we denote

[Πw]|[xi,xi+1] = π
((
xj ,wj

)
i−r≤j≤i+r

)
.

We refer to [7, 17] for more details. One of the main advantage of the semi-Lagrangian method is that the size of
the time step is not bounded above by a stability condition. Consequently, the time-step size is only limited by the
required precision and the stability condition of the �nite-element method used in v.

The Strang splitting can be modi�ed in order to obtain second order accuracy in time [7, 17].

This method is implemented using the semi-Lagrangian library SELALIB. The stencil of the semi-Lagrangian
algorithm is enlarged compared to the �nite volume algorithm and it is therefore not possible to adopt a subdo-
main decomposition. Instead we use the MPI based grid transposition algorithm available in SELALIB (based on
MPI_Alltoall transportation) in order to parallelize the method.

2.3. The discontinuous Galerkin (DG) method for the reduced Vlasov model

The discontinuous Galerkin (DG) method is a generalization of the �nite volume method for solving systems of
type (20). The computational domain Ωx is covered with a mesh; this mesh need not be structured or conforming,
nevertheless in practice we choose a structured and conforming hexahedron mesh because the geometry of Ωx is
very simple. In general, each cell L of the mesh is obtained from a second order polynomial transformation that
maps the reference cube L̂ onto L. The cells of our mesh can thus be �curved� hexahedrons, even if this feature is
not exploited in this work. In each cell L of the mesh, the �eld is approximated by polynomial basis functions

w(x, t) = wj
L(t)ψL

j (x), x ∈ L. (28)

The numerical solution satis�es the DG approximation scheme

ˆ
L

∂twψ
L
i −
ˆ
L

F
(
w,w,∇ψL

i

)
+

ˆ
∂L

F(wL,wR,nLR)ψL
i = 0 (29)

where R denotes cells adjacent to L, nLR is the unit normal vector on ∂L oriented from L to R, and F(wL,wR,n)
is a standard upwind numerical �ux satisfying

F(w,w,n) = Aknkw. (30)

We apply Gauss-Lobatto numerical integration in x using nodal basis functions ψL
i (GL

k ) = δi,k. The Gauss-
Lobatto integration points and associated weights are noted GL

k and ωL
k and the quadrature formula is

´
L
h(X)dX '∑

k ω
L
k h(GL

k ). The Gauss-Lobatto points are �rst de�ned on the reference cube by tensor products of one-
dimensional points. They are then mapped to L by the geometric transformation. Similarly, the nodal basis
function ψL

i are obtained from tensor products of one-dimensional Lagrange polynomials and mapped from L̂ to
L. In the end, we perform time integration of a system of ordinary di�erential equations. For a similar approach
(but with Gauss-Legendre points instead of Gauss-Lobatto points), we refer to the PhD of Thomas Strub [18]. See
also [19].
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We have implemented the DG algorithm in the OpenCL framework, which is a software environment for program-
ming GPUs or multicore accelerators. Unlike CUDA, which is only available for NVIDIA GPUs, OpenCL allows access
to multicore accelerators of many brands. We will not describe here the philosophy of OpenCL and the full details of
the DG implementation, but refer readers to previous works [20,24]. We have also implemented an OpenMP version
of the same algorithm for use when OpenCL is not available and for veri�cation and comparisons. The resulting
software schnaps can be found at schnaps.gforge.inria.fr.

In contrast to our previous works we have also provided additional features, such as a macrocell strategy for
managing the DG mesh: the connectivity of the mesh is described at a macro level with H20 quadratic hexahedrons2

with control points on each vertex and in the middle of each edge, allowing for curved elements in physical space
via a non-linear transformation. Then, each macrocell is split into subcells that share the same macro geometry
data. In the implementation of the DG algorithm, a macrocell is associated to a single OpenCL kernel, subcells
are associated to OpenCL work-groups, and �nally the Gauss points are associated to OpenCL work-items. This
organization reduces memory access to the mesh connectivity. The development of schnaps is still in progress. In
this paper, we shall only present preliminary results.

3. Numerical results

3.1. Convergence rate

We �rst verify that the convergence orders of transport solvers corresponds to theory. Equation (14) is solved
with an electric �eld equal to zero leading a vanishing source term B(E)w = 0. We compare the exact and the
approximate solution by translating the initial conditions using the equation

f(x,v, t) = f(x− tv,v, 0). (31)

It is also possible to perform the same kind of test in the velocity variable v. In this case, we assume a constant
electric �eld and we cancel the transport in the x direction, which is equivalent to setting A1 = A2 = 0. The exact
solution is then given by

f(x,v, t) = f(x,v − tE, 0). (32)

3.1.1. SELALIB SL solver

The semi-Lagrangian / �nite-element element solver was tested for both spatial and velocity translation. In both

cases the computational domain was Ω = Ωx × Ωv = (−1, 1)
2
. For the spatial case, the initial condition was

f(x,v, t)|t=0 = sin(πx). (33)

We used a second-order time-stepper with ∆t = 0.01 and advanced the system to t = 0.5 and Nv = 17 grid points
in v1. The spatial convergence agreed well with the theoretical convergence rate for a cubic spline interpolation.
Results are shown in Figure 1.

The initial condition for the velocity transport case was

f(x,v, t)|t=0 =

{
(1− 2v)3(1 + 2v)3 if v < 1/2

0 otherwise.
(34)

where v =
√
v2

1 + v2
2 . The electrical �eld was set to E = v1. We used a second-order time-stepper with ∆t = 0.01

and advanced the system to t = 0.2. We observe a convergence close to the theoretical value of 2 for second order
�nite elements. Results are shown in Figure 1.

3.1.2. schnaps DG solver

The initial condition used for this test was

f(x,v, t)|t=0 =
1

σ
√

2π
e−

v2

σ

{
e

−1

1−4r2 if r < 1/2

0 otherwise.
(35)

2The �Hexahedron20� type in gmsh: see geuz.org/gmsh/doc/texinfo/gmsh.html#Node-ordering.

https://schnaps.gforge.inria.fr
schnaps.gforge.inria.fr
http://geuz.org/gmsh/doc/texinfo/gmsh.html#Node-ordering
geuz.org/gmsh/doc/texinfo/gmsh.html#Node-ordering
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Figure 1. The relative L2 error between the numerical solution and the analytic solution as a
function of grid spacing for SELALIB. An interpolation spline of order 3 is used in space and a
second order �nite element method is used for the velocity transport.
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Figure 2. The relative L2 error between the numerical solution and the analytic solution as a
function of grid spacing for schnaps using Gauss-Lobatto interpolation with polynomial degree
between 1 and 4.

where r =
√
x2

1 + x2
2, v =

√
v2

1 + v2
1 , and σ = 0.2. This initial condition consists of a Gaussian in the velocity

multiplied by a C∞ function with support in Bx(0, 1/2). The tests were done with 30 velocity components in

direction v1 and v2, the computational domain was Ω = Ωv × Ωx = (−1, 1)
4
, and the maximum time was t = 0.4.

For each combination of degree and spatial resolution the fourth-order Runge-Kutta time step was decreased by a
factor of two until subsequent error values di�ered by no more than 1%, thereby guaranteeing that the error was
independent of the choice of time-step. The results are shown in Figure 2 and we observe that the convergence
rate in the L2 norm is slightly larger than to the polynomial order d. This results again complies with the theory.
Let us observe that if we had used Gauss-Legendre integration, we would have reached a convergence rate of d+ 1.
Gauss-Lobatto points were chosen so as to allow better performance with respect to memory access and to reduce
the implementation cost.

3.2. Performance of the SL and DG transport solvers

In this section we compare the performance of the semi-Lagrangian and the DG transport solvers. We consider
only the transport in x, ie the source term in (23) is deactivated. At �rst sight, the semi-Lagrangian method
should have a clear advantage; the scheme is universally stable and there is no error due to time discretization.
However, memory access is more complicated for the semi-Lagrangian method than for the DG algorithm, and the
parallelization of the semi-Lagrangian method relies on the transposition of the computational grid (MPI_Alltoall).
We compare the speed of the two codes using parameters which could be considered realistic for research simulations.
Velocity was discretized with 32 points in both dimensions (30 for schnaps due to a current technical limitation)
and between 32 and 256 points in both spatial directions. The initial condition was a Gaussian in the velocity
multiplied by a 6th degree C2 piecewise de�ned polynomial with compact support in Bx(0, 1/2). The particular
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Figure 3. Computation time per second-order time-step per 106 degrees of freedom for SELALIB
with 16 CPUs and schnaps with 1 CPU or 1 graphics card.

form of the initial condition is

f(x,v, t)|t=0 =
1

σ
√

2π
e−

v2

σ

{
35
16 (1− 2r)3(1 + 2r)3 if r < 1/2

0 otherwise.
(36)

where r =
√
x2

1 + x2
2, v =

√
v2

1 + v2
2 , and σ = 0.2. Since the initial condition is only C2, we chose a degree-3 DG

method in order to attain the expected convergence rate.

The computational domain for this test is Ω = Ωx × Ωv = (−1, 1)
4
. We evolved the system until time t = 0.4

to be consistent with both the homogeneous Dirichlet boundary conditions imposed in schnaps and the periodic
boundary conditions imposed in SELALIB. The comparison of computational time per second-order time-step per
million degrees of freedom is shown in Figure 3. The three implementations, namely SELALIB, schnaps-C, and
schnaps-OpenCL, demonstrate roughly similar computation time per second-order time-step for the case studied.
Since the time-step of the DG code is bounded by a stability condition, a semi-Lagrangian method may be a better
choice if it can be shown that the error due to time discretization using a large value of dt does not signi�cantly
alter the results.

3.3. Comparison of the SL and FV methods

In this section we benchmark the spatial semi-Lagrangian / velocity �nite-element method with an upwind
�nite-volume method developed previously [14,22]. We consider the full Vlasov system as given in equation (20).

3.3.1. Precision

We used Nx1 ×Nv1 = 128× 129 grid points in the x1 and v1 directions and set ∆t = 7× 10−3 for the precision
tests below. A Lagrange interpolation of degree 3 was used in space for the SL/FE method, and the FV method was
�rst order in space. A degree 2 �nite element method was used in velocity for both the SL/FE and FV methods.

In order to compare the precision of the two methods, we consider the 1D Landau damping test case. The initial
distribution function is given by

f0(x,v) = (1 + ε cos(kx1))
1√
2π
e−

v21
2 , (37)

where k = 0.5 and ε = 5 × 10−3. The spatial domain is periodic with length L = 2π/k. An analytic solution for
the linearized problem is given in [16]. We plot the electric energy

E(t) =

√ˆ L

0

(E1(x1, t))2 dx1

of the analytic solution, of the classic �nite volume method, and of the semi-Lagrangian method on Figure 4. Both
numerical methods capture the theoretical damping rate well. We observe that the solution obtained by the semi-
Lagrangian method is closer to the analytic solution than the solution of the classic �nite volume method. This



ESAIM: PROCEEDINGS AND SURVEYS 9

Figure 4. The electric energy of the Landau damping 1D test as a function of time. The blue
curve labelled �asymptotic� is the exact solution of the linearized equation, the red curve is from
the semi-Lagrangian/�nite element method and the green curve is from the �nite volume method.

is due to the fact that semi-Lagrangian method (order 3 in space) is more precise than the �nite volume method
(order 1 in space).

We now consider the two-stream instability one-dimensional test case in order to better compare the di�erence
in the distribution function. In this test case, the initial distribution function is

f0(x,v) = (1 + ε cos(kx1))
1

2
√

2π

(
e−

(v1−v0)2

2 + e−
(v1+v0)2

2

)
, (38)

where k = 0.2, ε = 5× 10−3 and v0 = 3. The distribution function at time t = 25 and t = 50 for the two methods is
compared in Figure 5. We observe that both methods do a good job at capturing the �lamentation in phase-space,
with the semi-Lagrangian / �nite-element method being slightly more precise. The results are quite similar since
they both use the same discretization in velocity.

3.3.2. Stability

The time-step of semi-Lagrangian / �nite element method is only constrained by a stability condition in the v-
direction, since the semi-Lagrangian method in the x-direction does not restrict the time-step. In order to compare
the stability of the SL and the FV methods, we can �x the number of cells and then vary the time step. We consider
a 4D Landau damping test case. The initial condition is

f0(x,v) =
1

2π
(1 + ε cos(k1x1) cos(k2x2))e−

(v21+v22)

2 , (39)

where ε = 5 × 10−3, the wave numbers k1 = k2 = 0.5 and L1 = L2 = 4π. The theoretical damping rate of the
energy �eld is 0.394 [8]. We �x the number of cells at 32 × 32 in space and the degree 2 with 32 elements in each
dimension of velocity. With the �nite volume method, we have to use the time step small enough to ensure the
stability of the energy �eld, for example here ∆t is 1.47× 10−2. For this test-case, the electric �eld is very weak, so
the stability condition in the v-direction does not signi�cantly restrict the time step. Large time step can thus be
used for the semi-Lagrangian / �nite element method and this produces qualitatively reasonable results even with
∆t = 0.1.

3.3.3. Conservation

The Vlasov equation conserves the L1 and L2 norms of the distribution function f . To test the conservation
properties of the semi-Lagrangian/�nite element and the �nite-volume methods, we consider the strong Landau
damping 1D test case with initial condition given by (37) but with the parameter ε = 0.5 and kx = 0.5. The
number of grid points in x1 is 32 and the number of grid points in v1 is 65. We take the time step ∆t = 0.125 for
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Figure 5. The distribution function f(x,v, t) for the double-stream instability test-case at time
t = 25 (on the top) and at t = 50 (in the bottom) in the (x1, v1) phase space. Results from the
semi-Lagrangian method (left) and the classic �nite volume method (right with slightly upwinded
�ux ε = 0.008) are shown.

Figure 6. The electric energy of the Landau damping 2D test case as a function of time. The
red curve is computed using the classic �nite volume method with ∆t = 1.47×10−2, the blue curve
is computed with the semi-Lagrangian/�nite element method with ∆t = 0.1, and the black points
are computed with computed with the semi-Lagrangian/�nite element method with ∆t = 0.5.

the semi-Lagrangian method and ∆t = 0.025 for the �nite volume method. The mass is de�ned as

ˆ
Ωx×Ωv

f(x,v, t) dx dv (40)

and its time evolution is shown in Figure 7. Due to the boundary condition in velocity, global mass is a priori not a
conserved quantity, though the initial density quickly decays to zero as v increases, so the mass loss should not be
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Figure 7. Time evolution of the change in mass as function of time for the strong Landau
damping 1D test case. The semi-Lagrangian schemes (order 3: cubic spline interpolation, order 9:
Lagrange interpolation) and the �nite volume scheme (ε = 0.02) are compared.
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Figure 8. Time evolution of the change of the L1 (left) and L2 (right) norms of f as a function
of time for the strong Landau damping 1D test case. Results from the semi-Lagrangian/�nite
element method are shown using interpolation using cubic spline of order 3 (red, solid) and Lagrange
interpolation of order 9 (blue, dashed), and the �nite volume method with ε = 0.02 (green, dotted).

very large. For this test-case, the three method (semi-Lagrangian cubic spline, semi-Lagrangian Lagrange order 9,
�nite volume) leads to conservation of mass up to a relative error of O(10−8). The time evolution of the L1 and L2

norms of f are shown in Figure 8. The �nite volume method has better conservation of the L1 norm for the cases
studied here. Indeed, as the �nite volume scheme is more di�usive (already observed in section 3.3.1), it better
preserves the positivity of the distribution function. The L2 norm is better conserved by the semi-Lagrangian/�nite
element scheme than by the �nite volume scheme. The large numerical dissipation of the �nite volume scheme leads
to a relative error of O(0.1) in the L2 norm. As observed in [7], the Lagrange interpolation of order 9 should be
used in order to obtain numerical dissipation lower than the cubic spline interpolation.

4. Conclusion and Future Work

4.1. Conclusion

In this paper, we presented and compare several high order methods to e�ciently solve the reduced Vlasov
model (20) in space.

The semi-Lagrangian / �nite element (SL/FE) SELALIB implementation was compared with the discontinuous
Galerkin (DG) method implemented in schnaps using a test case which consisted of transport of a multi-valued
velocity �eld. The SL/FE and DG method showed the appropriate convergence rates. The speeds of the two
implementations were compared. schnaps had better performance per CPU, making it a priori faster, but SELALIB
has less stringent stability requirements on the time step, which will allow it to simulations faster for certain con-
�gurations. The SL/FE method was compared with a �nite volume method using the 1D double-stream instability
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test-case and the 2D Landau damping test case for the Vlasov-Poisson equation. This allowed us to successfully
validate the Vlasov-Poisson implementation in SELALIB. The SL/FE method was able to use much larger time-steps
than the �nite volume method, making the SL/FE method more e�cient for the test cases considered.

The schnaps DG solver, which we present at an early stage of development, has more stringent time-step stability
constraints, but is able to accommodate more complex geometry than a standard SL/FE method. schnaps also
makes use of the OpenCL programming language to make use of GPUs and co-processor boards, which may allow for
a higher degree of parallelization.

Complex geometries and unstructured, high order meshes can be more easily handled with the DG method.

4.2. Future Work

The SL/FE method, implemented in the SELALIB library, is part of an established software project. Future work
for the SL/FE method includes implementation in 3D and the addition of a gyrokinetic (eg drift kinetic) model in
order to capture complex �ow regimes while mitigating the e�ects of the curse of dimensionality.

The DG method, implemented in schnaps, is in an earlier stage of development. In it current state, it can be
used to solve general hyperbolic conservation equations in two and three dimensions, and is parallelized with OpenMP

and OpenCL. However, the parallelization is optimal when the number of conserved quantities (eg the number of
velocities) is small, and we expect to be able to achieve much better performance by modifying the parallelism
and improving the coalescence of memory access when dealing with the Vlasov equations with a large number of
degrees of freedom in velocity. We plan to implement the velocity source term using either FFTs, �nite elements,
or perhaps the semi-Lagrangian grid.

The Vlasov equation is a starting-point for more complicated systems which better represent the physical situation
which we wish to understand. For example, particle collision models would be a worthwhile additions to both
SELALIB and schnaps, as well as adding physically realistic geometries and boundary conditions when possible.
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