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The Tagus 1969 tsunami simulation with a finite volume solver

and the hydrostatic reconstruction technique

S. Clain,1 C. Reis,1,2 R. Costa,1 J. Figueiredo,1 M. A. Baptista,2,4

J. M. Miranda,2,3

second order finite volume scheme with hydrostatic reconstruction
Non conservative flux
Application to the 1969 Lisbon Tsunami

Abstract. Tsunami modelling commonly accepts the shallow-water system as govern-
ing equations where the major difficulty is the correct treatment of the non-conservative
term deriving from the bathymetry variations. Finite volume method for solving the shallow-
water equations with such source terms has received great attention in the two last decades.
The built-in conservation property, the capacity to treat correctly discontinuities and the
ability to handle complex bathymetry configurations preserving some steady-state con-
figurations (well-balanced scheme) make the method to be very efficient. Nevertheless,
it is still a challenge to build an efficient numerical scheme, with very few numerical arte-
facts (e.g. small numerical diffusion, correct propagation of the discontinuities, accuracy
and robustess) to be used in an operational environment, and that is able to better cap-
ture the dynamics of the wet-dry interface and the physical phenomena that occur in
the inundation area. In this paper, we present a new second-order finite volume code.
The code is developed for the shallow-water equations with a non-conservative term based
on the hydrostatic reconstruction technology to achieve a well-balanced scheme and an
adequate dry/wet interface treatment. A detailed presentation of the numerical method
is given. Finally, we highlight the advantages of the new numerical technique. We bench-
mark the numerical code against analytical and experimental results to assess the ro-
bustness and the accuracy, showing good agreement. To increase the reliability of the
presented code, we tested the real case tsunami propagation in a complex bathymetry,
the 28 February 1969 tsunami in the Tagus estuary. The comparison between the syn-
thetic and the recorded signal shows a good reproduction of the waveforms and trav-
elling times.

1. Introduction

The 28 February 1969 event was a submarine earthquake
Ms7.9, with epicentre located on the Horseshoe Abyssal
Plain, south-east of the Gorringe bank, approximately the
same location as the noticeable Lisbon earthquake and
tsunami of 1st November 1755. The earthquake struck west-
ern Portugal and Morocco at 02:40:32.5 UTC and a small
tsunami was registered in tide stations of mainland Portugal,
Azores archipelago, Spain and Morocco (Baptista, Miranda
and Victor [1992]). Baptista et al. (1992) (Baptista, Mi-
randa and Victor [1992]) analysed tsunami data recorded
at the tide stations of Portugal mainland, Azores and Cadiz
in Spain. Later, Heinrich et al. (1994) (Heinrich, Baptista
and Miranda [1994]) and Gjevik et al. (1997) (Gjevik et
al. [1997]), presented numerical simulations of the tsunami
propagation along the Portuguese coastline and in the Tagus
estuary.
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Tsunami simulation codes are mainly based on two nu-
merical techniques: the finite difference and the finite vol-
ume methods and, to a lesser extend, the finite element
method. These solvers tackle the shallow-water equations,
in Cartesian or spherical coordinates, equipped with addi-
tional source terms to take the bathymetry variation, the
friction or the turbulence into account. Finite difference
schemes for simulating tsunami propagation were first im-
plemented due to its simplicity in the structured grids con-
text (MOST Titov and Gonzalez [1997], TUNAMI Ima-
mura et al. [1997], Imamura et al. [2006] or COMCOT
Wang [2009]). Nevertheless, the finite difference schemes
suffer of three drawbacks: 1) they are not entirely conser-
vative (the total mass is not preserved, even if the losses
can be very small), 2) they are not well-balanced (the con-
figuration ocean at rest is not maintained) and, at last, 3)
to reduce the numerical effects of the bathymetry source
term, a formulation based on the primitive variables (height
and velocity) is often used however does not provide the
correct solution when discontinuities are involved. The non-
conservative system using the velocity as an unknown func-
tion must not be used since only the conservative for-
mulation provides the correct Rankine-Hugoniot conditions.
Moreover, second-order versions create some spurious oscil-
lations in the vicinity of discontinuities and a large amount
of artificial viscosity is added to stabilise the scheme lead-
ing to a dramatic reduction of the accuracy (Zhou et al.
[2002]; Gallouët, Hérard and Seguin [2003]; Nikolos and
Delis [2009]).

Since the nineties, the finite volume method turns to be a
more efficient technique to solve hyperbolic non-linear sys-
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tems for complex modelling in atmospheric sciences and geo-
physical fluid dynamics (Zhou et al. [2015]) or hydrologi-
cal models (Salah, Nelson and Williams [2010]). Software
for tsunami simulation using the finite volume scheme were
developed and implemented such as ANUGA (Roberts et
al. [2010]) and GEOCLAW (Leveque and Berger [2011]),
among others. They preserve the mass and the use of conser-
vative variables guarantees the validity of the shock prop-
agation. Non-conservative flux is a key to provide a well-
balanced scheme. GEOCLAW is based on the f-wave de-
composition which integrates the bathymetry jump at the
cell’s interface (George and LeVeque [2006]) while ANUGA
use the Divergence Form for Bed slope source term (tagged
DFB) developed in Valiani and Begnudelli [2006] to take
the hydrological jumps into account.

In this study, we propose to introduce and implement
a different finite volume technology which enables to deal
with varying bathymetry and provides high-accurate so-
lutions. The hydrostatic reconstruction method (Audusse
et al. [2004]; Berthon and Fouchet [2012]) became a very
popular and simple numerical technique for handling with
both the topography and the dry/wet interface. One crit-
ical aspect of tsunami simulations is the variation of the
bathymetry where the non-conservative term has to be dis-
cretized with caution. Indeed, some steady-state situations
have to be preserved at the discrete level leading to the so-
called C-property (Bermúdez and Vázquez [1994]; Bermúdez
et al. [1998]) and the well-balanced concept (Greenberg and
Leroux [1996]; Duran, Liang, and Marche [2013]). If not
preserved, the scheme is disqualified since it produces addi-
tional non-physical forces and the solution is not acceptable.
At last, in the on-land tsunami propagation the dry/wet sit-
uation is a critical point. Here, both the water height h and
the mass flow q = hu converge to zero while the velocity u
does not vanish. Accurate approximations where h << ∆x
(let us say h < ∆x/100), ∆x being the characteristic length
of the cell, turn to be difficult since the numerical diffusion
takes a larger contribution. It results that the velocity may
be unbounded close to the dry zone (and diverges to infinity
in some case) leading to a too small time step deriving from
the CFL condition. Moreover, the finite volume method is
powered with the MUSCL technique (Monotonic Upwind
conservative schemes Van Leer [1974] and see the book of
LeVeque [2002] for an overview of the method)to improve
the scheme accuracy with a very low additional computa-
tional cost.
The aim of this paper is threefold.

1. The presentation of a fully detailed numerical scheme,
based on recent methods developed in the mathematical
community for the shallow-water system, including the non-
conservative term with a special dedication to the tsunami
propagation problem. All the scheme stages are presented:
the generic finite volume framework, the MUSCL tech-
nique, the C-property leading to the construction of the
non-conservative fluxes and, at last, the hydrostatic recon-
struction to deal with the dry/wet situations;

2. The verification and validation of the numerical code,
where the numerical benchmarks used by Synolakis et al.
[2008] and Tinti and Tonini [2013], adopted from the Long-
Wave Run-up Models Workshops, edition 1, 2 and 3 (Liu,
Synolakis and Yeh [1990]; Yeh, Liu, and Synolakis [1996];
Synolakis, and Bernard [2006]) were carried out to assess
the robustness and the accuracy of the method.

3. The study of an historical real scenario, the 28 Febru-
ary 1969 tsunami. As result, we show that even with the
complex bathymetry and reflection characteristics of the
Tagus estuary, the code reproduces the registered waveforms
recorded by some of the tide stations. We also show the code
performance in open-sea propagation, using Lagos (Algarve,
Portugal) and Casablanca (Morocco) stations.

2. Model and numerical scheme

Tsunami modelling involves the shallow-water sys-
tem equipped with non-conservative terms such as the
bathymetry effect, the friction or the turbulence. We skip
the two last terms since we focus on the bathymetry term
and its numerical treatment. The system writes

∂th+ ∂x(hu) + ∂x(hv) = 0 (1)

∂t(hu) + ∂x
(
hu2 +

g

2
h2
)

+ ∂y(huv) = −gh∂xb (2)

∂t(hv) + ∂x(huv) + ∂y
(
hu2 +

g

2
h2
)

= −gh∂yb (3)

where h denotes the water height, (u, v) the fluid velocity
vector gathering the components along the x and y axis,
b the bathymetry, g = 9.81ms−2 the gravity acceleration.
Moreover, η = h + b stands the free surface, and vector
W = (h, hu, hv) gathers the conservative quantities while
V = (h, u, v, b) corresponds to the physical variables vector.

2.1. Mesh and notations

Let Ωx = [0, L] with L a positive real number. We define
the cells ci• = [xi−1/2, xi+1/2] with interfaces xi+1/2 = i∆x,

xi−1/2 = xi+1/2 − ∆x and centre xi =
xi−1/2+xi+1/2

2
,

i = 1, · · · , I, where we have set ∆x = L/I. In the same
way, the cells c•j = [yj−1/2, yj+1/2] represent a partition
of Ωy = [0, H], H > 0 with interfaces yj+1/2 = j∆y,

yj−1/2 = yj+1/2 − ∆y and centre yj =
yj−1/2+yj+1/2

2
,

j = 1, · · · , J with ∆y = H/J .
Domain Ω = [0, L] × [0, H] is decomposed into non-

overlapping I × J cells cij = ci• × c•j , i = 1, · · · , I,
j = 1, · · · , J , with centroid (xi, yj) and interfaces ei+1/2,j =
{xi+1/2} × c•j , ei−1/2,j = {xi−1/2} × c•j , ei,j+1/2 = ci• ×
{yj+1/2}, ei,j−1/2 = ci• × {yj−1/2}. For a prescribed time
final time T , 0 = t0 < t1 < · · · < tn < · · · < tN = T is a
subdivision with non constant time step ∆tn = tn+1 − tn
that will be controlled by the CFL condition.

Real number φn
ij represents an approximation of the mean

value over cell cij for any function φ = h, η, b, u, v at time
tn. We recall that for regular functions over the cell cij
(say C2), the point-wise value at (xi, yj) is a second-order
approximation of the mean value. We denote by Wn

ij =
(hn

ij , (hu)nij , (hv)nij) the vector of the conservative variables
and by V n

ij = (hn
ij , u

n
ij , v

n
ij , b

n
ij) the vector of the physical

variables where we have set

un
ij =

(hu)nij
hn
ij

, vnij =
(hv)nij
hn
ij

when hn
ij > 0 and 0 otherwise. Real numbers φn

i+1/2j,L and
φn
i+1/2j,R represent approximations on the left and right side

of interface ei+1/2j while φn
ij+1/2,L and φn

ij+1/2,R stand for
approximations on the left (lower) and right (upper) side of
interface eij+1/2 (see Figure 1).

2.2. Non-conservative problem and well-balanced
scheme

Due to the change of topography in space, the non-
conservative term −gh∇b is required to preserve some
steady-state configurations such as the water at rest, where
the velocity is null and η is constant in the wet area. Indeed,
writing the mass flow equation with null velocity, steady-
state assumption yields

∂t(hu) + ∂x
(
hu2 +

g

2
h2
)

+ ∂y(huv) = gh∂xh

= gh∂x(η − b)
= −gh∂xb,



and the same property holds for the v component. Conse-
quently, the non-conservative term −gh∇b on the right-side
compensates the hydrostatic pressure variation due to the
bathymetry variations and the well-balanced property has
to be mimic at the discrete level. Discretization of the non-
conservative term is still an important challenge to provide
some nice properties such as stability and well-balancedness.
For example, the simple discretization

−gh∂xb ≈ ghij
bi+1,j − bi−1,j

2∆x
(4)

is not eligible. Indeed, such an approximation coupled with
a classical numerical flux (Rusanov, HLL) will induce non-
physical motions, and after some steps the water moves
alone, leading to a wrong simulation.

Consequently, preserving the water at rest configuration
(the C-property) is the minimal requirement that the nu-
merical scheme has to respect. A scheme is then said well-
balanced (for the water at rest case) if it preserves this spe-
cific situation. Other types of steady-state solution can also
be preserved (the so-called moving water stationary solu-
tions) and there exists a large literature on this subject in
the mathematical community (we refer to Delestre et al.
[2013] for an overview of the up-to-date techniques). Nev-
ertheless, the water at rest is the main steady-state one has
to preserve in the applications involving lakes or oceans.

To highlight the importance of such a property, we prove
hereafter why expression (4) is not correct. Indeed, assume
that the lake is at rest at time tn, then we have un

ij = vnij = 0
while hn

ij +bnij = ηnij = η ∈ R. Computing the next time step
for the velocity using the first-order finite volume scheme
equipped with a viscous flux such as the Rusanov or the
HLL one Toro [2009] leads to

hn+1
ij un+1

ij = − g∆t

4∆x

(
(hn

i+1,j)
2 − (hn

i−1,j)
2)−

−hn
ij

bni+1,j − bni−1,j

2∆x
∆t

= − g∆t

4∆x
(hn

i+1,j − hn
i−1,j)(h

n
i+1,j + hn

i−1,j)−

−hn
ij

bni+1,j − bni−1,j

2∆x
∆t

=
g∆t

4∆x
(bni+1,j − bni−1,j)(h

n
i+1,j + hn

i−1,j)−

−hn
ij

bni+1,j − bni−1,j

2∆x
∆t

= −g∆t
bni+1,j − bni−1,j

2∆x

(
hn
ij −

hn
i+1,j + hn

i−1,j

2

)
= g∆t

bni+1,j − bni−1,j

2∆x

(
bnij −

bni+1,j + bni−1,j

2

)
= g∆t

bni+1,j − bni−1,j

4∆x
(2bnij − bni+1,j + bni−1,j).

Clearly, the right-hand side does not vanish except for the
particular case of a constant or linear bathymetry (affine
strictly speaking). Hence hn+1

ij un+1
ij 6= 0. The steady-state

flow is no longer preserved and such a scheme leads to an
erroneous evaluation of numerical approximations. On the
other hand, we can check that if one employs the following
discretization

−gh∂xb ≈ g
hn
i+1,j + hn

i−1,j

2
·
bni+1,j − bni−1,j

2∆x
,

we obtain a well-balanced scheme for the water at rest sit-
uation since the velocity remains null. A major difficulty is
that the choice of the discretization of the non-conservative
term strongly depends on the discretization of the conserva-

tive part and the last choice turns to be inadequate if, for
example, we use the Roe numerical flux Toro [2009]. There-
fore the non-conservative contribution has to be adapted in
function of the numerical flux used in the conservative term.

2.3. MUSCL Technique

Finite volume is an excellent framework due to its
built-in conservation property but it suffers of an impor-
tant numerical diffusion if one uses first-order approxima-
tions. Monotonic Upstream-Centred Scheme for Conserva-
tion Laws (MUSCL) technique, initially developed by Van
Leer [1974], is a popular method to easily increase the ac-
curacy while preserving the robustness (see LeVeque [2002]
for an overview of the MUSCL method). It is based on two
steps: a local linear reconstruction to achieve the second-
order and a limiting procedure for preventing the solution
from generating non-physical oscillations.

To compute the first derivatives for any function φ =
h, η, u, v, b, we define the slopes for the x and y direction
respectively with

pni+1/2j(φ) =
φn
i+1j − φn

ij

∆x
, pnij+1/2(φ) =

φn
ij+1 − φn

ij

∆y
,

and one can achieve a more accurate approximation on edge
ei+1/2j taking for example (see Figure 2)

φn
i−1/2j,R = φn

ij −
pni+1/2j + pni+1/2j

2

∆x

2
,

φn
i+1/2j,L = φn

ij +
pni+1/2j + pni+1/2j

2

∆x

2
,

where we have skipped the reference to φ for the sake of
simplicity.

Such a reconstruction will give rise to oscillations in the
vicinity of a discontinuity due to the Gibbs phenomenon and
a non-linear limiting procedure has to be implemented to
preserve the monotonicity in each direction. The traditional
MUSCL way consists in substituting the original slopes by
a limited version π(α, β) depending on the left and right
unlimited slope (α, β respectively), such that some stability
criterion is fulfilled. Classical limiter operators such as the
minmod or the van-Leer limiters are involved in the limiting
process Van Leer [1974].

Then we define the stabilized reconstructed values on the
left and right side of the vertical interfaces with

φn
i+1/2j,L = φn

ij + π
(
pni−1/2j , p

n
i+1/2j

)
∆x/2,

φn
i−1/2j,R = φn

ij − π
(
pni−1/2j , p

n
i+1/2j

)
∆x/2,

while we set for the horizontal interfaces

φn
ij+1/2,L = φn

ij + π
(
pnij−1/2, p

n
ij+1/2

)
∆y/2,

φn
ij−1/2,R = φn

ij − π
(
pnij−1/2, p

n
ij+1/2

)
∆y/2.

Notice that φn
i+1/2j,L, φn

i−1/2j,R are different and that we
recover the constant piecewise representation when π = 0
with φn

i+1/2j,L = φn
i−1/2j,R = φn

i . Therefore, the first-order
case/method is a possible outcome of the second-order one.
In the following Wn

i+1/2j,L stands for the reconstructed con-
servative vector on the left side of interface ei+1/2,j and
V n
i+1/2j,L the corresponding vector using the physical vari-

ables.
An important point is that the reconstruction cannot be

performed with h, η and b at the same time for compatibility
reasons. It has been proved in Audusse et al. [2004] that
the good choice is to first carry out the MUSCL procedure
on h and η. Then we deduce the values for b setting (notice
that the approximations of b now depend on the time):

bni+1/2j,L = ηni+1/2j,L − hn
i+1/2j,L,



bni−1/2j,R = ηni−1/2j,R − hn
i−1/2j,R.

We evaluate approximations bnij+1/2,L an bnij−1/2,R for the
horizontal interfaces in the same way.

2.4. Hydrostatic reconstruction

To design a discretization of the source term that pre-
serves the C-property, we use the hydrostatic reconstruc-
tion proposed by Audusse et al. [2004] which enables to
deal with complex flows with the dry/wet situation. In par-
ticular, such a technique preserves the positivity of the water
height providing a very good robustness and accuracy.

Consider a generic interface e and denote bL, hL and
bR, hR the bathymetry and water height for the left and
right sides of the interface. We set b∗ = max(bL, bR)
and perform the hydrostatic reconstruction setting h∗

L =
max(0, hL − b∗ + bL), h∗

R = max(0, hR − b∗ + bR). There-
fore h∗

L and h∗
R correspond to the water heights which are

really involved in the pressure at the interface e. Figure 3
left panel shows that h∗

R < hR due to the step, the middle
panel presents the dry/wet case where h∗

L = h∗
R, while the

right panel gives an example of hydrostatic reconstruction
with a piecewise linear bathymetry.

We now adapt the generic principle to a vertical inter-
face ei+1/2,j for instance. We then denote by b∗,ni+1/2j =
max(bni+1/2j,L, b

n
i+1/2j,R) where bni+1/2j,L and bni+1/2j,R are

approximations of topography on interface ei+1/2,j and set
the new hydrostatic reconstruction variables:

h∗,n
i+1/2j,L = max(0, hn

i+1/2j,L − b∗,ni+1/2j + bni+1/2j,L),

η∗,ni+1/2j,L = h∗,n
i+1/2j,L + b∗,ni+1/2j ,

with hn
i+1/2j,L, bni+1/2j,L an approximations of the water

height on the left side of interface ei+1/2,j . We proceed
in the same way to compute h∗,n

i+1/2j,R and η∗,ni+1/2j,R. For

the sake of consistency, we also use the notation u∗,n
i+1/2j,L =

un
i+1/2j,L, v∗,ni+1/2j,L = vni+1/2j,L and u∗,n

i+1/2j,R = un
i+1/2j,R,

v∗,ni+1/2j,R = vni+1/2j,R for the velocity.
We apply an identical algorithm for the horizontal inter-

faces of cell cij to evaluate φ∗,n
i−1/2j,R, φ∗,n

i−1/2j,R, φ∗,n
ij+1/2,L,

φ∗,n
ij+1/2j,R, φ∗,n

ij−1/2,L, φ∗,n
ij−1/2j,R for φ = h, η, u, v, b. At last,

we shall denote by W ∗,n
i−1/2,L and V ∗,n

i−1/2,L the conservative
and physical vectors after applying the hydrostatic recon-
struction.

2.5. Second-order in space finite volume scheme

The explicit finite volume scheme writes

Un+1
ij = Un

ij − ∆t
∆x

[
Fn

i+1/2j + εni+1/2j,L

−Fn
i−1/2j − εni−1/2j,R

]
−∆t

∆y

[
Fn

ij+1/2 + εnij+1/2,L

−Fn
ij−1/2 − εnij−1/2,R

]
+ ∆tSn

ij (5)

with Fn
i−1/2j = F(W ∗,n

i−1/2,L,W
∗,n
i−1/2,R, ν) a numerical flux

for the conservative contribution that casts under the vis-
cous form

F(WL,WR, ν) =
F (WL, ν) + F (WR, ν)

2
− λ(WR −WL),

where

F (W, ν) =

 hU · ν
huU · ν
hvU · ν

+
gh2

2

 0
νx
νy



is the physical flux in the normal direction ν and λ > 0 is
the scheme viscosity. In the following, the HLL numerical
flux will be used in all the numerical simulations.

Function εni−1/2j,L = ε
(
hn
i−1/2j,L, h

∗,n
i−1/2j,L

)
is the non-

conservative flux at edge ei−1/2j at the left side of the in-
terface. We recall that, in non-trivial cases such as a flat
bottom, the non-conservativity yields

εni−1/2j,L + εni−1/2j,R 6= 0,

where this quantity represents the impulsion variation due to
the brutal change of topography at the interface. Of course,
εni−1/2j,L = εni−1/2j,R = 0 if one has bni−1/2j,L = bni−1/2j,R,
which corresponds to a local continuous bathymetry. We
shall use the following discretization to deal with the dis-
continuous part of the non-conservative term

εni+1/2j,L =
g

2

 0
((hn

i+1/2j,L)2 − h∗,n
i+1/2j,L)2

0


and a similar expression for the three other non-conservative
contributions, namely εni−1/2j,R and εnij−1/2,L, εnij+1/2,R for
the three other interfaces.

At last, when dealing with the second-order approxima-
tion, the gradient of the bathymetry has to be substituted
with its numerical representation corresponding to the reg-
ular part of the non-conservative term. Consequently, the
contribution of the source term over the cell writes

Sn
ij = −g

 0
hn
i+1/2j,L+hn

i−1/2j,R

2
×

bni+1/2j,L−bni−1/2j,R

∆x
hn
ij+1/2,L+hn

ij−1/2,R

2
×

bnij+1/2,L−bnij−1/2,R

∆y

 .

Notice that the source term for the cell does not involve the
hydrostatic reconstructed variable but the original ones.

Thus, if one adopts a first-order scheme, we have
bni+1/2j,L = bni−1/2j,R = bij . Hence the source term in the cell
vanishes and the contributions of the bathymetry variations
are computed with the non-conservative flux. On the con-
trary, if the bathymetry is continuous, the non-conservative
flux deriving from the bathymetry discontinuity vanishes
and the change of topography contribution is exclusively
computed with the source term Sij in the cell. To sum up,
ε and S aim at computing the non-conservative term but ε
is dedicated to the brutal bathymetry variation at the in-
terfaces while S treats of the smooth topography variations
inside the cells. �

2.6. Full second-order finite volume scheme

A second-order method in time is required to guarantee
a global second-order method for smooth solutions. The
usual RK2 (Heun method) is usually employed to be effec-
tive and robust. Assuming that we know all the vectors
Wn

ij , i = 1, · · · , I, j = 1, · · · , J at time tn, we proceed in two
sub-steps. We first compute a first-order candidate solution
Wn,1

ij for time tn + ∆t applying successively the MUSCL
procedure, the hydrostatic reconstruction and the finite vol-
ume scheme (4). With Wn,1

ij in hand, we proceed in the

same way computing a second approximation Wn,2
ij for time

tn + 2∆t. Then the Heun method consists in defining

Wn+1
ij =

1

2
Wn

ij +
1

2
Wn,2

ij

which provides a second-order approximation in time at
tn+1. At last, Wn+1

ij corresponds to a full second-order ap-
proximation both in space and time as long as we respect
the CFL condition for the stability.



3. Numerical tests and validation

Several benchmarks were carried out to perform the ver-
ification and validation of the numerical scheme, through
comparisons of the code predictions with analytical solu-
tions, laboratory experiments and field measurements.

The validation stage guarantees that the numerical
method correctly solves the equations where consistency,
accuracy and stability are assessed with representative sit-
uations such as bathymetry change, dry/wet interface and
run-up on an inclined beach.

To this end, two types of benchmarks are considered: the
synthetic benchmark, where the numerical solution is com-
pared to an analytical one, and the laboratory benchmark
involving a confrontation of the numerical approximation
with data deriving from laboratory experiences.

The benchmarking process used to accomplish the geo-
physical component is an assumption of the benchmark
problems introduced by the Long-Wave Run-up Models
Workshops 1990 (Catalina Island in California), 1996 (Fri-
day Harbor in Washington) and 2004 (Catalina Island) (Liu,
Synolakis and Yeh [1990]; Yeh, Liu, and Synolakis [1996];
Synolakis, and Bernard [2006]). Later, as a product of
these workshops, a technical memorandum was compiled
by the National Oceanic and Atmospheric Administration
(Synolakis et al. [2007]) and organized into four different
categories: 1) Basic hydrodynamic considerations, includ-
ing the mass conservation and convergence; 2) Analytical
benchmarking, including the single wave on a simple beach
problem; 3) Laboratory benchmarking, including tests for
solitary wave on a simple beach, solitary wave on a compos-
ite beach, solitary wave on a conical island, tsunami run-up
onto a complex 3D beach (Monai Valley) and tsunami gen-
eration and run-up due to 3D landslide; and 4) Field bench-
marking with the Rat Islands and the Okushiri tsunamis.

In our study, the basic hydrodynamic considerations were
performed to validate the numerical code. Mass conserva-
tion, convergence and stability are the major issues a soft-
ware has to address. For non-conservative problems, the
question of the well-balanced (or C-property) is also im-
portant, namely, some steady-state situations have to be
preserved. The most popular one is the so-called lake at
rest configuration where a constant free surface with vary-
ing bathymetry and null velocity at t = 0 will be maintained
for t > 0.

For the numerical code verification, three problems were
selected to test the code run-up and inundation numerical
solutions of the non-linear shallow-water equations, based
on Synolakis et al. [2008] and Tinti and Tonini [2013]
papers. Two synthetic sanity check benchmarks, namely:
tsunami run-up onto slope plane beach benchmark (Car-
rier and Greenspan [1958]; Carrier, Wu, and Yeh [2003]),
and tsunami run-up of a planar surface oscillating in a
paraboloidal basin benchmark (Thacker [1981]). One labo-
ratory benchmark due to the Monai, Okushiri tsunami was
carried out to compare the simulation with real experimen-
tal data in order to assess the validity of both the model and
the numerical method.

3.1. Synthetic Benchmarks

Analytical benchmarking is a procedure that is used to
identify the dependence of the results on the problem param-
eters (Synolakis et al. [2008]; Tinti and Tonini [2013]).
3.1.1. tsunami run-up onto a sloping plane beach

The uniformly sloping beach one-dimensional benchmark
consists in a comparison of a leading-depression N wave ap-
proximation with a given initial profile travelling across a
1/10 slope numerical solution with the one obtained by the
analytical integral formula given in Carrier and Greenspan

[1958]; Carrier, Wu, and Yeh [2003]. The goal of the bench-
mark is to compute and present the snapshots of the numer-
ical free surface and velocity profiles at t = 160 s, t = 175 s
and t = 220 s, and to compare them with the exact solution.
We plot in Figure 4 the free surface using the first-order (left
panel) and the second-order method (right panel) for differ-
ent times. In the same way, Figure 5 displays the velocity at
the same time instants. We qualitatively observe the con-
vergence of the approximation as ∆x decreases and conclude
that the second-order clearly provides the best solution.

To quantify the impact of the second-order method, we
report in Table 1 the error of the free surface minimum at
t = 175 (exact minimum is −21.34) and the convergence or-
ders. The second-order scheme provides the smallest errors
and the convergence rate is around 1.6, whereas the first-
order method presents more limitations to approximate the
exact solution. Note that the dry-wet interface is not well
collocated since its position depends on whether a cell is wet
or dry. We identify this issue as the major problem to pro-
vide an accurate solution and it is the main limiting factor
of the numerical scheme. Effective second-order error can
not be achieved due to this important restriction and a bet-
ter location of the dry/wet interface inside the cell will be a
crucial challenge.
3.1.2. tsunami run-up of a planar surface oscillating
in a paraboloidal basin

The second benchmark derives from an analytical solu-
tion proposed by Thacker [1981] for a parabolic basin and
has been used by Tinti & al. Tinti and Tonini [2013] to
check the numerical schemes.

The bathymetry is a paraboloid of equation

b(x, y) = b0

(
1− x2

L2
− y2

l2

)
with L and l the lengths of the ellipse semi-axis. The free
surface is a plane that oscillates around the horizontal axis
Oy and the component of the velocity along the Ox axis is
null. The exact solution has an analytical expression given
by:

η(x, y, t) = 2A
b0
L

cos(ωt)

(
x

L
− A

2L
cos(ωt)

)
,

for the free surface and

u(x, y, t) = Aω sin(ωt), v(x, y, t) = 0, ω =

√
2gb0
L2

for the velocity, where A is free parameter we shall set
with the initial conditions. In numerical simulations, we use
L = 4700m, l = 1300m, b0 = 201.42m, g = 9.80ms−2 and
A = 235m leading to ω = 1.3368 10−2 s−1 and T = 470 s.

By construction, η is a constant value at time t = T/4 and
t = 3T/4. Then, an easy way to check the code is assessing
the flatness defaults by computing the difference between the
maximum and the minimum values of η at t = 3T/4. We
carry out three simulations using meshes M1 = 250 × 75,
M2 = 500 × 150 and M3 = 1000 × 300 and we report in
Table 2 the differential which corresponds to the flatness
default ∆f . We get a first-order scheme for the free surface
while we report a second-order of accuracy with the MUSCL
technique. Moreover, the MUSCL method does not produce
any spurious oscillations and the free surface flateness is pre-
served.

3.2. Laboratory Benchmark: Monai

The laboratory benchmark is an 1/400 scale laboratory
experiment of the extreme Monai run-up, consequence of
the 1993 Okushiri tsunami (village of Monai in Okushiri
Island 1993 Matsuyama and Tanaka [2001]). Laboratory



measurements were performed in a tank 205 m long, 6 m
deep and 3.4 m wide and three points of interest (PoI) were
considered, simulating virtual tide gauges. This PoI’s are
located at: 1) tide gauge 1: 4.521 m; 1.196 m; 2) tide gauge
2: 4.521 m; 1.696 m and 3) tide gauge 3: 4.521 m; 2.196 m.

We carry out two simulations using the first-order and the
second-order version of the code. We display in Figure 7 two
elevations corresponding to time t = 14 s (left panel) and
t = 16 s (right panel) corresponding to the first-order (top
row) and the second-order (bottom row) methods. Clearly,
the second-order method provides qualitative better approx-
imations with a sharper front and a larger dry zone which
result from a less diffusive scheme.

To better quantify the error between the laboratorial data
and the numerical approximations, we compare the water
height measurement at three locations and draw the asso-
ciated numerical curves in Figure 8. We observe the good
correspondence until 50 s. From then on, the shallow-water
model is not enough representative for larger time due to the
lack of dispersive terms. The second-order scheme provides
a better approximation, in particular smaller structures (lo-
cal variations) are captured whereas they do not appear with
the first-order scheme.

4. Case study application Simulation of the
28th February 1969 tsunami

The 28th February 1969 submarine earthquake had a
magnitude Ms=7.9, and its epicentre located on the Horse-
shoe Abyssal Plain, 36.01oN and 10.57oW. Its source was in-
terpreted as a thrust fault with a small strike slip component
(Fukao [1973]) (see Figure 9). The earthquake generated
a small tsunami that affected the coasts of Portugal, Spain
and Morocco (Heinrich, Baptista and Miranda [1994]; Gje-
vik et al. [1997]). The tsunami was recorded by several
tide gauges, including the Cascais, Pedrouços, Terreiro do
Paço, Cabo Ruivo and Lagos, in Portugal, and Casablanca,
in Morocco. Figure 9 shows the epicenter of the 1969 earth-
quake and the loaction of several tide gauges where records
are available.

Two alternative fault planes were suggeste by Fukao
[1973] and Matias et al. [2013]. The strike angle is
55o for the case of the NE-SW dipping fault plane and
235o for the SW-NE dipping fault plane. The dip angle
is 52o and the rake 90o. Considering a seismic moment of
M0 = 6.1020 N.m, the dimensions of the fault plane were
fixed as 80 km long by 50 km width Heinrich, Baptista and
Miranda [1994].

We carried out several simulations of the tsunami genera-
tion and propagation, and compared them with the recorded
waveforms. The initial time of the simulation, t=0, is the
time of the earthquake. We ran the simuation for 180 min-
utes. All tide records were digitized, linearly interpolated
and detided to isolate the tsunami signal. To remove the
tide we used a polynomial fitting of degree 9. The sim-
ulations were carried out for Mean Sea Level conditions.
The bathymetric grid is an uniform spacing of 200 m, and
was generated from the General Bathymetric Chart of the
Oceans (GEBCO, http://www.gebco.net/).

To prescribe the initial conditions, we assumed the earth-
quake rupture to be instantaneous and the water incom-
pressible, so that the initial sea surface displacement mimics
the coseismic deformation of the sea bottom. We computed
the co-seismic deformation using the half-space elastic ap-
proach (Okada [1985]), implemented in Mirone suite Luis
[2007]. The initial sea surface displacement is shown in Fig-
ure 10 for the SW-NE dipping fault plane (left panel) and for
the NE-SW dipping fault plane (right panel). The maximum
vertical displacement is 1.65 m. Null velocity is assumed at

the initial time. Transmission conditions are prescribed on
the whole boundary to make the waves freely flow out of the
domain without spurious oscillations.

Numerical simulations were carried out with the first-
and the second-order method and the two fault plane so-
lutions. The comparison between the synthetic results and
the recorded data focused on four aspects: 1) amplitude of
the first wave, 2) tsunami travel time, 3) frequency of the
first waves, and 4) first wave polarity.

4.1. Wave amplitude

Figure 12 displays the comparison of the water elevation
at the different locations with respect to the time, while
Table 4 provides the maximum water height values for the
recorded and simulated waves.

The main difficulty to fit the simulation with the recorded
data is the grid size, which prevents to take into account
structures of size lower than 200 m, and to prescribe an ac-
curate location of the sensors. We performed the simulations
using as Points of Interest (PoI) virtual sensors situated in
the neighbor cells of the real sensor localization, ensuring
that synthetic waveforms were representative of the area.
We focused on the three first tsunami waves since local ge-
ographical configurations produce new reflection waves that
are latter on superposed on the waveform, and are not well
reproduced by the numerical simulation.
• The Cascais PoI synthetic waveform shows an ampli-

tude about 11 cm, 26 cm, 29 cm and 24 cm larger than the
observed waveform (46.7 cm), for the different method or-
ders and fault orientation, respectively. Such differences
may derive from the large diffusivity inherent to the low
order scheme which dramaticaly reduces the accuracy (a
third of the water height). Since the gravitational wave is
compressed and focused as tsunami enters shallower waters
close to the coasts, the high diffusion scheme is not able to
correctly reproduce the energy concentration and provides
erroneous estimates of the tsunami impact. Second-order
scheme is, at least, accurate enough to give a relevant shape
of the wave when reaching the coast.

• The Pedrouços tide gauge simulation shows an ampli-
tude 10 cm smaller in the first-order scheme and strike of
55o. For the remaining synthetic solutions, we observe an
over-estimation of about 19 cm, 20 cm and 16 cm.

• The Terreiro do Paço comparison shows that the first
wave peak amplitude is 19 cm and 46 cm, respectively for
the first-order, depending on the fault orientation. For the
second order method, the values are 44 cm and 40 cm. The
recorded waveform shows an amplitude of 42 cm.

• In Lagos there is good agreement between the ampli-
tude of the recorded waveform and the modelling results.
The first-order simulation presents differences of 7 mm and
4.8 cm. The second-order simulation shows differences of
8.4 cm and 4.8 cm.

• The Casablanca second-order simulation, used mainly
to analyse the polarity, shows differences of about 15 cm and
4 cm.

Second-order technique achieves a better approximation
in terms of values and form of the wave. As a pattern, the
first-order simulation results are smaller than the second-
order results. In what concerns the choice of the fault plane,
the SW-NE solution behaves sligthly better than the NE-
SW.

4.2. Tsunami travel time

Tsunami travel times are generally well reproduced by
the model, taking into account the tsunami propagation be-
tween the PoI and the real tide gauge, which is not repro-
duced by the numerical model.



• The Cascais tide gauge recorded the peak of the first
wave about 36 min after the earthquake while the first-order
simulation gives a travel time of about 40 min and 41 min
and the second-order simulation 41 min and 39 min, depend-
ing on the polarity of the initial condition.

• The Pedrouços travel time is 66 min (±4.4 min) while
the numerical simulations give travel times of 51 min, 53 min
53 min and 50 min, respectively for the first- and second-
orders (NE-SW and SW-NE fault planes).

• The Terreiro do Paço observed travel time is 72.6 min
(±4.6 min) while the simulation gives a travel time of 63 min,
50 min for the first-order and 65 min, 63 min for the second-
order.

• In Lagos PoI, the synthetic travel time is 40.7 min,
while it is about 35 min, 33 min , 32 min and 35 min, respec-
tively for the first- and second-orders (NE-SW and SW-NE
fault planes).

• In Casablanca, the arrival time is not coherent with
the recorded waveform. This situation was already noted
by previous studies (Guesmia et al. [1998]).

In all cases, the numerical simulation provides smaller ar-
rival times than the ones obtained from the recorded data.
This is consistent with the bathymetric resolution and the
very shallow area where the sensor are located, with a depth
shallower than 2-4m. The situation is particularly imporant
for the tide gauges located on the shallow margins of the Tejo
river. Nevertheless, second-order simulations reproduce bet-
ter the recorded waveforms, as expected. Figure 11 presents
the wave propagation over time..

4.3. Period

Tsunami propagation results into a series of waves due
to the reflections and the refraction with the coast leading
to a complexe waveform constituted of the superposition of
several frequencies. Nevertheless, one can observe that the
lower frequency content is almost constant (at least for the
three first periods) in all tide gauges, and mainly a function
of the tsunami source size. To do a quantitative compari-
son we estimated the largest period by the delay between
the first and the second peak and from the average of the
three peaks for both observed and synthetic waveforms (see
Figure 12).
• The Cascais observed waveform is probably affected by

the proximity with marine strutures, resulting in three main
superposed frequencies. It is possible to identify the high
and low frequencies and perform the comparison with the
simulated waveforms.

• Pedouços recorded waveform also shows a complex fre-
quency content (see Figure 12). The numerical code repro-
duces fairly the lowest frequency.

• In Terreiro do Paço, the period of the first wave is better
reproduced by SW-NE fault simulation, while the frequency
estimated from the average of the two initial waves is better
reproduced by NE-SW fault simulation.

• In Lagos the recorded waveform has higher frequencies
than all simulated waveforms.

• In Casablanca both observed and simulated periods are
similar.

4.4. Choice of the Fault Plane

Due to the location of most of the tide gauges with respect
to the tsunami sources, it is difficult to judge which is the
best fault plane from the polarity of the first tsunami wave
and we got inconlusive results. To get a better insigth, we
focus the polarity analysis on the tide gauge of Casablanca
which, due to its location relatively to the earthquake source,
constitutes the best PoI to evaluate the polarity. Results
(see Figure 12) show that the SW-NE dipping fault plane
fits better the tsunami waveform.

5. Conclusions

From the numerical point of view, the finite volume
technique coupling the hydrostatic reconstruction and the
second-order scheme MUSCL technique provides an efficient
code with mass conservation and ocean at rest preserva-
tion. Shocks are well-evaluated and the MUSCL technique
reduces the numerical diffusion and increases the accuracy
without generating non-physical oscillations. The code was
submitted to 3 different benchmarks to assess the accuracy,
the robustess and the C-property. The benchmarks were
performed with the first- and second-order schemes for the
run-up and inundation numerical solutions of the non-linear
shallow water equations. Comparisons between the syn-
thetic and the real waveforms show an very good agreement.

Finally, we test the code with a real case, the propagation
of the small tsunami generated by the 1969 tsunamigenic
earthquake (Ms7.9) in the Tagus estuary. Although the com-
plex bathymetry, the numerical code had a favourable per-
formance and the comparison synthetic/recorded waveforms
shows a good agreement. We also use the numerical simula-
tion to ascertain the earthquake focal mechanism proposed
by Fukao (1973) and challenged by Matias et al. (2013)
in what concerns the choice of the fault plane. The com-
parison between mareographic measurements and synthetic
tsunami waveforns favours the fault plane dipping SW-NE
as proposed by Fukao (1973). As expected,the second order
scheme code generates waveforms with a better approxima-
tion to the real waveforms recorded by the considered tide
stations.

The main conclusions of this paper are:
• Volume finite method is adequate for the shallow water

equations resolution;

• The implemented techniques increase the performance
of the method;

• Mathematical and geophysical benchmarks (analytical
solutions, laboratory experiments and field measures) certi-
fies the numerical code capability to simulate tsunami run-
up and propagation with accuracy and robustness;

• Tsunami data favours the focal plane of the 1969, 28th
February earthquake, proposed by Fukao (1973).

Future developments concerns the introduction of a more
recent limiting technique, namely the MOOD method,
in substitution to the MUSCL one Figueiredo and Clain
[2015], which provides effective second-order of accuracy and
preserves some essential properties such as the positivity of
the water height.
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Table 1. Errors and convergence rates for the free surface minimum at time t = 175 s.

∆x error 1st order error 2nd order

min t = 175

50 7.30 — 4.00 —

20 3.22 0.9 0.98 1.5

10 1.25 1.3 0.31 1.7

5 0.58 1.1 0.10 1.6

Table 2. Flatness defaults at time t = 175 for several meshes and orders.

Mesh ∆f : 1st-order ∆f : 2nd-order

250× 75 0.82 0.072

500× 150 0.44 0.021

1000× 300 0.21 0.006

Table 3. PoIs used in the 28 February 1969 event with respective location.

Station Location

Latitude Longitude

Cascais 38.693 9.411

Pedrouços 38.690 9.259

Terreiro do Paço 38.704 9.136

Lagos 37.066 8.667

Casablanca 33.610 7.386

Table 4. Amplitude: comparison between the recorded
waveform and the synthetic results obtained from a first and
second order simulation.

Station Recorded [m] 1st-order, strike 55o [m] 1st-order, 235o [m] 2nd-order, 55 o [m] 2nd-order, 235o

Cascais 0.467 0.577 0.732 0.759 0.703

Pedrouços 0.433 0.334 0.627 0.633 0.594

Terreiro do Paço 0.417 0.192 0.456 0.436 0.403

Lagos 0.429 0.436 0.477 0.513 0.477

Casablanca 0.622 − − 0.476 0.582

Table 5. Arrival time: comparison between the recorded
waveform (Red.), the synthetic results obtained from a first
and second order simulation and a tsunami travel time esti-
mative from Mirone code (Mir.) at the northeast and south-
western points of the fault.

Station Rec. [s] 1st, strike 55o [s] 1st, strike 235o [s] 2nd, strike 55o [s] 2nd, strike 235o [s] Mir. NE [s] Mir. SW [s]

Cascais 2136 2388 2474 2494 2362 2400 2664

Pedrouços 3978 3111 3177 3194 3048 3024 3287

Terreiro do Paço 4357 3788 2970 3930 3772 3432 3708

Lagos 2442 2099 1963 1946 2094 1368 1750

Casablanca 1835 − − 1906 2026 − −
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Figure 2. Slope and interface value reconstructions for
the Ox direction. We skip the second index j for the sake
of clarity.
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Figure 3. The hydrostatic static reconstruction:
wet/wet with constant bathymetry (left), dry/wet case
(middle) and wet/wet with linear bathymetry (right).



Figure 4. Free surface at t = 160 (top), t = 175 (middle)
e t = 220 seconds(bottom) for the run-up on linear ramp.
the left panel corresponds to the first-order scheme and
the right panel to the second-order scheme.



Figure 5. Water velocity at t = 160 (top), t = 175
(middle) e t = 220 seconds(bottom) for the run-up on
linear ramp. the left panel corresponds to the first-order
scheme and the right panel to the second-order scheme.



Figure 6. Free surface of the paraboloid basin at time
t = 3T/4 corresponding to the exact solution η = 0. The
free surface is situated between −0.003 (blue) and 0.003
(red).

Figure 7. Comparison of the first- (top) and second-
order (bottom) scheme at time t = 14 s (left panel) and
t = 16 s (right panel).



Figure 8. Comparison of laboratorial and numerical
data, for three tide gauges located at points (4.521, 1.196)
(tide gage 1), 4.521, 1.696 (tide gage 2) and 4.521, 2.196
(tide gage 3).

Figure 9. Location of Gorringe Bank. Epicenter of
the 1969 earthquake and respective fault (parallel to the
Horseshoe fault), represented by a star. Location of the
tide gauge stations in Casablanca, Lagos, Cascais and
in Tagus estuary, represented by triangles (left). Zoom
of the Cascais and Tagus estuary tide stations location
(right).



Figure 10. Initial deformation, considering a NE-SW
(left) and SW-NE (right) fault orientation. Location of
the simulation PoI’s.



Figure 11. Tsunami wave propagation near and in the
Tagus estuary, for time t = 40min, t = 60min, and the
restant with time intervals of 10min.



Figure 12. Tsunami waves amplitude (m), for the Cas-
cais, Pedrouços, Terreiro do Paço, Lagos and Casablanca
tide gauges. Comparison of the first and second order
numerical simulation with the tide gauge waveform.


