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Abstract

After Internet routing was shown in a number of classic measure-
ment papers to result in paths that are sub-optimal with respect to
a number of metrics, routing overlays were proposed as a method for
improving performance, without the need to re-engineer the underly-
ing network. In this paper, we present SMART, a self-healing, self-
optimizing and highly scalable routing overlay, which has a number of
advantages with respect to existing solutions. First, SMART can run
with off-the-shelf applications and does not require any kernel modi-
fication. In addition, SMART can be widely deployed over a sizable
population of routers, because it can quickly learn and efficiently track
the optimal path with a limited monitoring effort. We describe the de-
sign objectives, the architecture and the implementation of SMART, as
well as the online decision methods used for learning the optimal routes.
Experimental results demonstrate significant improvements over native
IP routing, both in terms of latency and throughput.

1 Introduction

Current Internet routing protocols may work reasonably well when only
"best effort” delivery is required, but the requirements of modern distributed
services are typically far more stringent, demanding greater performance and
availability of end-to-end routes than these protocols can natively deliver.



These services often require continuous operation over time, always main-
taining the response time below an acceptable threshold, and even small
degradations in their performance can have a considerable business impact,
in terms of slowed-down service adoption, lost revenue or even damage to
brand reputation.

A number of classic measurement studies (see, e.g., [1, 2]) have revealed
that the performance of flows could be significantly improved by choosing
alternate paths to the ones proposed by IP (Internet Protocol) routing pro-
tocols. In addition, it was also shown that path outages are routine events in
the Internet, and that the inter-domain routing protocol BGP (Border Gate-
way Protocol) reacts and recovers slowly from link/node failures [3, 4, 5],
causing path outages that can last for several tens of minutes [6, 2, 6, 7].

The ideal solution would be a complete rethink of the Internet routing
infrastructure, doing away with the existing architecture and redesigning it
with the benefit of hind-sight about its deficiencies. Unfortunately, the so-
called ossification of the Internet prevents even changes that are unanimously
recognized as necessary to take place.

Routing overlays have been proposed as an alternative solution that
can potentially provide the desirable flexibility and control over the routing
infrastructure, without the need to re-engineer the Internet [8, 9, 10, 11].
A routing overlay is formed of end hosts, which are deployed in different
spots over the Internet. These nodes monitor the quality of the IP routes
between themselves and use this information to decide whether to route
packets directly over the IP route or by way of other overlay nodes. A routing
overlay therefore enables controlling the path of data through the network
without modifying the underlying IP mechanism for computing routes, but
just by adding intermediate routing hops into the path taken by packets. In
a routing overlay, the endpoints of the information exchange are unchanged
from what they would have been in the absence of the overlay, but the route
through the network that the data traverse may be quite different.

There are several advantages to the use of routing overlays. Firstly, they
can be used to quickly recover from path outages. Indeed, they can exploit
the inherent redundancy of the Internet to find an alternate path when an
IP route becomes unavailable, even if Internet routing protocols cannot. In
addition, routing overlays can also be used to improve the quality of service
of data flows by overriding the routes determined by Internet protocols and
routing traffic based on metrics directly related to application performances.

In this paper, we present SMART!, a self-healing, self-optimizing and
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highly scalable routing overlay that we developed. SMART is self-healing
because it is able to quickly detect and recover from path outages. It is
self-optimizing because it can discover the optimal routes within the overlay
network for service-specific routing metrics. It is highly scalable because it
was designed to learn the optimal routes in large overlays with a minimum
monitoring effort. Last but not least, SMART was designed to control the
path of data of an application through the overlay without the application
even being aware that its data flows are routed over the overlay, so that it
can work with off-the-shelf applications.

In the following, we describe the design objectives, the architecture and
the implementation of SMART. Since one of our essential design goals was
to build a routing overlay that can be widely deployed over a sizable pop-
ulation of routers, we elaborate on the methods implemented in SMART
for discovering optimal routes in large overlay networks with a minimum
probing effort. Finally, we also present experimental results obtained with
real-world experiments over the Internet. These results demonstrate that
it is possible to significantly improve over native IP routing with a modest
monitoring effort. Due to the lack of space, we do not present the methods
used for assessing the quality of overlay links, but interested readers may
refer to [12].

The rest of this paper is organized as follows. In Section 2, we discuss
the similarities and differences of our routing overlay with existing solutions.
Section 3 is devoted to the description of the architecture and components
of our system. In Section 4, we describe the technical mechanisms used for
forwarding a packet from its source to its destination. Section 5 presents the
methods used for discovering optimal routes in the overlay with a minimum
monitoring effort, whereas experimental results are presented in Section 6.
Finally we conclude in Section 7 with a brief summary and a description of
future work.

2 Similarities and differences with respect to ex-
isting solutions

Researchers have successfully used overlay networks to solve problems in
various areas. To name but a few of the applications, overlays have been
used for self-organization in peer-to-peer networks [13, 14, 15], to implement
application-layer multicast [16, 17, 18, 19], and even to provide countermea-
sures to DDoS attacks [20, 21]. Overlay network technologies are also used
by Akamai Inc. for dynamic content delivery [22, 23, 24, 25, 26]. Comprising



more than 61,000 servers located over 1,000 networks in 70 countries, the
Akamai platform delivers 15-20% of all Web traffic worldwide.

More recently, several frameworks have been proposed for overlaying vir-
tualized Layer-2 networks over Layer-3 networks, such as Virtual Extensible
LAN (VXLAN) [27] and Distributed Overlay Virtual Ethernet (DOVE) [28].
The main difference between SMART and these technologies is that they
rely on the routes provided by Internet routing protocols, without seeking
to control how data flows are routed between end hosts.

In that respect, our system is much more closer to the solutions devel-
oped by the Detour and RON (Resilient Overlay Network) projects, which
have clearly demonstrated the benefits of moving some of the control over
routing into the hands of end-systems. The Detour framework [29] is an
in-kernel packet encapsulation and routing architecture designed to support
alternate-hop routing, with an emphasis on high performance packet classi-
fication and routing. In contrast, the developers of RON have opted for a
tighter integration of the application and the overlay network since RON is
a software library that programs link against [30]. This approach permits
”pure application” overlays with no kernel modifications, and allows the use
of application-defined routing metrics. Although the objectives of SMART
are similar to those of Detour and RON, SMART has the advantage that
it can work with off-the-shelf applications an on standard operating sys-
tems. Another major difference is that Detour and RON do not scale very
well: as the number of overlay nodes n increases, their costly O(n?) probing
overhead becomes a limiting factor. In practice, a reasonable RON over-
lay can support only about 50 routers before the probing overhead becomes
overwhelming [30].

The latter design objective is shared with a self-aware routing protocol
known as the Cognitive Packet Network (CPN) [31, 32]. CPN provides QoS-
driven routing, and performs self-improvement in a distributed manner by
learning from the experience of special packets, which gather on-line QoS
measurements and discover new routes. The routing decisions are made at
each node of the network, and they are based on adaptive learning techniques
using random neural networks. The application of CPN techniques to peer-
to-peer overlay networks has been considered in [33]. More recently, the
use of CPN-inspired learning techniques in SMART was investigated in [34].
In the present paper, we describe in much more details the architecture
and implementation of SMART, and investigate the relevance of a different
approach for learning the optimal overlay routes. In addition, whereas only
results related to the round trip delay were reported in [34], we present here
some experimental results on bandwidth optimization.



3 Architecture of the Routing Overlay

The overlay network is formed of software routers scattered over the Internet.
In our experiment, these routers were executed in Virtual Machines (VM)
running in cloud computing platforms, but they can be ran on physical hosts
as well.

Figure 1: Architecture of the Autonomic Communication Overlay.

Two types of agents are used. Transmission (TA) and Reception (RA)
agents are local agents that are executed on each VM running a task of
the distributed application. They represent the entry and exit points of the
overlay network, respectively. Each site also runs a single software router
called a Proxy. The Proxy is in charge of monitoring the quality of the
overlay paths towards certain destinations, selecting the best paths and for-
warding the packets of the application over them. As shown in Figure 1,
this enables to avoid congested or failed parts of the Internet when a Proxy
detects that the IP route is subject to anomalies.



3.1 Transmission and reception agents

Let us recall that one of our design objectives is to control the path of
data of an application through the network, without the application even
being aware that its data flows are routed over the overlay. To this end,
we use packet interception and encapsulation mechanisms operating in a
transparent way for the application. These mechanisms are implemented by
two software agents, which are activated automatically at start-up of their
respective VM:

e Transmission agent: the role of the Transmission Agent (TA) is to
intercept the packets sent by the application running in the same VM
and to forward them to the local Proxy using IP-in-IP encapsulation.

e Reception agent: the role of the Reception Agent (RA) is to receive
the packets sent by the local Proxy and to deliver the original packets
to the local application running in the same VM.

3.2 Proxy

An agent, called a Proxy, is executed in each site and acts as an interme-
diary for communications with other sites. The Proxy is in fact an entity
constituted of three different software agents:

e Monitoring agent: it monitors the quality of the Internet paths be-
tween the local site and the other sites in terms of latency, bandwidth,
and loss rate. The monitoring agent can be queried by the routing
agent in order to discover the quality of a given path according to a
certain metric.

¢ Routing agent: This agent is configured to optimize a service-specific
routing metric towards certain destinations. To this end, it drives the
monitoring agent so as to discover an optimal path (e.g., low-latency,
high-throughput, etc.) with a minimum monitoring effort (cf. Section
5). For each destination, the optimal path towards that destination
discovered by the routing agent is written in the routing table of the
forwarding agent.

e Forwarding agent: this agent is in charge of forwarding each incom-
ing packet to its destination on the path it was instructed to use by
the routing agent.



4 Packet interception, encapsulation and forward-
ing

In our architecture, the forwarding of a packet from its source to its desti-
nation proceeds as shown in Figure 2.

SRC VM SRC PROXY RELAY PROXY DST PROXY
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Figure 2: Forwarding process.

When a packet is sent by a source task to a destination task located
in a different site, it is first intercepted and forwarded to the TA. The TA
uses IP-in-IP encapsulation to forward an altered packet to the local Proxy.
The payload of the altered packet, referred to as the SMART packet in the
following, is that of the original packet along with an additional header.
Upon reception of the SMART packet, the forwarding agent of the Proxy
looks-up its routing table in order to determine the path to the destination.
The choice of source routing is dictated by scalability considerations (see
Section 5). The sequence of intermediate Proxies is written in the SMART
header, and then the SMART packet is forwarded to the first one of these
Proxies. Each intermediate Proxy then forwards the packet to the next hop
on the path, until the final Proxy is reached. When this occurs, the packet
is forwarded to the RA of the destination VM. The RA decapsulates the
SMART packet and forwards the original IP packet to the destination task
using a raw socket. We present below the technical details of each of these
operations.

4.1 Packet interception

The TA intercepts the packets sent by the application running in the same
VM and forwards them to the local Proxy. We emphasize that the TA
does not intercept all packets, but only packets towards specific destinations
located in a different site. The list of destination IP addresses for which



packet interception has to be done is configured at start-up of the agent and
can be changed dynamically.

As shown in Figure 3, packet interception is realized using a filtering
mechanism known as NetFilter NFQUEUE. Netfilter represents a set of
hooks inside the Linux kernel [35]. It allows specific kernel modules to
register functions that are called back for every packet that traverses the
respective hook within the network stack. NFQUEUE is an iptables target,
which delegates the decision on packets to user-space software (the TA in
our case).
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Figure 3: Forwarding process.

4.2 Packet encapsulation

Upon receipt of the packet sent by the local application, the TA takes the
entire content of the packet received and encapsulates it into its own mes-
sage format, adding a SMART header that contains control information. It
contains in particular the IP address of the destination Proxy (which differs
from that of the local Proxy, in the outer IP header) as well as the complete
path to reach it, that is, the list of intermediate Proxies. The TA leaves the
latter field blank, since the path to the destination Proxy will be determined



by the forwarding agent of the source Proxy. Once the header added, the
SMART packet is sent to the local proxy using UDP.

4.3 Processing by the forwarding agent

Upon receipt of a SMART packet, the forwarding agent inspects its header
to determine its precise role. There are three cases:

1. The packet is at the source Proxy: this is the case if the Proxy is not
the final destination and if the field describing the end-to-end path is
blank. In that case, the forwarding agent looks up for the path to the
destination Proxy in its routing table, writes this path in the header
of the SMART packet, and then forwards it to the next hop on the
path.

2. The packet is at an intermediate Proxy: the forwarding agent then
just forwards the incoming packet to the next hop on the path, after
having updated its destination IP address.

3. The packet has reached the destination Proxy: the forwarding agent
then forwards the packet to the RA on the destination VM.

4.4 Decapsulation and transmission to the destination

The RA decapsulates the Panacea packet and forwards the original data
packet to the destination task using a raw socket, that is, an internet socket
that allows the direct sending and receiving of IP packets without any
protocol-specific transport layer formatting. The packet is directly deliv-
ered to the recipient application because the destination IP address is that
of the destination VM. We note that there is an additional difficulty when
the public IP address of the destination VM is different from its private
IP address. In that case, the automatic remapping of public IP addresses
into private IP addresses by the Network Address Translation (NAT) mech-
anism is only possible for the SMART packet, and not for the inner original
packet. To overcome this difficulty, the RA uses a configuration file contain-
ing translation table entries to convert the public IP address of the packet
into a private address. In addition, IP header checksum and any higher-level
checksums that include the TP address are also changed by the RA.



4.5 Packet forwarding overhead

In order to evaluate the time overhead introduced by SMART with respect
to native IP routing in a controlled environment, we have used the Com-
mon Open Research Emulator (CORE). CORE is an open-source network
emulator developed by Boeings Research and Technology division and sup-
ported, in part, by the US Naval Research Laboratory [36]. It consists of a
GUI for drawing topologies of lightweight virtual machines, emulating end
hosts or networking devices (e.g. routers, switches, etc.) running Internet
protocols. We have used CORE to emulate linear topologies of different

sizes n = 2,...,5 as shown in Figure 4.
PROXY 1 PROXY 2 PROXY n
T ‘ ‘ T ‘ ‘ SMART route T ‘ ‘
N W W
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Figure 4: Experiment to evaluate SMART forwarding overhead.

For each size, we have measured the end-to-end RTT with and with-
out SMART. When SMART is activated, it routes all packets through all
available proxies before reaching the destination. We observed an additional
end-to-end latency of about 3ms with respect to native IP routing, regard-
less of the size n of the topology (indicating that most of the overhead is
due to the processing done by the TA and RA).

5 Discovering the Optimal Routes

In this section, we assume for simplicity that there is a single origin/destination
(OD) pair and describe the algorithm implemented by the source Proxy for
learning an optimal route to the destination Proxy. This algorithm is im-
plemented by the Routing Agent of the source Proxy. We assume that at
discrete time steps (say, every minute) the routing algorithm measures the
quality of some links and uses this information to decide how to route pack-
ets between the source and destination nodes. We define the monitoring
effort of the routing algorithm as the number of probed links per time slot.
As mentioned in Section 2, existing routing overlays use all-pairs probing,
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which has the advantage that it is guaranteed that an optimal path is dis-
covered; but the downside is that this approach does not scale very well
due to its costly O(n?) monitoring effort in an overlay of n nodes. Since we
wish to build a routing overlay that can be widely deployed over a sizable
population of routers, instead of requiring an optimal path to be found at
each time step, we look for an online decision algorithm that uses a limited
monitoring effort but achieves asymptotically the same average (per round)
end-to-end performance as the best path. The idea is to design an algorithm
that exploits past observations so as to quickly learn and efficiently track
the optimal path.

We formulate this problem as a multi-armed bandit problem [37] in which
decisions correspond to paths between the source and the destination, and
consider it in the adversarial setting where path costs can change arbitrarily
from one time step to the other. In this setting, no probabilistic assumption
is made regarding the costs of overlay paths, and in particular there is no
independence assumption made on these costs. To solve this adversarial
bandit problem, we use an algorithm directly inspired from the well-known
EXP3 algorithm [38]. At each successive time slot, it chooses a subset of
paths to probe, and measures the quality of these paths (e.g., by summing
the edge delays if the metric to be optimized is the latency). The algorithm
then sends its packet over the minimum-cost path among those it has probed.
In other words, probing does not cover all possible paths but only a few paths
which have been observed in previous probing steps to provide the best
performance. However, we have to widen our probing at random over other
paths, so that we do not miss out on paths whose quality has substantially
improved over recent history. We first give some background information
below on the adversarial multi-armed bandit problem, and then present the
routing algorithm implemented in SMART.

5.1 Adversarial Multi-armed Bandit Problem

We represent the overlay network by a complete graph G of n nodes, and
we let s and d be the source and destination nodes, respectively. A decision
algorithm A for the multi-armed bandit problem is given as input N paths
in G from s to d, indexed from 1 to N. For example, these paths may
correspond to the paths of at most two hops between s and d (that is, the
direct link and all paths with exactly one intermediate node), in which case
N = n — 1. The cost of a path i (e.g., its latency, or the inverse of its
throughput) may vary arbitrarily over time, but it is assumed to be upper
bounded by some constant A > 0. At round ¢t = 1,2, ..., a cost 4;(t) € [0, A]
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is assigned to each path ¢, but it is not revealed to the algorithm. Then,
the algorithm chooses a path i(¢) € {1,2,..., N}, sends a message over this
path and observes its cost £;;)(t). The cumulative cost of the algorithm over
T rounds is defined as

Lr(A) =) lin(), (1)

whereas the cumulative cost of path i over the T rounds is Ly (i) = Y11, £i(t).
The normalized regret of the algorithm A with respect to the best path is
then

1

Re(A) = 7 (Le(4) — min Le(3)). @

The goal is then to design an algorithm A that perform asymptotically
as well as the best path, i.e., such that Rp(.A) converges to 0 as T grows to
infinity, uniformly over all outcomes sequences.

5.1.1 Online Decision Algorithm

In [38], Auer et al. gave a randomized algorithm to solve the adversarial
multi-armed bandit problem. This algorithm is known as EXP3 and it is
based on exponential weighting with a biased estimate of the gains (de-
fined, in our case, as g;(t) = A — ¢;(t) for path i), combined with uniform
exploration. The regret of this algorithm can be upper-bounded, for any
0 <60 <1, and a fixed time horizon T, with probability at least 1 — d, by

Ro(EXP3) < 112A /NlogT(N/é) . Kl(;gT(N). )

Note that the regret of this algorithm decreases in time according to
1/v/T. We have implemented in the routing agent a slightly modified ver-
sion of the EXP3 algorithm, which is inspired from the ”power of two
choices” technique in randomized load-balancing [39]. In this version, pre-
cisely described in Algorithm 1, the routing algorithm chooses a subset
I(t) = {i1(t),...,ix(t)} of paths to probe at each round. The path i;(t)
is the IP route from s to d, and the other paths are chosen randomly
according to a probability distribution p(¢) that depends on the weights
wi(t),...,wn(t) of the paths. This distribution is a mixture of the uniform
distribution and a distribution which assigns to each path a probability
mass exponential in the estimated cumulative gain for that path. Once the
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paths probed by the Monitoring Agent, the algorithm selects the path i*(¢)
with the best performance among those in I(¢), and informs the Forwarding
Agent that it has to use this path if i*(¢) # ¢*(t — 1). Finally, the algorithm
updates the weights of the paths.

Algorithm 1 Learning optimal paths with the EXP3 algorithm.

1: Parameters: integer K > 1; real v € (0, 1].

2: Initialization: w;(1)=1,i=1,...,N.

3: fort=1, 2,...do

4: Compute the probability of each path:
w;(t)

pi(t) = (1 —’Y)m + %

o

Set i1(t) to the IP route and choose randomly paths i2(t),. .., ik (t)
according to p(t).

6: Probe the paths ¢ € I(t) = {i1 (¢ ) 2(t), ... ik (L)}
7: Compute the gains g;(t) = A — 4;(t) for i€ I(t).
8: Select the best path i*(t) = arg max;e () 9i(t)-
9: Update the weights:
, gi(t) ;
wit+1) = wi(t) exp (7 Np¢<t)> 1eI(),
w;(t) otherwise.
10: end for

It is easy to show that when K > 1 this algorithms performs at least as
well as EXP3, so that its regret decreases at least as fast as 1/+/t. In practice,
with K = 3, we often obtain negative values of the regret, indicating that
the algorithm performs even better than the best fixed path. If we restrict
ourselves to the N = n — 1 paths of at most two hops, then the monitoring
effort of the algorithm is 2K — 1, independently of the size of the overlay

network. More generally, with m OD pairs the monitoring effort is m(2K —
n(n—1)
2K—1°

1), which is less than in the all-pairs probing approach as long as m <

13



6 Experimental Results

6.1 Latency minimization

We now describe the results that were obtained with the proposed algorithm
during an Internet-scale experiment done in spring 2014, where we used 19
nodes of the NLNog ring? shown in Figure 5. Note that these overlay
nodes are interconnected by literally hundreds of Internet nodes which are
unknown to us or the overlay, and which support the overlay itself.

We first measured the latency between all pairs of nodes every two min-
utes, communicating through the Internet, for a period of one week using
the ICMP-based ping utility. Furthermore, when five consecutive packets
were lost between a specific pair of nodes, we considered that the particu-
lar source was disconnected from that destination. We thus collected some
1.7 x 10% measurement data over the week, from which we can compute the
weighted adjacency matrix of the overlay graph at each measurement epoch,
and hence compare the round trip delay of the IP route with that of the
optimal overlay route.

Figure 5: Geographical location of the 20 nodes selected in the NLNog ring.

The analysis of collected data confirmed the deficiencies of Internet rout-
ing observed in previous studies. There was an outage of the IP route at
least once in the week for 65% of OD pairs, and 21% of these outages lasted
more than 4 minutes (and more than 14 minutes for 11% of them). This
analysis also revealed that, as shown in Figure 6, in 50% of the cases it

2The NLNog ring is a network of 293 nodes scattered over 46 countries (see
https://ring.nlnog.net).
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is possible to improve over the latency of the IP route by adding one or
more intermediate overlay nodes to the path. Surprisingly enough, in 30%
of the cases, the minimum latency path is a path with only one intermediate
overlay node, that is, a two-hop path. This shows that a limited deviation
from IP actually produces much better QoS than IP itself. Interestingly,
even though in 20% of the cases the optimal path is a 3 or 4 overlay-hop
path, there is on the average no significant gain (only 5.4%) in considering
overlay paths of more than two hops. This suggests that we can restrict
ourselves to paths with at most one intermediate overlay node (this is true
only on average, since, for instance, the RTT between Narita/Paris can be
more than halved if we use two intermediate nodes instead of at most one).

2 3 4

Number of hops

55

50

45 |

40 |

%)

35

30

25

20

Proportion of optimal routes

Figure 6: Percentage of instances when the optimal path includes 1, 2, 3 or
4 hops.

As we will now show, SMART allows a significant decrease in round-trip
delay, with a very modest monitoring and computational effort. We consider
a fixed OD pair, the other overlay nodes serving just as relays. We restrict
ourselves to the N = 18 overlay paths of at most two hops and assume
that the routing algorithm probes K = 3 paths (including the direct IP
route) at each time slot, that is, every two minutes. The algorithm therefore

15



Table 1: Performance of native IP and SMART routings on the whole set
of NLNOG traces compared to optimal two-hop routing.

IP route | SMART
Non optimal instants (%) 44.5 3.8
Gap to optimal latency (%) 14.4 0.39

Table 2: Average RTT (ms) for some pathological OD pairs.

IP route | SMART | OPT 2-hops
Melbourne/Gibraltar 390 274.7 273.5
Narita/Santiago 406.7 254.5 253.0
Moscow/Dublin 179.9 81.9 80.8
Honk Kong/Calgary 267.1 131.8 130.0
Singapore/Paris 322.3 154.9 153.2
Tokyo/Haifa 322.6 180.8 180.1

measures 5 links per measurement and decision round (to be compared to
the 342 links monitored in the all-pairs probing approach). Our results
are summarized in Table 1, which shows the average relative gap to the
minimum latency that can be achieved with two-hop routing (the averaging
is over time and over the 342 OD pairs). These results demonstrate that
SMART uses the optimal two-hop route in 96% of the cases, and that it
provides near-optimal latencies, with a clear improvement over native IP
routing (13.8% on average). However, these average values do not truly
measure the gains obtained in the pathological routing situations we seek
to improve. In Table 2, we present the results for some OD pairs, for which
our system allows a huge decrease in round-trip delay.

On the other hand, Figure 7 shows the RTT between Narita (Japan)
and Santiago (Chile) over 5 successive days. The RTT of the direct IP route
is about 400 ms, whereas the RTT of the minimum latency path is about
250 ms. As can be seen, SMART learns quickly which is the minimum
latency path and tracks this path until the end of the 5 days. Figure 8
shows the same results over the first 3 hours. We notice that it takes only
25 measurement epochs (50 minutes) for SMART to learn the optimal route.
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Figure 7: RTT (ms) measured for the Narita(Japan)-Santiago(Chile) con-
nection in an experiment lasting 5 consecutive days.

6.2 Throughput maximization

We now describe the results obtained in an experiment involving 9 AWS
(Amazon Web Services) data centres located as shown in Figure 9. In sum-
mer 2015, we measured the available throughput between all pairs of data
centres every five minutes, communicating through the Internet, for a period
of four days. We thus collected some 8.3 x 10* measurement data over the 4
days period. Assuming that the available throughput over a path is the min-
imum of the throughputs of its constituent links, the analysis of these data
revealed that the IP route is the maximum throughput route only in 23%
of the cases, and that most of the time, the maximum throughput overlay
route passes through 1 or 2 intermediate nodes (see Figure 10).

As in Section 6.1, we consider only the N = 8 overlay paths of at most
two hops and take K = 3. The monitoring effort is therefore limited to 5
links, whereas the all-pair probing measures the throughput of 72 links at
each measurement epoch. Our results are summarized in Table 3. As for the
RTT, we observe a clear improvement over native IP routing. Here again,
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Figure 8: RTT ms for the Narita(Japan)-Santiago(Chile) connection over
the first 3 hours of the experiment reported in Figure 7.

Figure 9: Geographical location of the 9 AWS data centres.

we present in Table 4 the results obtained for some pathological OD pairs,
for which the available throughput is at least doubled.

On the other hand, Figure 11 shows the available throughput between
Sydney (Australia) and Virginia (USA) over the 4 successive days. The
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Figure 10: Percentage of instances when the optimal path includes 1, 2, 3,

4 or 5 hops.

average throughput of the direct IP route is 8.5 Mbps, whereas the average
throughput of the optimal path is 55.3 Mbps. Figure 12 shows the same
results over the first 3 hours. We notice that SMART discover an optimal
routes almost immediately, but that it is less effective at tracking it than it

was the case for the RTT.

Table 3: Performance of native IP and SMART routings on the whole set
of AWS traces compared to optimal two-hop routing.

. . . . .
25 | |
20 | |
15 |- i
10 |- 1
5| |
o B
2 3 4 5

IP route | SMART
Non optimal instants (%) 73.9 30.1
Gap to optimal latency (%) 31.3 6.6
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Table 4: Average throughputs (Mbps) for some pathological OD pairs.

IP route | SMART | OPT 2-hops
Dublin/Sydney 115 35.5 40.5
Singapore/Sao Paulo 12.8 39.5 43.6
Sydney/Virginia 8.5 50.7 55.3
Virginia/Singapore 7.4 31.2 36.1
Virginia/Sydney 6.9 32.2 36.7
Virginia/Tokyo 10.3 37.5 43.4

Throughput from Sydney to Virginia
100

Optimal route ——
IP route
Overlay route -«

80

Throughput (Mbps)

20

| | |
0 0.5 1 1.5 2 25 3 3.5 4
time (days)

Figure 11: Throughput (Mbps) measured from Sydney (Australia) to Vir-
ginia (USA) over 4 consecutive days.

7 Conclusion

Internet routing works reasonably well most of the times. Yet, our exper-
imental results show that a routing overlay that make measurement-based
online routing decisions can yield spectacular improvements over native IP
routing in some cases. The issue is that it is not possible to measure the qual-
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Figure 12: Throughput (Mbps) measured from Sydney (Australia) to Vir-
ginia (USA) over the first 3 hours of the experiment reported in Figure
11.

ity of all overlay links in large overlays, implying that a tradeoff between the
quality of the routes discovered and the monitoring effort to discover them
is required. To the extend of our knowledge, SMART is the first routing
overlay to address this issue.

The results we have obtained have essentially considered paths of at
most two overlay hops. Although considerable improvements over native IP
routing have been demonstrated, this may not be sufficient for some source to
destination pairs. In order to increase the number of potential overlay paths
without impairing the convergence time of the learning algorithm, we plan to
investigate a different approach based on the so-called Online Shortest Path
Problem [40]. This approach makes use of the following crucial observation:
when the latencies of the edges of some paths are measured, then this also
provides some information about the latency of each path sharing common
edges with probed paths. As future work, we intend to study experimentally
the performance of this approach, as well as to investigate its generalization
to non-additive metrics for the Online Widest Path Problem.
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