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Introduction and Preliminaries

In this article, we mostly follow the standard terminology and notation used by the optimization and variational analysis community, see, e.g., Rockafellar & Wets [START_REF] Rockafellar | Variational Analysis[END_REF]. Throughout, X and X * stand for a real Banach space and its topological dual, respectively. The norms in both spaces are denoted by the same symbol • . For a subset S, we denote its interior and boundary by int S and bd S, respectively. The distance from a point x to a set S is denoted by d(x, S) := inf u∈S ux , and we use the convention d(x, S) = +∞ whenever S = / 0. For an extended-real-valued function: f : X → R ∞ := R ∪ {+∞}, its domain is the set dom f := {x ∈ X | f (x) < +∞}. A function f is said to be proper if dom f = / 0. We use the symbol f + (x) to denote max( f (x), 0). The class of all extended-real-valued proper convex lower semicontinuous functions on X is denoted by Γ 0 (X). For a convex function f : X → R ∞ , its (Moreau) subdifferential at x ∈ dom f is given by

∂ f (x) := {x * ∈ X * | x , u -x ≤ f (u) -f (x), ∀u ∈ X}.
It is a (possibly empty) weak * -closed set in X * .

The article is concerned with the study of the solution set of a single inequality of the type

S f := {x ∈ X | f (x) ≤ 0}, (1) 
where f : X → R ∞ . Such sets subsume, e.g., feasible sets in mathematical programming. Indeed, solutions of a finite family of inequalities: {x ∈ X | f i (x) ≤ 0 for all i = 1, . . . , n} can be rewritten as [START_REF] Auslender | Global regularity theorems[END_REF] with function f defined by f (x) = max{ f 1 (x), . . . , f n (x)}.

An important issue when studying systems of the type ( 1) is to give an upper estimate (error bound) of the distance from a point x ∈ X to the set S f in terms of a computable function measuring the violation of the inequality in [START_REF] Auslender | Global regularity theorems[END_REF]. This can, e.g., be the function f itself.

We say that a function f has (or admits) a local error bound at a point x ∈ S f if there exists a real τ > 0 such that τd(x, S f ) ≤ f + (x) [START_REF] Azé | A survey on error bounds for lower semicontinuous functions[END_REF] for all x near x. We similarly say that a function f has a global error bound if there exists a real τ > 0 such that inequality (2) is satisfied for all x ∈ X.

The exact upper bound of all such τ (the error bound modulus; cf. [START_REF] Fabian | Error bounds: necessary and sufficient conditions[END_REF]) equals either Er f ( x) := lim inf

x→ x f (x)>0 f (x) d(x, S( f )) (3) 
in the local setting, or

Er f := inf f (x)>0 f (x) d(x, S( f )) (4) 
in the global case. Constants (3) and ( 4) provide quantitative estimates of the error bound property.

The starting point of the theory of error bounds goes back to the pioneering work by Hoffman [START_REF] Hoffman | On approximate solutions of systems of linear inequalities[END_REF] (although some traces of the error bound property can be found in an earlier publication by Rosenbloom [START_REF] Rosenbloom | Quelques classes de probl ḿes extrémaux[END_REF] 1 ) who established for a linear function in finite dimensions the following result:

Given an m × n matrix A and a vector b ∈ R m , there exists a positive number κ > 0 such that the distance from x to the set S := {x ∈ R n | Ax ≤ b} has an upper bound given by κ (Ax-b) + , where for y := (y 1 , . . . , y m ) ∈ R m , y + denotes the vector (max(y 1 , 0), . . . , max(y m , 0)).

After the work by Hoffmann and its extensions by Robinson [START_REF] Robinson | An application of error bounds for convex programming in a linear space[END_REF], Mangasarian [START_REF] Mangasarian | A condition number for differentiable convex inequalities[END_REF], Auslender & Crouzeix [START_REF] Auslender | Global regularity theorems[END_REF], Pang [START_REF] Pang | Error bounds in mathematical programming[END_REF], Lewis and Pang [START_REF] Lewis | Error bounds for convex inequality systems[END_REF], Klatte & Li [START_REF] Klatte | Asymptotic constraint qualifications and global error bounds for convex inequalities[END_REF], Jourani [START_REF] Jourani | Hoffman's error bound, local controllability, and sensitivity analysis[END_REF], there have been significant developments of various aspects of errors bounds for convex and nonconvex functions in recent years. The interested reader is referred to the articles by Ng & Zheng [START_REF] Ng | Error bounds for lower semicontinuous functions in normed spaces[END_REF], Azé [START_REF] Azé | A survey on error bounds for lower semicontinuous functions[END_REF][START_REF] Azé | A unified theory for metric regularity of multifunctions[END_REF], Azé & Corvellec [START_REF] Azé | Characterizations of error bounds for lower semicontinuous functions on metric spaces[END_REF], Zȃlinescu [START_REF] Zȃlinescu | Sharp estimates for Hoffman's constant for systems of linear inequalities and equalities[END_REF], Huang & Ng [START_REF] Huang | On first-and second-order conditions for error bounds[END_REF], Corvellec & Motreanu [START_REF] Corvellec | Nonlinear error bounds for lower semicontinuous functions on metric spaces[END_REF], Fabian et al [START_REF] Fabian | Error bounds: necessary and sufficient conditions[END_REF][START_REF] Fabian | About error bounds in metric spaces[END_REF], Gfrerer [START_REF] Gfrerer | First order and second order characterizations of metric subregularity and calmness of constraint set mappings[END_REF], Ioffe [START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF][START_REF] Ioffe | Metric regularity. Theory and applications -a survey[END_REF], Ioffe & Outrata [START_REF] Ioffe | On metric and calmness qualification conditions in subdifferential calculus[END_REF], Ngai & Théra [START_REF] Ngai | Error bounds and implicit multifunction theorem in smooth Banach spaces and applications to optimization[END_REF][START_REF] Ngai | Error bounds for convex differentiable inequality systems in Banach spaces[END_REF][START_REF] Ngai | Error bounds in metric spaces and application to the perturbation stability of metric regularity[END_REF][START_REF] Ngai | Error bounds for systems of lower semicontinuous functions in Asplund spaces[END_REF], Zheng & Ng [START_REF] Zheng | Metric subregularity and calmness for nonconvex generalized equations in Banach spaces[END_REF][START_REF] Zheng | Metric subregularity for proximal generalized equations in Hilbert spaces[END_REF], Bednarczuk & Kruger [START_REF] Bednarczuk | Error bounds for vector-valued functions: necessary and sufficient conditions[END_REF][START_REF] Bednarczuk | Error bounds for vector-valued functions on metric spaces[END_REF], Meng & Yang [START_REF] Meng | Equivalent conditions for local error bounds[END_REF], Kruger [START_REF] Kruger | Error bounds and Hölder metric subregularity[END_REF][START_REF] Kruger | Error bounds and metric subregularity[END_REF][START_REF] Kruger | Nonlinear metric subregularity[END_REF] and the references therein.

Many authors have recently studied error bounds in connection with the metric regularity and subregularity (cf. [START_REF] Dontchev | Implicit Functions and Solution Mappings. A View from Variational Analysis[END_REF]) as well as Aubin property and calmness of setvalued mappings: [3, 13, 14, 24, 30-32, 35-37, 46, 48, 50, 51, 59, 60]. The connections between the error bounds and weak sharp minima were studied in [START_REF] Burke | Weak sharp minima revisited. II. Application to linear regularity and error bounds[END_REF].

Another typical example where the theory of error bounds plays an important role is the so-called feasibility problem [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF][START_REF] Beck | Convergence rate analysis and error bounds for projection algorithms in convex feasibility problems[END_REF][START_REF] Hesse | Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems[END_REF], which consists in finding a point in the intersection of a finite family of closed (usually convex) sets and has a broad applicability in various areas such as, e.g., image reconstruction [START_REF] Combettes | The convex feasibility problem in image recovery[END_REF]. Several iterative methods such as the method of successive orthogonal projections, the cyclic subgradient projections method, etc, are known to solve this problem (see [START_REF] Censor | Iterative methods for the convex feasibility problem[END_REF]). Error bounds are also used in the convergence analysis of projection algorithms. They allow one to quantify the proximity of an iterate to the solution set of the problem. The reader is referred to the recent survey paper by Ioffe [START_REF] Ioffe | Metric regularity. Theory and applications -a survey[END_REF] and the references therein and also to some recent contributions by Beck & Teboulle [START_REF] Beck | Convergence rate analysis and error bounds for projection algorithms in convex feasibility problems[END_REF], Lewis et al [START_REF] Lewis | Local linear convergence for alternating and averaged nonconvex projections[END_REF], Hesse & Luke [START_REF] Hesse | Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems[END_REF], Drusvyatskiy et al [START_REF] Drusvyatskiy | Transversality and alternating projections for nonconvex sets[END_REF], Bolte et al [START_REF] Bolte | From error bounds to the complexity of first order descent methods for convex functions[END_REF] and Kruger & Thao [START_REF] Kruger | Regularity of collections of sets and convergence of inexact alternating projections[END_REF].

In this article, we study stability of local and global error bounds under perturbations. It was observed in Ngai et al [START_REF] Ngai | Stability of error bounds for semi-infinite convex constraint systems[END_REF]Theorem 1] and Kruger et al [START_REF] Kruger | Stability of error bounds for convex constraint systems in Banach spaces[END_REF]Theorem 1], that the requirement for the distance from the origin to the subdifferential of a function at a reference point to be strictly positive, while being a conventional sufficient condition for a local error bound for the system (1), is far from being necessary. This condition guaranties the local error bound property not just for the given function, but also for a family of its small perturbations. In Section 2, we exploit the concept of local ε-perturbation from [START_REF] Kruger | Stability of error bounds for convex constraint systems in Banach spaces[END_REF], define subfamilies of convex and linear ε-perturbations, and establish in Theorem 2.2 the exact formula for the 'radius of local error bounds' for families of arbitrary, convex and linear perturbations in terms of the distance from the origin to the subdifferential.

The same idea applies when considering stability of global error bounds in Section 3. In the global setting, we define families of convex and linear perturbations as well as larger families of weak convex and weak linear perturbations, discuss some limitations of these definitions, and establish in Theorem 3.2 lower and upper estimates for the 'radius of global error bounds' for families of such perturbations. The family of convex perturbations considered here is larger than the corresponding one studied in [START_REF] Kruger | Stability of error bounds for convex constraint systems in Banach spaces[END_REF]. In particular, the so called asymptotic qualification condition is waived.

Some examples are given for the convenience of the reader to illustrate the different concepts introduced along the presentation.

Stability of local error bounds

In this section we establish conditions for stability of local error bounds for the constraint system (1). We start with the following statement extracted from [38, Theorem 1].

Theorem 2.1 Let f ∈ Γ 0 (X) and f ( x) = 0. Function f has a local error bound at x provided that one of the following two conditions is satisfied:

(i) τ( f , x) := lim inf x→ x, f (x)> f ( x) d(0, ∂ f (x)) > 0; (ii) ς ( f , x) := d(0, bd ∂ f ( x)) > 0.
Moreover, condition (i) is also necessary for f to have a local error bound at x and

ς ( f , x) ≤ τ( f , x) = Er f ( x). (5) 
Constant τ( f , x) is known as the strict outer subdifferential slope [START_REF] Fabian | Error bounds: necessary and sufficient conditions[END_REF] |∂ f | > ( x) of f at x. The sufficient criterion (i) was used in [32, The inequality in (5) can be strict.

Example 2.1 f (x) ≡ 0, x ∈ R. Obviously 0 ∈ bd ∂ f ( x), ς ( f , x) = 0, while τ( f , x) = ∞ for any x ∈ R. Example 2.2 f (x) = 0 if x ≤ 0, and f (x) = x if x > 0. Then ∂ f (0) = [0, 1] and 0 ∈ bd ∂ f (0), ς ( f , x) = 0, while τ( f , 0) = 1.
Thus, condition (ii) in Theorem 2.1 is in general stronger than condition (i). It characterizes a stronger property than just the existence of a local error bound for f at x; namely, it guaranties the local error bound property for the family of functions being small perturbations of f in the sense defined below.

Let f ( x) < ∞ and ε ≥ 0. Following [38, Definition 5], we say that g :

X → R ∞ is an ε-perturbation of f near x if g( x) = f ( x) (6) 
and

lim sup x→ x |g(x) -f (x)| x -x ≤ ε. (7) 
If both functions f and g are continuous at x, then equality (6) in the above definition is obviously implied by condition [START_REF] Bednarczuk | Error bounds for vector-valued functions: necessary and sufficient conditions[END_REF].

The collection of all ε-perturbations of f near x will be denoted Ptb ( f , x, ε). Obviously, if g ∈ Ptb ( f , x, ε), then f ∈ Ptb (g, x, ε), and neither f nor g are required to be convex. If both f and g are convex, then the actual perturbation function p := gf needs not to be convex; it is in general a d.c. function (difference of convex functions).

The following subsets of Ptb ( f , x, ε) corresponding, respectively, to convex and linear ε-perturbations of f near x can be of interest:

Ptb c ( f , x, ε) :={g ∈ Ptb ( f , x, ε) | g -f ∈ Γ 0 (X)}, (8) 
Ptb l ( f , x, ε) :={g | g(u) = f (u) + x * , u -x (u ∈ X), x * ∈ εB * X * }. Obviously, Ptb l ( f , x, ε) ⊂ Ptb c ( f , x, ε) ⊂ Ptb ( f , x, ε). (9) 
The next proposition provides a sufficient condition for a function g to be a (convex) ε-perturbations of f near x.

Proposition 2.1 Let f ( x) < ∞ and ε ≥ 0. Suppose g = f + p where p : X → R ∞ is convex and Lipschitz continuous near x with constant ε and p( x) = 0. Then g ∈ Ptb c ( f , x, ε).
Proof Thanks to the Lipschitz continuity of p, ∂ p( x) = / 0 and x * ≤ ε for all x * ∈ ∂ p( x); cf. [11, Proposition 4.1.25 and its proof]. Given an x * ∈ ∂ p( x), for any x ∈ X \ { x}, we have:

g(x) -f (x) x -x = p(x) x -x ≥ x * , x -x x -x ≥ -ε.
On the other hand,

lim sup x→ x g(x) -f (x) x -x = lim sup x→ x p(x) x -x ≤ ε.
Combining the two inequalities proves [START_REF] Bednarczuk | Error bounds for vector-valued functions: necessary and sufficient conditions[END_REF].

The assumption of the Lipschitz continuity of p in the above proposition is essential.

Example 2.3 Let f , p, g : R → R ∞ , f (x) = 0 for all x ∈ R and p(x) = g(x) = 0 if x ≤ 0, +∞ if x > 0. Then f , g, p ∈ Γ 0 (X) and lim sup x→0 |g(x) -f (x)| |x| = +∞. Given a function f ∈ Γ 0 (X) with f ( x) = 0 and a number ε ≥ 0, denote Er {Ptb ( f , x, ε)}( x) := inf g∈Γ 0 (X)∩Ptb ( f , x,ε) Er g( x), (10) 
Er

{Ptb c ( f , x, ε)}( x) := inf g∈Ptb c ( f , x,ε) Er g( x), Er {Ptb l ( f , x, ε)}( x) := inf g∈Ptb l ( f , x,ε)
Er g( x).

These numbers characterize the error bound property for families of ε-perturbations of f near x. Thanks to [START_REF] Beer | Topologies on Closed and Closed Convex Sets[END_REF], it holds

Er {Ptb ( f , x, ε)}( x) ≤ Er {Ptb c ( f , x, ε)}( x) ≤ Er {Ptb l ( f , x, ε)}( x) ≤ Er f ( x) (11) 
for any ε ≥ 0.

Theorem 2.2 Let f ∈ Γ 0 (X), f ( x) = 0. Then ς ( f , x) = inf{ε > 0 | Er {Ptb ( f , x, ε)}( x) = 0} = inf{ε > 0 | Er {Ptb c ( f , x, ε)}( x) = 0} = inf{ε > 0 | Er {Ptb l ( f , x, ε)}( x) = 0}. ( 12 
)
Proof Thanks to the first two inequalities in [START_REF] Borwein | Convex Functions: Constructions, Characterizations and Counterexamples[END_REF], we always have

inf{ε > 0 | Er {Ptb ( f , x, ε)}( x) = 0} ≤ inf{ε > 0 | Er {Ptb c ( f , x, ε)}( x) = 0} ≤ inf{ε > 0 | Er {Ptb l ( f , x, ε)}( x) = 0}. ( 13 
)
We are going to show that

ς ( f , x) ≤ inf{ε > 0 | Er {Ptb ( f , x, ε)}( x) = 0} (14) 
and

inf{ε > 0 | Er {Ptb l ( f , x, ε)}( x) = 0} ≤ ς ( f , x). ( 15 
)
By [START_REF] Kruger | Stability of error bounds for convex constraint systems in Banach spaces[END_REF]Theorem 8 (i)], Er g( x) ≥ ς ( f , x)ε for any ε > 0 and any g ∈ Γ 0 (X) ∩ Ptb ( f , x, ε). By definition [START_REF] Bolte | From error bounds to the complexity of first order descent methods for convex functions[END_REF], we have

ς ( f , x) ≤ Er {Ptb ( f , x, ε)}( x) + ε for any ε > 0, and consequently ς ( f , x) ≤ ε if Er {Ptb ( f , x, ε)}( x) = 0, which yields inequality (14). If ς ( f , x) = ∞, inequality (15) holds trivially. Let ς ( f , x) < ε < ∞.
We are going to show that Er {Ptb l ( f , x, ε)}( x) = 0. By the definition of ς ( f , x), there exists an

x * ∈ bd ∂ f ( x) such that x * < ε. Choose a positive number ξ < ε -x * . Thus, f (u) ≥ x * , u -x for all u ∈ X, (16) 
and there exists an x * ∈ X * such that x *x * < ξ and x * / ∈ ∂ f ( x), which means that there exists a point x ∈ X \ { x} satisfying

f ( x) = f ( x) -f ( x) < x * , x -x .
Thanks to the convexity of f , one also has

f (x k ) < x * , x k -x , k = 1, 2, . . . , (17) 
where

x k := x + 1 k ( x -x)
. Now select a z * ∈ X * such that z * = 1 and z * , xx = xx , and define

g(u) := f (u) + -x * + ξ z * , u -x , u ∈ X. ( 18 
)
One hasx * + ξ z * ≤ x * + ξ < ε, and consequently, g ∈ Ptb l ( f , x, ε). It follows from ( 16) and ( 18) that

g(u) ≥ ξ z * , u -x for all u ∈ X. (19) 
In particular,

g(x k ) ≥ ξ z * , x k -x = ξ k x -x > 0, k = 1, 2, . . . (20) 
At the same time, by ( 17) and [START_REF] Corvellec | Nonlinear error bounds for lower semicontinuous functions on metric spaces[END_REF],

g(x k ) < x * -x * + ξ z * , x k -x , k = 1, 2, . . . (21) 
For a fixed k, choose a positive t < 1 such that g(x k ) < t x *x * + ξ z * , x kx and denote

η := t x * -x * + ξ z * , x k -x > 0, λ := t k x -x > 0.
Thus, g(x k ) < η. By virtue of the Ekeland variational principle [START_REF] Ekeland | On the variational principle[END_REF] (see also [START_REF] Borwein | Convex Functions: Constructions, Characterizations and Counterexamples[END_REF]Theorem 4.3.1], [START_REF] Dontchev | Implicit Functions and Solution Mappings. A View from Variational Analysis[END_REF]Theorem 4B.5]) applied to the function u → g + (u) := max{g(u), 0}, there exists a point u k ∈ X such that

u k -x k ≤ λ , (22) 
g + (u) + η λ u -u k ≥ g + (u k ) for all u ∈ X. (23) 
By [START_REF] Fabian | Error bounds: necessary and sufficient conditions[END_REF] and the definitions of λ and x k , we have

u k -x ≤ u k -x k + x k -x ≤ λ + x k -x < 2 k x -x . (24) 
By ( 19) and ( 22) and the definitions of x k , λ and z * ,

g(u k ) ≥ ξ z * , u k -x = ξ z * , x k -x + ξ z * , u k -x k ≥ ξ k x -x -ξ λ = (1 -t) ξ k x -x > 0, (25) 
and consequently, g + (u k ) = g(u k ). Thanks to this observation and the fact that g + (u) ≥ g(u) for all u ∈ X, it follows from ( 23) that u k is a global minimum of the convex function

u → h(u) := g(u) + η λ u -u k ,
and so, 0

∈ ∂ h(u k ) = ∂ g(u k ) + η λ B * , i.e., d(0, ∂ g(u k )) ≤ η λ = x * -x * + ξ z * , x k -x 1 k x -x = k x * -x * , x k -x x -x + ξ ≤ x * -x * + ξ < 2ξ . (26) 
By [START_REF] Gfrerer | First order and second order characterizations of metric subregularity and calmness of constraint set mappings[END_REF], we have u k → x as k → ∞. Thanks to ( 25) and ( 26), it follows from Theorem 2.1 that Er g( x) ≤ 2ξ . As ξ > 0 can be chosen arbitrarily small, we conclude that Er {Ptb l ( f , x, ε)}( x) = 0, which proves [START_REF] Censor | Iterative methods for the convex feasibility problem[END_REF].

Corollary 2.1 Let f ∈ Γ 0 (X), f ( x) = 0, ε ≥ 0. Then ε < ς ( f , x) ⇒ Er {Ptb ( f , x, ε)}( x) > 0 ⇒ Er {Ptb c ( f , x, ε)}( x) > 0 ⇒ Er {Ptb l ( f , x, ε)}( x) > 0 ⇒ ε ≤ ς ( f , x).
Remark 2.1 Theorem 2.2 strengthens [38, Theorem 8 and Corollary 9] which establishes inequality [START_REF] Cánovas | Calmness modulus of linear semiinfinite programs[END_REF] for any ς ( f , x) as well as the first equality in [START_REF] Burke | Weak sharp minima revisited. II. Application to linear regularity and error bounds[END_REF] in the case ς ( f , x) = 0. The above proof of inequality ( 14) is more straightforward than that of the corresponding one in [START_REF] Kruger | Stability of error bounds for convex constraint systems in Banach spaces[END_REF]Theorem 8 (ii)].

Remark 2.2 Thanks to Theorem 2.2, ς ( f , x) can be interpreted as the radius of error bounds for a family of (arbitrary or convex or linear) perturbations of f at x.

Remark 2.3

The given above proof of the inequality (15) is constructive: for an ε > ς ( f , x) and an arbitrarily small ξ > 0, the linear ε-perturbation g of f near x satisfying Er g( x) ≤ 2ξ is given by ( 18) where x * is any element from bd ∂ f ( x) satisfying x * < ε while element ẑ * is fully determined by an arbitrary x * / ∈ ∂ f ( x) with x *x * < ξ .

Stability of global error bounds

This section deals with the global error bound property for the constraint system (1). The next theorem extracted from [START_REF] Kruger | Stability of error bounds for convex constraint systems in Banach spaces[END_REF]Theorem 22] represents a nonlocal analogue of Theorem 2.1.

Theorem 3.1 Let f ∈ Γ 0 (X) and S f = / 0. Function f has a global error bound provided that one of the following two conditions is satisfied:

(i) τ( f ) := inf f (x)>0 d(0, ∂ f (x)) > 0; (ii) ς ( f ) := inf f (x)=0 d(0, bd ∂ f (x)) > 0.
Moreover, condition (i) is also necessary for f to have a global error bound and

ς ( f ) ≤ τ( f ) = Er f . ( 27 
)
Obviously τ( f ) ≤ τ( f , x) and

ς ( f ) = inf x∈S = f ς ( f , x). (28) 
The inequality in [START_REF] Hesse | Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems[END_REF] guarantees, in particular, that x * ≥ ς ( f ) for any x * ∈ ∂ f (x) with f (x) > 0. Examples 2.1 and 2.2 in Section 2 are also applicable to global error bounds to show that this inequality can be strict. We shall prove in this section, that condition (ii) in Theorem 3.1 corresponds to the existence of a global error bound for a family of functions being small perturbations of f . Alongside ς ( f ) and τ( f ), we are going to consider a "localized" quantity associated with a point x ∈ S = f (and depending also on numbers ε ≥ 0 and δ ≥ 0):

τ( f , x, ε, δ ) := inf f (u)≥-ε u-x -δ d(0, ∂ f (u)) if 0 / ∈ int ∂ f (x), d(0, bd ∂ f (x)) if 0 ∈ int ∂ f (x). (29) 
The two cases in definition ( 29) are mutually exclusive in the sense that they cannot happen simultaneously for the same function even at different points: if 0 ∈ int ∂ f (x) for some x ∈ S = f , then S = f = {x} and there are no points x ∈ S = f where 0 / ∈ int ∂ f (x). In the second case, we are actually dealing with local error bounds. This case has been added for completeness to ensure that τ( f , x, ε, δ ) is defined for all x ∈ S = f . For the purposes of the current paper, only the first case is important. Unlike ς ( f ) and τ( f ), when 0 / ∈ int ∂ f (x) for all x ∈ S = f and either ε > 0 or δ > 0, this definition takes into account also certain points u with f (u) < 0. Obviously,

τ( f , x, ε, δ ) ≤ ς ( f )
for all x ∈ S = f , ε ≥ 0 and δ ≥ 0, and the equality holds when ε = δ = 0 or 0 ∈ ∂ f (x). Observe that τ( f , x, 0, δ ) does not depend on x, and τ( f , x, ε, δ ) does not depend on ε and δ when 0 ∈ ∂ f (x). The function (ε, δ ) → τ( f , x, ε, δ ) is nonincreasing:

τ( f , x, ε 2 , δ 2 ) ≤ τ( f , x, ε 1 , δ 1 ) if 0 ≤ ε 1 ≤ ε 2 and 0 ≤ δ 1 ≤ δ 2 .
The next example illustrates the computation and properties of the localized constant [START_REF] Huang | On first-and second-order conditions for error bounds[END_REF]. 

f (x) := max{-2x + 2, -x + 1, 2x -5} =      -2x + 2 if x ≤ 1, -x + 1 if 1 < x ≤ 2, 2x -5 if x > 2.
It can be easily verified that S = f = {1, 2.5}, ς ( f ) = 1, τ( f ) = 2, and the only point u where 0 ∈ ∂ f (u) is u = 2. When computing (29) with x = 1 (and nonnegative ε and δ ), we see that 2

∈ {u | f (u) ≥ -ε |u -1| -δ } if and only if ε + δ ≥ 1. Hence, τ( f , 1, ε, δ ) = inf f (u)≥-ε|u-1|-δ d(0, ∂ f (u)) = 1 if ε + δ < 1, 0 if ε + δ ≥ 1. ( 30 
)
For small ε and δ (ε

+ δ < 1), we have τ( f , 1, ε, δ ) = ς ( f ).
When examining stability issues of global error bounds, estimates of the difference ς ( f )τ( f , x, ε, δ ) are needed.

Let S f = / 0 and ε ≥ 0. We say that g : X → R ∞ is an ε-perturbation of f if S g = / 0, g = f + p where p : X → R is convex, and there exist a point x ∈ S = f and a number ξ ≥ 0 such that

ξ + ς ( f ) -τ( f , x, ξ , |p(x)|) ≤ ε (31) 
and

|p(u) -p(x)| ≤ ξ u -x for all u ∈ X. ( 32 
)
The collection of all ε-perturbations of f will be denoted Ptb ( f , ε). Condition (31) implies ξ ≤ ε. Conditions ( 31) and ( 32) are obviously satisfied with g ≡ f , any x ∈ S = f and ξ = 0. Hence,

f ∈ Ptb ( f , ε) for any ε ≥ 0. If τ( f , x, ε, δ ) = ς ( f ) for some x ∈ S =
f and all δ ≥ 0 (for instance, if 0 ∈ ∂ f (x)), then any function p satisfying condition [START_REF] Ioffe | On metric and calmness qualification conditions in subdifferential calculus[END_REF] with ξ = ε defines an ε-perturbation f + p of f . Function p in [START_REF] Ioffe | On metric and calmness qualification conditions in subdifferential calculus[END_REF] enjoys some nice properties. The next lemma is unlikely to be new, cf. e.g., [START_REF] Borwein | Convex Functions: Constructions, Characterizations and Counterexamples[END_REF]Exercise 4.1.28]. We provide the proof for completeness. Lemma 3.1 Suppose p : X → R is convex and satisfies condition [START_REF] Ioffe | On metric and calmness qualification conditions in subdifferential calculus[END_REF] with some ξ ≥ 0. Then p is Lipschitz continuous with constant ξ and, for any u ∈ X and any x * ∈ ∂ p(u), it holds x * ≤ ξ .

Proof Let u 1 , u 2 ∈ X, u 1 = u 2 . Denote λ := u 1u 2 and take an arbitrary t > 0. Since,

u 1 = t t + λ u 2 + λ t + λ u 1 + t λ (u 1 -u 2 ) ,
using the convexity of p and condition [START_REF] Ioffe | On metric and calmness qualification conditions in subdifferential calculus[END_REF], we obtain

p(u 1 ) ≤ t t + λ p(u 2 ) + λ t + λ p u 1 + t λ (u 1 -u 2 ) ≤ t t + λ p(u 2 ) + λ t + λ ξ u 1 + t λ (u 1 -u 2 ) -x + p(x) ≤ t t + λ p(u 2 ) + λ t + λ (ξ ( u 1 + t + x ) + p(x)) = t t + λ p(u 2 ) + λ t + λ (ξ ( u 1 + x ) + p(x)) + λ ξ t t + λ ,
and after passing to the limit as t → ∞, we conclude that p(u 1 ) ≤ p(u 2 ) + λ ξ . The same inequality obviously holds true with u 1 and u 2 reversed. Hence,

|p(u 1 ) -p(u 2 )| ≤ λ ξ = ξ u 1 -u 2 ,
and consequently, p is Lipschitz continuous with constant ξ . If u ∈ X and x * ∈ ∂ p(u), then x * , x ≤ p(u + x)p(u) ≤ ξ x for any x ∈ X. Hence, x * ≤ ξ .

Observe that the above "global" definition of an ε-perturbation contains a local element: it requires the existence of a point x ∈ S = f , and the perturbation is defined by ( 31) and [START_REF] Ioffe | On metric and calmness qualification conditions in subdifferential calculus[END_REF] relative to this point and depends on the number ξ . If ξ = 0 in [START_REF] Ioffe | On metric and calmness qualification conditions in subdifferential calculus[END_REF], then p(u) = p(x) for all u ∈ X.

Condition [START_REF] Ioffe | Metric regularity. Theory and applications -a survey[END_REF] imposes a strong restriction on the choice of such a point and a number: for all points u ∈ X with f (u) ≥ -ξ ux -|p(x)|, the norms of subgradients of f must not be much smaller than ς ( f ). This is also a restriction on the class of functions which admit nontrivial ε-perturbations.

Proposition 3.1 Let f ∈ Γ 0 (X) and S = f = / 0. If there exist sequences {x k } ⊂ X and {x * k } ⊂ X * such that x * k ∈ ∂ f (x k ) (k = 1, 2, . . .), x k → ∞, x * k → 0 as k → ∞ and the sequence { f (x k )} is bounded below, then, for any ε ∈ [0, ς ( f )] and g ∈ Ptb ( f , ε), it holds g = f + const. Proof Let ε ∈ [0, ς ( f )], g ∈ Ptb ( f , ε)
, and sequences {x k } ⊂ X and {x * k } ⊂ X * satisfy the conditions of the proposition. Since g ∈ Ptb ( f , ε), there are a convex function p, an x ∈ S = f and a ξ ≥ 0 satisfying [START_REF] Ioffe | Metric regularity. Theory and applications -a survey[END_REF] and [START_REF] Ioffe | On metric and calmness qualification conditions in subdifferential calculus[END_REF].

If ξ > 0, then, because { f (x k )} is bounded below, it holds f (x k ) ≥ -ξ x k -x -|p(x)|
for all sufficiently large k, and consequently, τ( f , x, ξ , |p(x)|) = 0. This contradicts [START_REF] Ioffe | Metric regularity. Theory and applications -a survey[END_REF] in view of the assumption that ε ≤ ς ( f ). Hence, ξ = 0, and it follows from (32) that p(u) = p(x) for all u ∈ X. Remark 3.1 The conclusion of Proposition 3.1 remains valid if condition x * k → 0 as k → ∞ is replaced by a weaker one:

lim k→∞ x * k ≤ ς ( f ) -ε.
The assumption that the sequence { f (x k )} is bounded below can be relaxed too: it is sufficient to assume that min{ f (x k ), 0}/ x k → 0 as k → ∞.

The conditions of Proposition 3.1 are satisfied, for instance, when the set S := argmin f is nonempty and unbounded. Then, obviously, 0 ∈ ∂ f (x) for all x ∈ S, and any sequence {x k } ⊂ S with x k → ∞ as k → ∞ will do the job. Below are some specific examples.

Example 3.2 1. f (x) ≡ 0, x ∈ R (cf. Example 2.1). Then S f = S = f = argmin f = R, τ( f , x, ε, δ ) = ς ( f ) = 0 for all x ∈ R, ε ≥ 0, δ ≥ 0. Thus, Ptb ( f , 0) = {g ≡ c | c ≤ 0}. If ε > 0, then g ∈ Ptb( f , ε) if and only if S g = / 0 and |g(u) -g(x)| ≤ ε |u -x| for some x ∈ R and all u ∈ R. 2. f (x) := max{x, -1}, x ∈ R. Then S f =] -∞, 0], S = f = {0}, argmin f =] - ∞, -1], ς ( f ) = 1, and τ( f , 0, ξ , δ ) = 0 if ξ > 0, δ ≥ 0 or ξ = 0, δ ≥ 1, 1 if ξ = 0, 0 ≤ δ < 1.
When 0 ≤ ε < 1, then condition (31) with x = 0 is satisfied only when ξ = 0 and

|g(0)| < 1. Hence, Ptb ( f , ε) = { f + c | |c| < 1}. 3. f : R →R is defined by f (x) :=                -2x if x ≤ 0, -x if x ∈]0, 1], -1 -1 2 (x -1) if x ∈]1, 2], ... ... -1 -1 2 -... -1 2 n-1 -1 2 n (x -n) if x ∈]n, n + 1], ... ... Then S f = [0, ∞[, S = f = {0}, ς ( f ) = 1
, and inf f = -2, Observe that in this example argmin f = / 0 and the graph has no horizontal parts. Nevertheless, it is easy to construct sequences satisfying the assumptions of Proposition 3.1. To determine the exact representation of the collection of ε-perturbations, similar to the previous example, τ( f , 0, ξ , δ ) needs to be computed: [START_REF] Ioffe | Metric regularity. Theory and applications -a survey[END_REF] with x = 0 is satisfied only when ξ = 0 and τ( f , 0, 0, |g(0

τ( f , 0, ξ , δ ) =                0 if ξ > 0, δ ≥ 0 or ξ = 0, δ ≥ 2, 1 if ξ = 0, 0 ≤ δ < 1, 1 2 if ξ = 0, 1 ≤ δ < 3 2 , ... ... 1 2 n if ξ = 0, 2 -1 2 n-1 ≤ δ < 2 -1 2 n , ... ... When 0 ≤ ε < 1, then condition
)|) ≥ 1 -ε. In particular, if 0 ≤ ε < 1/2, then it must hold |g(0)| < 1. Hence, in this case, Ptb ( f , ε) = { f + c | |c| < 1}.
In [START_REF] Kruger | Stability of error bounds for convex constraint systems in Banach spaces[END_REF], when investigating stability of global error bounds, a special asymptotic qualification condition (A QC ) (generalizing the corresponding finite dimensional condition from [START_REF] Ngai | Stability of error bounds for semi-infinite convex constraint systems[END_REF]) was imposed on function f :

(A QC ) lim inf k→∞ x * k ≥ ς ( f ) for any sequences x k ∈ X with f (x k ) < 0 and x * k ∈ ∂ f (x k ), k = 1,
2, . . ., satisfying the following: (a) either the sequence {x k } is bounded and lim k→∞ f (x k ) = 0, (b) or lim k→∞ x k = ∞ and lim k→∞ f (x k )/ x k = 0.

If inf x∈X f (x) < 0, then, under this condition, thanks to [START_REF] Kruger | Stability of error bounds for convex constraint systems in Banach spaces[END_REF]Proposition 23], for any point x ∈ S = f and any ε > 0, one can find a positive number ξ such that condition (31) is satisfied as long as |p(x)| ≤ ξ . Due to this observation and Lemma 3.1, under the (A QC ) the collection Ptb ( f , ε) of ε-perturbations defined above is larger than the corresponding one considered in [START_REF] Kruger | Stability of error bounds for convex constraint systems in Banach spaces[END_REF].

The next example illustrates the computation of ε-perturbations. In particular, when ε = 0, all 0-perturbations are of the form f + c with |c| < 1.

If condition [START_REF] Ioffe | Metric regularity. Theory and applications -a survey[END_REF] in the definition of ε-perturbation is dropped we will talk about weak ε-perturbations: g : X → R ∞ is a weak ε-perturbation of f if S g = / 0, g = f + p where p : X → R is convex, and there exists a point x ∈ S = f such that

|p(u) -p(x)| ≤ ε u -x for all u ∈ X.
In this case, one obviously has gp(x) ∈ Ptb c ( f , x, ε). The collection of all weak ε-perturbations of f will be denoted Ptb w ( f , ε). Obviously Ptb ( f , ε) ⊂ Ptb w ( f , ε).

The following subsets of Ptb ( f , ε) and Ptb w ( f , ε) corresponding to linear ε-perturbations of f can be of interest:

Ptb l ( f , ε) :={g | g(u) = f (u) + x * , u -x (u ∈ X), x ∈ S = f , ξ ≥ 0, x * ∈ ξ B * X * , ξ + ς ( f ) -τ( f , x, ξ , 0) ≤ ε}, Ptb w l ( f , ε) :={g | g(u) = f (u) + x * , u -x (u ∈ X), x ∈ S = f , x * ∈ εB * X * }.
Obviously,

Ptb l ( f , ε) ⊂ Ptb ( f , ε), Ptb w l ( f , ε) ⊂ Ptb w ( f , ε), (33) 
Ptb w l ( f , ε) = x∈S = f Ptb l ( f , x, ε). (34) 
Given a function f ∈ Γ 0 (X) and a number ε ≥ 0, denote

Er {Ptb ( f , ε)} := inf g∈Ptb ( f ,ε)
Er g,

Er {Ptb l ( f , ε)} := inf g∈Ptb l ( f ,ε)
Er g,

Er {Ptb w ( f , ε)} := inf g∈Ptb w ( f ,ε) Er g, Er {Ptb w l ( f , ε)} := inf g∈Ptb w l ( f ,ε)
Er g.

These numbers characterize the error bound property for families of ε-perturbations of f . Thanks to [START_REF] Jourani | Hoffman's error bound, local controllability, and sensitivity analysis[END_REF] and [START_REF] Klatte | Asymptotic constraint qualifications and global error bounds for convex inequalities[END_REF], it holds

Er {Ptb ( f , ε)} ≤ Er {Ptb l ( f , ε)} ≤ Er f , (35) 
Er

{Ptb w ( f , ε)} ≤ Er {Ptb w l ( f , ε)} = inf x∈S = f Er {Ptb l ( f , x, ε)}(x) (36) 
for any ε ≥ 0.

Theorem 3.2 Let f ∈ Γ 0 (X), S f = / 0. Then inf{ε > 0 | Er {Ptb w ( f , ε)} = 0} ≤ inf{ε > 0 | Er {Ptb w l ( f , ε)} = 0} ≤ ς ( f ) ≤ inf{ε > 0 | Er {Ptb ( f , ε)} = 0} ≤ inf{ε > 0 | Er {Ptb l ( f , ε)} = 0}. ( 37 
)
Proof Thanks to [START_REF] Kruger | Error bounds and Hölder metric subregularity[END_REF] and ( 36), we always have

inf{ε > 0 | Er {Ptb ( f , ε)} = 0} ≤ inf{ε > 0 | Er {Ptb l ( f , ε)} = 0}, ( 38 
) inf{ε > 0 | Er {Ptb w ( f , ε)} = 0} ≤ inf{ε > 0 | Er {Ptb w l ( f , ε)} = 0}. ( 39 
)
We first show that

ς ( f ) ≤ inf{ε > 0 | Er {Ptb ( f , ε)} = 0}. ( 40 
)
If ς ( f ) = 0, the inequality holds true trivially. Let 0 < ε < ς ( f ) and g ∈ Ptb ( f , ε), i.e. conditions ( 31) and ( 32) are satisfied for some convex function p : X → R, a point x ∈ S = f and a number ξ ≥ 0. Two cases are possible.

If 0 ∈ int ∂ f ( x) for some x ∈ S = f , then S f = { x}, x = x, ς ( f ) = ς ( f , x), and 
ς ( f )B * ⊂ ∂ f ( x). (41) 
We need to show that

∂ f ( x) ⊂ ∂ g( x) + ξ B * . ( 42 
) Let x * ∈ ∂ f ( x), i.e., f (u) -f ( x) -x * , u -x ≥ 0 for all u ∈ X.
At the same time, by [START_REF] Ioffe | On metric and calmness qualification conditions in subdifferential calculus[END_REF],

p(u) -p( x) ≥ -ξ u -x for all u ∈ X. (43) 
Adding the last two inequalities, we obtain g(u)g( x) + ξ uxx * , ux ≥ 0 for all u ∈ X, i.e., x * is a subgradient at x of the sum of two convex functions: g and u → ϕ(u) := ξ ux . Function ϕ is Lipschitz continuous and ∂ ϕ( x) = ξ B * . Hence, x * ∈ ∂ g( x) + ξ B * , which proves [START_REF] Mangasarian | A condition number for differentiable convex inequalities[END_REF]. Since ξ ≤ ε, it follows from ( 41) and (42) that

ς ( f )B * ⊂ ∂ g( x) + εB * .
Then, thanks to the Rådström cancellation principle (cf. Beer [9,7.4.1]),

(ς ( f ) -ε)B * ⊂ ∂ g( x),
and consequently, x is a minimum point of g. Since S g = / 0, we have x ∈ S g = S = g . We next show that x * ≥ ς ( f )ε as long as x * ∈ ∂ g(u) for some u = x. Indeed, for any u = x, x * ∈ ∂ g(u) and u * ∈ ∂ g(x), one has

g(u) ≥ g( x) + u * , u -x , g( x) ≥ g(u) + x * , x -u . Hence, x * , u -x ≥ u * , u -x ,
and consequently, taking supremum in the right-hand side over all u * ∈ (ς ( f )ε)B * ,

x * , u -x ≥ (ς ( f ) -ε) u -x .
Since u = x, it follows immediately from the last inequality that x * ≥ ς ( f )ε. Hence, Er {Ptb ( f , ε)} ≥ ς ( f )ε > 0 which yields [START_REF] Lewis | Local linear convergence for alternating and averaged nonconvex projections[END_REF]. 0 / ∈ int ∂ f (x) for all x ∈ S = f . If g(u) > 0, then, in view of (32), f (u) > -ξ ux -|p(x)| and, by [START_REF] Ioffe | Metric regularity. Theory and applications -a survey[END_REF], u * ≥ ς ( f ) + ξε for all u * ∈ ∂ f (u). If x * ∈ ∂ g(u), then, in view of Lemma 3.1, x * ∈ ∂ f (u) + ∂ p(u) ⊂ ∂ f (u) + ξ B * , and consequently,

x * ≥ ς ( f )ε. Hence, Er {Ptb ( f , ε)} ≥ ς ( f )ε > 0, and consequently, (40) holds true. Together with [START_REF] Kruger | Stability of error bounds for convex constraint systems in Banach spaces[END_REF], this proves the second group of inequalities in [START_REF] Kruger | Nonlinear metric subregularity[END_REF].

Next we show that

inf{ε > 0 | Er {Ptb w l ( f , ε)} = 0} ≤ ς ( f ). (44) 
If ς ( f ) = ∞, the inequality holds trivially. Let ς ( f ) < ε < ∞. By [START_REF] Hoffman | On approximate solutions of systems of linear inequalities[END_REF], there is an x ∈ S = f such that ς ( f , x) < ε. By Theorem 2.2, Er {Ptb l ( f , x, ε)}(x) = 0. Finally, by the equality in [START_REF] Kruger | Error bounds and metric subregularity[END_REF], Er {Ptb w l ( f , ε)} = 0, and consequently, (44) holds true. Together with [START_REF] Kruger | Regularity of collections of sets and convergence of inexact alternating projections[END_REF], this proves the first group of inequalities in [START_REF] Kruger | Nonlinear metric subregularity[END_REF].

Corollary 3.1 Let f ∈ Γ 0 (X), S f = / 0, ε ≥ 0. Then Er {Ptb w ( f , ε)} > 0 ⇒ Er {Ptb w l ( f , ε)} > 0 ⇒ ε ≤ ς ( f ), ε < ς ( f ) ⇒ Er {Ptb ( f , ε)} > 0 ⇒ Er {Ptb l ( f , ε)} > 0.
Remark 3.2 Theorem 3.2 strengthens [START_REF] Kruger | Stability of error bounds for convex constraint systems in Banach spaces[END_REF]Theorem 25]. Nonnegative number ς ( f ) provides an estimate for the radius of error bounds for a family of (arbitrary or convex and in finite dimensions also linear) perturbations of f . Remark 3.3 On different stages of the above proof of Theorem 3.2, different features of the definition [START_REF] Ioffe | Metric regularity. Theory and applications -a survey[END_REF], [START_REF] Ioffe | On metric and calmness qualification conditions in subdifferential calculus[END_REF] of an ε-perturbation were used. Accordingly, the statement of the theorem can be strengthened by cutting it into pieces and, for each piece, assuming exactly those features of the definition of an ε-perturbation, that are needed there.

In the proof of the inequality (40) when 0 ∈ int ∂ f ( x) for some x ∈ S = f , the onesided estimate [START_REF] Meng | Equivalent conditions for local error bounds[END_REF] was used instead of the 'full' inequality [START_REF] Ioffe | On metric and calmness qualification conditions in subdifferential calculus[END_REF] in the definition of an ε-perturbation while the inequality [START_REF] Ioffe | Metric regularity. Theory and applications -a survey[END_REF] was not needed at all. Similarly, in the proof of the same inequality [START_REF] Lewis | Local linear convergence for alternating and averaged nonconvex projections[END_REF] in the case when 0 / ∈ int ∂ f (x) for all x ∈ S = f , the opposite one-sided estimate p(u)p( x) ≤ ξ ux for all u ∈ X (45) was used.

In the proof of the inequality (44) we worked with 'weak' ε-perturbations and, again, only the one-sided estimate (45) was used.

Concluding remarks and perspectives

The main results of this article establish the exact formula for the radius of local error bounds (Theorem 2.2) and estimates of global error bounds (Theorem 3.2) for families of (arbitrary, convex and linear) perturbations of a convex inequality system. The next natural step would be to attack the stability of error bounds for inequality systems defined by non-convex functions. The recent article by Zheng & Wei [START_REF] Zheng | Perturbation analysis of error bounds for quasi-subsmooth inequalities and semi-infinite constraint systems[END_REF] suggests some important classes of such systems to be studied as a starting point.

  Theorem 2.1 (c)], [49, Corollary 2 (ii)], [53, Theorem 4.12], [57, Theorem 3.1]. Criterion (ii) was used in [25, Corollary 3.4], [26, Theorem 4.2]. The equality in (5) is well known. See also characterizations of linear and nonlinear conditionings in [17, Theorem 5.2].

Example 3 . 1

 31 Consider the piecewise linear function f : R →R given by

Example 3 . 3

 33 Consider again the piecewise linear function f : R →R examined in Example 3.1. We target small perturbations of this function related to the point x = 1 ∈ S = f . Let ε ∈ [0, 1[. Since ς ( f ) = 1 and τ( f , 1, ε, δ ) equals either 0 or 1 (cf. (30)), condition (31) can only be satisfied when τ( f , 1, ξ , |g(1)|) = 1, i.e., when 0 ≤ ξ ≤ ε and ξ + |g(1)| < 1. Condition (32) takes the following form: |p(u)p(1)| ≤ ξ |u -1| for all u ∈ R.
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