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1 Introduction

Let K be a real Lie group with Lie algebra k. The notion of admissible
coadjoint orbit was introduced by M. Duflo [2] in order to study the unitary
dual of K. This notion is also important in the work of D.Vogan (see [5]).
Indeed, quoting him, “the orbit method provides some light in a very dark
room”. In this article, we restrict ourselves to the case where K is a compact
connected Lie group. In this case, everything seems clear, admissible orbits
are very easy to describe as well as K̂. Nevertheless, we discovered some
remarkable properties of admissible coadjoint orbits which (we believe) were
unnoticed before. Furthermore, as we briefly explain below, these proper-
ties are fundamental in the study of the equivariant index of twisted Dirac
operators on general K-manifolds. It thus became necessary to return to
this subject. Let us describe our motivations, and some of our results.
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Choose a K-invariant scalar product on k˚, a Cartan subalgebra, and a
system of positive roots and denote by }ρK} the norm of ρK “ 1

2

ř

αą0 α.
Coadjoint orbits can be grouped in different subsets that we call Dixmier

sheets. If a coadjoint orbit Kξ varies in a Dixmier sheet, the stabilizer sub-
group Kξ of ξ P k˚ remains in a fixed conjugacy class. The coadjoint orbits
of maximal dimension form the regular sheet. Furthermore, there is a map
Qspin
K (see Definition 3.8) associating to an admissible coadjoint orbit P

a virtual representation Qspin
K pPq of K. By this correspondence, regular

admissible coadjoint orbits parameterize the set pK of classes of unitary ir-
reducible representations of K. For example, the coadjoint orbit of ρK is
regular admissible and parameterize the trivial representation of K.

We associate to a Dixmier sheet S a subset IS of pK, a positive number
}ρS} and a conjugacy class sS of semi-simple subalgebras of k: the set IS
is the set of irreducible representations of K of the form Qspin

K pPq where
P is an admissible orbit belonging to S, sS is the conjugacy class of the
semi-simple part of the infinitesimal stabilizer kξ for any orbit Kξ in S, and
}ρS} is the norm of the ρ-element for the subgroup Kξ of k (thus }ρS} “ 0
exactly when S is the regular sheet).

Let Sk be the set of conjugacy classes of the subalgebras sS where S
varies over all Dixmier sheets. The set Sk and the particular subset IS of
K̂ associated to a Diximier sheet S occur in the following theorem, that we
prove in [4] and announced in [3].

Assume K is acting on a connected Spin manifold M (or more generally
a Spinc manifold). Let L be a K-equivariant line bundle on M . Consider
the twisted Dirac operator DL and its equivariant index QpM,Lq. Then the
following holds.
‚ If the semi-simple part s of the generic infinitesimal stabilizer kM of

the action of K in M does not belong to Sk, then QpM,Lq “ t0u for any
equivariant line bundle L on M .
‚ If s is equal to sS , then QpM,Lq is a virtual sum of irreducible repre-

sentations of K belonging to IS .

The proof of this result uses an inequality on distance between coadjoint
orbits, that we call the magical inequality. We prove this inequality in
this article (Theorem 4.3). In this introduction, let us just state two of its
consequences.

Theorem 1.1 Let O be a regular admissible coadjoint orbit, and let P be a
coadjoint orbit in a Dixmier sheet S. Then the distance between O and P
is greater or equal to }ρS}.
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Assume that P is an admissible coadjoint orbit. We prove in Theorem
5.1 that Qspin

K pPq is either 0, or irreducible. If Qspin
K pPq is irreducible, then

Qspin
K pPq “ Qspin

K pOq for a unique admissible regular orbit O. We then say
that P is an ancestor of O. We prove the following theorem (Theorem 5.4).

Theorem 1.2 Let O be a regular admissible orbit. The ancestors of O in
a Dixmier sheet S are all the elements in S at distance }ρS} of O.

In general O has a unique ancestor, O itself. But for example the orbit
of ρK has 2r ancestors, where r is the rank of rK,Ks.
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Notations

Throughout the paper :

• K denotes a compact connected Lie group with Lie algebra k.

• T is a maximal torus in K with Lie algebra t.

• Λ Ă t˚ is the weight lattice of T : every µ P Λ defines a 1-dimensional
T -representation, denoted Cµ, where t “ exppXq acts by tµ :“ eixµ,Xy.

• If h is a subalgebra of k, we denote by phq its conjugacy class.

• We fix a K-invariant Euclidean inner product p¨, ¨q on k. This allows
us to identify k and k˚ when needed.

We denote by x¨, ¨y the natural duality between k and k˚.

• We denote by RpKq the representation ring of K : an element E P

RpKq can be represented as finite sum E “
ř

λP pK
mλV

K
λ , with mλ P

Z. Here we have denoted by V K
λ the irreducible representation of K

indexed by λ.

• We denote by R̂pKq the space of Z-valued functions on K̂. An element
E P R̂pKq can be represented as an infinite sum E “

ř

λP pK
mpλqV K

λ ,

with mpλq P Z. An element of R̂pKq will be called a virtual represen-
tation of K.
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• If H is a closed subgroup of K, the induction map IndKH : R̂pHq Ñ
R̂pKq is the dual of the restriction morphism RpKq Ñ RpHq. It is
given by the Frobenius reciprocity formula: the multiplicity mpλq of
the irreducible representation V K

λ in IndKHV
H
µ is the multiplicity of V H

µ

in the restriction of the representation V K
λ to H.

• If E is a complex representation space of H, we denote simply by
Ź‚E the virtual representation of H which is the difference of the
representations of H in

ŹevenE and
ŹoddE.

• The stabilizer of ξ P k˚ is denoted by Kξ. It is a connected subgroup
of K. The Lie algebra of Kξ is denoted by kξ. The element ξ P k˚ is
called regular if Kξ is a Cartan subgroup of K.

• In general, the notation P is for any coadjoint orbit, while the notation
O is reserved for regular coadjoint orbits.

2 Coadjoint orbits and Dixmier sheets

Let K be a compact connected Lie group with Lie algebra k.
We first define the ρ-orbit. Let T be a Cartan subgroup of K. Then t˚

is imbedded in k˚ as the subspace of T -invariant elements. Roots will be
considered as elements of t˚ (the corresponding character of T being eiα).
Choose a system of positive roots ∆` Ă t˚, and let ρK “ 1

2

ř

αą0 α. The
definition of ρK requires the choice of a Cartan subgroup T and of a positive
root system. However a different choice leads to a conjugate element. Thus
we can make the following definition.

Definition 2.1 We denote by opkq the coadjoint orbit of ρK P k˚. We call
opkq the ρ-orbit. We denote by }ρK} the norm of any point on opkq.

Let Hk be the set of conjugacy classes of the reductive algebras kξ, ξ P k
˚.

The set Hk contains the conjugacy class ptq formed by the Cartan sub-
algebras. It contains also pkq (stabilizer of 0).

Remark 2.2 If h “ kξ, then hC is the Levi subalgebra of the parabolic sub-
algebra determined by ξ. Parabolics are classified by subsets of simple roots.
Thus there are 2r conjugacy classes of parabolics if r is the rank of rk, ks.
However, different conjugacy classes of parabolics might give rise to the same
conjugacy class of Levi subalgebras (as seen immediately for type An).
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We group the coadjoint orbits according to the conjugacy class phq P Hk

of the stabilizer.

Definition 2.3 The Dixmier sheet k˚
phq is the set of orbits Kξ with kξ con-

jugated to h.

We also say that an element of k˚
phq is a coadjoint orbit of type phq.

If phq “ ptq, the corresponding Dixmier sheet is the set of regular coad-
joint orbits.

If phq “ pkq, the corresponding Dixmier sheet is the set of 0-dimensional
orbits, that is the orbits tξu of the elements ξ of k˚ vanishing on rk, ks.

We denote by Sk the set of conjugacy classes of the semi-simple parts
rh, hs of the elements phq P Hk.

Lemma 2.4 The map phq Ñ prh, hsq induces a bijection between Hk and Sk.

Proof. Assume that rh, hs “ rh1, h1s “ s. Let N be the normalizer of s,
and n its Lie algebra. Thus h and h1 are contained in n. Let t, t1 be Cartan
subalgebras of h, h1. Then t and t1 are conjugated by an element of N . As
h “ s` t, we see that h is conjugated to h1. l

The connected Lie subgroup with Lie algebra h is denoted H. Thus
if h “ kξ, then H “ Kξ. We write h “ z ‘ rh, hs where z is the center
and rh, hs is the semi-simple part of h. Thus h˚ “ z˚ ‘ rh, hs˚ and z˚ is
the set of elements in h˚ vanishing on the semi-simple part of h. We write
k “ h ‘ rz, ks, so we embed h˚ in k˚ as a H-invariant subspace, that is we
consider an element ξ P h˚ also as an element of k˚ vanishing on rz, ks.

We consider the ρ-orbit ophq in h˚. Remark that ophq is contained in
rh, hs˚. We denote by }ρH} the norm of any point in ophq.

If S is the Dixmier sheet associated to phq, we denote by }ρS} the norm
of ρH .

3 Admissible coadjoint orbits

We will be interested in admissible coadjoint orbits. This notion is defined in
[2] for any real Lie group. Let us now describe the set of admissible coadjoint
orbits in concrete terms when K is a compact connected Lie group.

Consider ξ P k˚. We have xξ, rkξ, kξsy “ 0. If iθ : kξ Ñ iR is the
differential of a character of Kξ, we denote by Cθ the corresponding 1-
dimensional representation ofKξ, and by rCθs “ KˆKξCθ the corresponding
line bundle over the coadjoint orbit Kξ Ă k˚.
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Definition 3.1 An element ξ P k˚ is integral if iξ is the differential of a
1-dimensional representation of Kξ.

This notion of integrability is invariant under the coadjoint action, so a
coadjoint orbit is called integral when any of its element is integral.

The following notion of admissibility is necessary for defining the spin
quantization Qspin

K pPq of an orbit P.
Let Kξ be a coadjoint orbit. The quotient space k{kξ is equipped with

the symplectic form ΩξpX̄, Ȳ q :“ xξ, rX,Y sy, and with a unique Kξ-invariant
complex structure Jξ such that Ωξp´, Jξ´q is a scalar product. We denote
by qξ the space k{kξ considered as a complex vector space via the
complex structure Jξ. Any element X P kξ defines a complex linear map
adpXq : qξ Ñ qξ.

Definition 3.2 For any ξ P k˚, we denote by ρpξq the element of k˚ξ such
that

xρpξq, Xy “
1

2i
TrqξadpXq, X P kξ.

Note that ρpξq vanishes on rkξ, kξs. As explained in the preceding section,
we consider also ρpξq as an element of k˚.

Notice that 2ρpξq is integral since 2iρpξq is the differential of the character
k P Kξ ÞÑ detqξpkq.

Let t be a Cartan subalgebra and ξ P t˚. Then if ∆ is the root system
with respect to t, we have ρpξq “ 1

2

ř

αP∆,pα,ξqą0 α.

Definition 3.3 We say that the coadjoint orbit Kξ is admissible if ipξ ´
ρpξqq is the differential of a 1-dimensional representation of Kξ.

Remark that if the coadjoint orbit Kξ is admissible, then 2ξ is integral.
It is easy to see that, for a compact connected Lie group K, this defi-

nition of admissibility is equivalent to Duflo definition via the metaplectic
correction.

In particular the orbit opkq is admissible. Indeed if ξ “ ρK , then ξ ´
ρpξq “ 0.

Remark 3.4 When the group K is simply connected, then a regular ad-
missible orbit Kξ is integral. This is not the case when K is not simply
connected. For example the orbit opkq (which is regular admissible) is not
integral when K “ SOp3q. However, even if the group K is simply con-
nected, non regular admissible coadjoint orbits are not necessary integral.
See the example 3.7 below.
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Definition 3.5 We denote by Apphqq the set of admissible orbits of type
phq.

We now define the shift of an orbit. If µ P k˚, recall that opkµq Ă k˚µ is
the coadjoint orbit of the ρ-element for the group Kµ.

Definition 3.6 To any coadjoint orbit P Ă k˚, we associate the coadjoint
orbit spPq Ă k˚ which is defined as follows : if P “ Kµ, take spPq “ Kξ
with ξ P µ` opkµq. We call spPq the shift of the orbit P.

If O is regular, spOq “ O, and if P “ t0u, then spPq “ opkq.
Beware that we have two elements of h˚ “ rh, hs˚ ‘ z˚ associated to an

element µ P k˚ such that kµ “ h: the element ρpµq P z˚ (defined canonically)
and the element ρKµ P rh, hs˚ (defined up to H-conjugacy). Remark that
ρpµq ` ρKµ is conjugated to ρK . More concretely, if we choose a Cartan
subgroup T of H with Lie algebra t, and a positive root system ∆` for roots
of k with respect to t, then, when µ is dominant,

ρpµq “
1

2

ÿ

αP∆`,pα,µqą0

α

and

ρKµ “
1

2

ÿ

αP∆`,pα,µq“0

α.

The orbit Kµ is admissible if µ´ ρpµq is in the weight lattice of T . The
shift of the orbit Kµ is Kpµ` ρKµq.

Example 3.7 Consider the group K “ SUp3q. Then there are 3 different
sheets, determined (for this case) by the dimensions of orbits. The regu-
lar sheet consists of coadjoint orbits of dimension 6, The subregular sheet
consists of coadjoint orbits of dimension 4, finally we have the orbit t0u of
dimension 0.

We now parameterize the subregular sheet. Let h be the Lie algebra of
H “ SpUp1q ˆ Up2qq. Then the stabilizer kf of a coadjoint orbit Kf of
dimension 4 is conjugated to h. Let us give representatives of the orbits in
k˚
phq.

We consider the Cartan subalgebra of diagonal matrices and choose a
Weyl chamber. Let ω1, ω2 be the two fundamental weights. Thus ρK “

ω1 ` ω2. Let σ1, σ2 be the half lines Rą0ω1, Rą0ω2.
Then k˚

phq is the set of orbits Kptω1q, with t ‰ 0. Here we have privileged

an element f on the orbit P P k˚
phq such that kf “ h. We could also privilege

7



representatives of orbits P P k˚
phq belonging to the chosen closed Weyl cham-

ber. As ´ω1 conjugated to ω2, we obtain the description of k˚
phq as the set

of orbits tKpt1ω1q,Kpt2ω2qu with t1 ą 0 and t2 ą 0 (orbits of points in the
boundary of the Weyl chamber, except t0u).

Let us now describe the set Apphqq of admissible coadjoint orbits of type
phq.

We obtain, using the first description, that the set Apphqq is equal to the
collection of orbits K ¨ p1`2n

2 ω1q, n P Z (see Figure 1). Remark that orbits
in Apphqq are admissible, but not integral.

Figure 1: A set of representatives of admissible orbits of type phq

Using the second description, with representatives in the chosen closed
Weyl chamber, we see that the set Apphqq is equal to the collection of orbits
K ¨ p1`2n

2 ωiq, n P Zě0, i “ 1, 2.
We have also depicted in this description the shifted orbits. Remark that

the shift of the admissible elements in Aphq are admissible, except for the two

elements 1
2ω1 and 1

2ω2 with shifts ω2 and ω1 respectively, elements which are
not admissible.

8



Finally remark that the orbit KρK is obtained as the shift of the admis-
sible orbits t0u, Kp3

2ω1q, Kp
3
2ω2q, and KρK .

Figure 2: Another set of representatives of admissible orbits of type phq and
their shifts

We now associate to an admissible coadjoint orbit an element of RpKq.
Let P “ Kξ be an admissible coadjoint orbit. We consider the Z{2Z-

complex space
Ź‚ qξ b Cξ´ρpξq “ E` ‘ E´ with E` “

Źeven qξ b Cξ´ρpξq
and E´ “

Źodd qξ b Cξ´ρpξq.
We still denote by

Ź‚ qξ b Cξ´ρpξq the element E` ´ E´ in RpHq.

Definition 3.8 We define Qspin
K pPq P RpKq by the formula:

(3.1) Qspin
K pPq “ IndKKξ

´

ľ‚
qξ b Cξ´ρpξq

¯

.

Thus Qspin
K pPq is the virtual representation IndKKξE

` ´ IndKKξE
´. The fact

that Qspin
K pPq is a finite signed sum of representations of K is easy to see

using Frobenius reciprocity formula.
We now interpret Qspin

K pPq as the equivariant index of a twisted Dirac
operator on P. Consider the K-equivariant graded complex vector bundle
SP “ K ˆKξ E. It defines a Spinc-bundle on P (see [4]). The determinant
line bundle of SP is the line bundle rC2ξs and its corresponding moment
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map (as defined in [4]) is the canonical injection P Ñ k˚. Consider the
Dirac operator DP associated to this Spinc-bundle. Then by Atiyah-Bott
[1], the equivariant index of DP is equal to IndKKξE

` ´ IndKKξE
´. Thus

Qspin
K pPq coincides with the equivariant index of the twisted Dirac operator

DP (and so belongs to RpKq). For this reason Qspin
K pPq is called the spin

quantization of P.
The following proposition is well known. We will recall its proof in

Lemma 4.1 in the next subsection.

Proposition 3.9 • The map O ÞÑ πO :“ Qspin
K pOq defines a bijection

between the set of regular admissible orbits and pK.

• Qspin
K popkqq is the trivial representation of K.

In Section 5, we will describe the virtual representation Qspin
K pPq at-

tached to any admissible orbit in terms of regular admissible orbits. It is
either equal to 0, or is an element of pK.

4 The magical inequality

In order to parameterize coadjoint orbits, we choose a Cartan subgroup T
of K with Lie algebra t. Let Λ Ă t˚ be the lattice of weights of T . Let W
be the Weyl group. Choose a system of positive roots ∆` Ă t˚, and let as
before

ρK “
1

2

ÿ

αą0

α.

If α P t˚ is a root, we denote by Hα P t the corresponding coroot (so
xα,Hαy “ 2). Then xρK , Hαy “ 1 if and only if α is a simple root.

Define the positive closed Weyl chamber by

t˚ě0 “ tξ P t
˚; xξ,Hαy ě 0 for all α ą 0u,

and we denote by Λě0 :“ ΛXt˚ě0 the set of dominant weights. Any coadjoint
orbit P of K is of the form P “ Kξ with tξu “ P X t˚ě0.

We index the set pK of classes of finite dimensional irreducible repre-
sentations of K by the set ρK ` Λě0. The irreducible representation πλ
corresponding to λ P ρK ` Λě0 is the irreducible representation with in-
finitesimal character λ. Its highest weight is λ ´ ρK . The representation
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πρK is the trivial representation of K. The Weyl character formula for the
representation πλ is, for X P t,

Trπλpe
Xq “

ř

wPW εpwqeixwλ,Xy
ś

αą0 e
ixα,Xy{2 ´ e´ixα,Xy{2

.

For any µ P t˚, recall its element ρpµq P k˚ (Definition 3.2).

Lemma 4.1 Let λ P t˚ě0 be a regular admissible element of k˚. Then

1. ρpλq “ ρK .

2. λ P ρK ` Λě0.

3. Qspin
K pKλq “ πλ.

Proof. Let λ P t˚ě0 be regular and admissible, then ρpλq “ ρK , so
λ P tρK `Λu X t˚ą0. If α is a simple root, then the integer xλ´ ρK , Hαy “

xµ,Hαy´1 is non negative, as xλ,Hαy ą 0. So λ´ρK is a dominant weight.
LetO “ Kλ. Weyl character formula coincide with Atiyah-Bott-Lefschetz

formula [1] for the index of the Dirac operator DO. Thus we obtain Lemma
4.1 and Proposition 3.9. l

The positive Weyl chamber t˚ě0 is the cone determined by the equations
xλ,Hαy ě 0 for the simple roots α ě 0. We denote by Fk the set of the
relative interiors of the faces of t˚ě0. Thus the set Fk is parameterized by
subsets of the simple roots and has 2r elements, r being the rank of rk, ks.
Thus t˚ě0 “

š

σPFk
σ, and we denote by t˚ą0 P Fk the interior of t˚ě0.

Let σ P Fk. Thus Rσ, the linear span of σ, is the subspace determined
by xλ,Hαy “ 0 where the α varies over a subset of the simple roots.

The stabilizer Kξ does not depend of the choice of the point ξ P σ : we
denote it by Kσ. The map σ Ñ kσ induces a surjective map from Fk to
Hk. This map may not be injective: in Example 3.7, σ1 and σ2 leads to the
same element of Hk, as the corresponding groups Kσ1 “ SpUp1qˆUp2qq and
Kσ2 “ SpUp2q ˆ Up1qq are conjugated.

For σ P Fk, we have the decomposition kσ “ rkσ, kσs ‘ zpkσq with dual
decomposition k˚σ “ rkσ, kσs

˚ ‘ Rσ. Let

ρKσ :“
1

2

ÿ

αą0

pα,σq“0

α

11



be the ρ-element of the group Kσ associated to the positive root system
tα ą 0, pα, σq “ 0u for Kσ. Then

ρK ´ ρKσ “
1

2

ÿ

αą0

pα,σqą0

α,

and for any µ P σ, the element ρpµq P k˚ is equal to ρK ´ρKσ . In particular,
ρK ´ ρKσ vanishes on rkσ, kσs, so ρK ´ ρKσ P Rσ, while ρKσ P rkσ, kσs

˚. The
decomposition ρK “ pρK ´ ρKσq ` ρKσ is an orthogonal decomposition.

Figure 3 shows this orthogonal decomposition of ρ for the case SUp3q.

Figure 3: Orthogonal decomposition of ρK

The subset ρK ` t˚ě0 of the positive Weyl chamber will be called the
shifted Weyl chamber. It is determined by the inequalities xλ,Hαy ě 1 for
any simple root α ě 0, and thus xλ,Hαy ě 1 for any positive root. Let us
list some immediate properties of the shifted Weyl chamber.

Proposition 4.2 1. If λ P ρK ` t˚ě0, then pλ, λq ě pλ, ρKq ě pρK , ρKq.
The equality pλ, λq “ pλ, ρKq holds only if λ “ ρK .

2. Let σ P Fk.

‚ The orthogonal projection of ξ P t˚ą0 onto Rσ belongs to σ.

‚ We have ρK ´ ρKσ P σ for any σ P Fk.

3. For any phq P Hk, }ρ
K} ě }ρH}, and }ρK} “ }ρH} only if H “ K.

12



Proof. If λ “ ρK ` c, with c P t˚ě0, inequalities pλ, λq ě pλ, ρKq ě
pρK , ρKq follows from the fact that pλ, cq and pρK , cq are non negative, as
the scalar product of two elements of t˚ě0 is non negative. Equality pλ, λq “
pλ, ρKq implies λ “ ρK .

The second point follows from the fact that the dual cone to t˚ě0 is
generated by the simple roots αi, and pαi, αjq ď 0, if i ‰ j.

We have the orthogonal decomposition ρK “ ρKσ ` pρK ´ ρKσq: hence
ρK ´ ρKσ , which is the orthogonal projection of ρK on Rσ, belongs to σ.

For the third point, we might choose H conjugated to Kσ, so }ρK}2 “
}ρKσ}2 ` }ρK ´ ρKσ}2. l

The following theorem analyze the distance of a point in t˚ to the shifted
Weyl chamber. It is illustrated in Figure 4 in the case SUp3q.

Figure 4: Distance of a singular element µ to an element λ in the shifted
Weyl chamber

Theorem 4.3 ‚ If λ P ρK ` t˚ě0 and µ P t˚, then:

(4.2) }λ´ µ}2 ě
1

2

ÿ

αą0

pα,µq“0

pλ, αq.

‚ If λ P ρK ` t˚ě0 and µ P t˚, then:

(4.3)
1

2

ÿ

αą0

pα,µq“0

pλ, αq ě }ρKµ}2.
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‚ If one of the inequalities (4.2) or (4.3) is an equality, then µ belongs
to t˚ě0, and λ “ µ ` ρKσ where σ P Fk is the stratum of t˚ě0 containing
µ. Thus the two inequalities (4.2) or (4.3) are equalities. In particular,
λ´ ρpλq “ µ´ ρpµq.

Proof. Let kµ be the centralizer of µ and let z be the center of kµ.
Consider the orthogonal decomposition t˚ “ z˚ ‘ a˚ where a is a Cartan
subalgebra for rkµ, kµs, that is a “

ř

pα,µq“0 RHα. Let ρKµ P a˚ be the ρ

element for the system ∆1
` “ tα ą 0, pα, µq “ 0u of rkµ, kµs.

Let us write λ “ ρK ` c, with c dominant, and decompose ρK “ p0` p1,
c “ c0 ` c1, with p0, c0 P z

˚, p1, c1 P a
˚. Thus λ “ λ0 ` λ1, with λ0 P z

˚ and
λ1 “ p1`c1. Now p1 belongs to the shifted Weyl chamber in a˚. Indeed, for
any α ą 0 such that pα, µq “ 0, we have xp1, Hαy “ xρ

K , Hαy ě 1. Similarly
c1 is dominant for the system ∆1

`.
As µ P z˚, we have }λ ´ µ}2 “ }λ0 ´ µ}2 ` }p1 ` c1}

2. Using the first
point of 4.2, we obtain

}λ´ µ}2 “ }λ0 ´ µ}
2 ` }p1 ` c1}

2 ě pp1 ` c1, ρ
Kµq ě }ρKµ}2.

As

pp1 ` c1, ρ
Kµq “ pλ, ρKµq “

1

2

ÿ

αą0

pα,µq“0

pλ, αq

we obtain Inequalities (4.2) and (4.3).
If the inequality }λ´ µ}2 ě pp1 ` c1, ρ

Kµq is an equality, then

}λ0 ´ µ}
2 `

`

}p1 ` c1}
2 ´ pp1 ` c1, ρ

Kµq
˘

“ 0.

Both terms of the left hand side are non negative. Thus, using again the
first point of Proposition 4.2, we see that necessarily c1 “ 0, p1 “ ρKµ , and
λ0 “ µ. Thus for roots α P ∆1

`, xρKµ , Hαy “ xρ
K , Hαy. As ρKµ takes value

1 on simple roots for Kµ, it follows that the set S1 of simple roots for the
system ∆1

` is contained in the set of simple roots for ∆`. As a “ ‘αPS1RHα,
the orthogonal z of a is Rσ for the face σ of t˚ orthogonal to the subset S1

of simple roots. We then have Kµ “ Kσ. Furthermore, λ “ µ ` ρKσ .
Thus µ is the projection of λ on Rσ, so µ P σ Ă t˚ě0. As ρpλq “ ρK , and
ρpµq “ ρK ´ ρKσ , we obtain λ ´ ρpλq “ µ ´ ρpµq. So all assertions are
proved. l

In this article, we will only use the following obvious corollary of In-
equalities (4.2) and (4.3). However, in our application [3], we will need both
inequalities.

14



Corollary 4.4 (The magical inequality) If λ P ρK ` t˚ě0 and µ P t˚, then:

(4.4) }λ´ µ} ě }ρKµ}.

The equality holds if and only if µ is dominant and λ´ ρpλq “ µ´ ρpµq.

Let us give some consequences of the magical inequality (4.4). Let us
define the notion of very regular element.

Definition 4.5 Let λ P k˚ be a regular element. Then λ determines a
closed positive Weyl chamber Cλ Ă k˚λ. We say that λ is very regular if
λ P ρpλq ` Cλ.

In other words, a very regular element is an element which is conjugated
to an element of the shifted Weyl chamber. Note that regular admissible
elements are very regular.

Corollary 4.6 Let λ, µ be two elements of k˚. Assume that λ is very reg-
ular, then }λ ´ µ} ě }ρKµ}. The equality holds if and only if µ P Cλ and
λ´ ρpλq “ µ´ ρpµq.

Proof. Consider the minimum of }λ´µ1}2 when µ1 varies in Kµ. Using
the differential, we see that a point where the minimum is reached is in the
Cartan subalgebra determined by λ. We can then conclude by Corollary
(4.4). l

Figure 5: Shifts of admissible orbits

As consequence, we obtain Theorem 1.1 stated in the introduction.
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Corollary 4.7 The distance between a regular admissible coadjoint orbit O
and an orbit P in a Dixmier sheet S is greater or equal to }ρS}.

Let us now study the admissible coadjoint orbits and their shifts. We
see that if µ is in σ, its shift is spKµq “ Kpµ` ρKσq. Furthermore, µ P σ is
admissible if and only if µ` ρKσ P ρK ` Λ.

Theorem 4.8 below says in particular that if a shift µ Ñ µ ` ρKσ of an
admissible element µ P σ is regular, then it is in the shifted Weyl chamber
ρK ` t˚ě0.

Figure 5 illustrate this fact in the case SUp3q. In this figure, the two
points ω1, ω2 (which are not admissible) are represented by the empty circles.
The shift of the admissible element 1

2ω1 is ω2, and so is singular and is not
admissible.

Theorem 4.8 Let σ be a relative interior of a face of t˚ě0.

1. Let µ P σ. If µ` ρKσ is regular admissible, then µ is admissible.

2. If µ P σ is admissible, and µ` ρKσ is regular, then µ` ρKσ is regular
admissible. Moreover µ`ρKσ P ρK `pΛě0Xσq. In particular µ`ρKσ

is in the shifted Weyl chamber.

3. If µ P σ is admissible, we have

Qspin
K pKµq “

#

0 if µ` ρKσ is singular,

πµ`ρKσ if µ` ρKσ is regular.

Proof. Let us prove the two first points.
Let µ P σ such that λ “ µ ` ρKσ is regular admissible. Thus }λ ´

µ}2 “ }ρKµ}2. The point λ being regular and admissible, λ is very regular.
We use the magical inequality. The equality }λ ´ µ}2 “ }ρKµ}2 implies
λ ´ ρpλq “ µ ´ ρpµq “ µ ´ pρK ´ ρKσq. Thus ρpλq “ ρK , so λ P t˚ě0.
Furthermore µ is admissible.

Conversely, we see that if µ is admissible, and λ “ µ ` ρKσ is regular,
then λ is regular admissible. We have seen that λ P t˚ě0. As λ is regular
admissible, it is in ρK ` t˚ě0. The element λ ´ ρK “ µ ´ pρK ´ ρKσq is in
Rσ. As it is dominant, it is in σ.

Let us prove the last point. Let qµ be the complex space k{kµ equipped
with the complex structure Jµ. The equivariant index Θ of the Dirac opera-
tor DKµ associated to the Spinc-bundle SKµ “ KˆKµ p

Ź‚ qµbCµ´ρK`ρKσ q
is given by Atiyah-Bott fixed point formula: forX P t, ΘpeXq “

ř

wPW {Wµ
w¨
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eixµ,Xy
ś

xα,µyą0 e
ixα,Xy{2´e´ixα,Xy{2

. Here Wµ, the stabilizer of µ in W , is equal to the

Weyl group of the groupKσ. Using
ř

wPWσ
εpwqewρ

Kσ
“

ś

αą0,xα,σy“0pe
α{2´

e´α{2q, we obtain

(4.5) ΘpeXq “

ř

wPW εpwqeixwpµ`ρ
Kσ q,Xy

ś

αą0 e
ixα,Xy{2 ´ e´ixα,Xy{2

.

If µ ` ρKσ is singular, Θ is equal to zero. If µ ` ρKσ is regular, thanks
to the first point, µ` ρKσ is in ρK ` Λě0, so Θ “ πµ`ρKσ . l

We proved that if µ P σ is admissible and its shift µ ` ρKσ is regular,
then µ ` ρKσ is admissible and dominant. However, as illustrated in the
following examples, if µ` ρKσ is singular,
‚ µ` ρKσ is not necessarily dominant,
‚ µ` ρKσ might be admissible or not admissible.

Example 4.9 Consider the group K “ Up7q and the face
σ “ tλ1 ą λ2 “ λ3 “ λ4 “ λ5 “ λ6 ą λ7u of the Weyl chamber.
Here ρK “ p3, 2, 1, 0,´1,´2,´3q and ρKσ “ p0, 2, 1, 0,´1,´2, 0q. Then
µ :“ p1, 0, 0, 0, 0, 0,´1q is an admissible element of σ, but its shift µ`ρKσ “
p1, 2, 1, 0,´1,´2, 0q is singular, not admissible and not dominant.

Example 4.10 Consider the group K “ Up5q and the face σ “ tλ1 “ λ2 ą

λ3 ą λ4 “ λ5u of the Weyl chamber. Then µ “ p1{2, 1{2, 0,´1{2,´1{2q is
an admissible element of σ. Its shift µ ` ρKσ “ p1, 0, 0, 0,´1q is singular
and admissible.

For application to the equivariant index of Dirac operators on general
Spinc K-manifolds, we reformulate Inequality (4.2) independently of a choice
of a Weyl chamber using normalized traces.

Definition 4.11 Let N be a real vector space and b : N Ñ N a linear
transformation, such that ´b2 is diagonalizable with non negative eigenval-
ues, and let |b| “

?
´b2. We denote by nTrN |b| “

1
2TrN |b|, that is half of

the trace of the action of |b| in the real vector space N . We call nTrN |b| the
normalized trace of b.

If N is an Euclidean space and b a skew-symmetric transformation of N ,
then ´b2 is diagonalizable with non negative eigenvalues.

For any b P k and µ P k˚ fixed by b, we may consider the action adpbq :
kµ Ñ kµ. The corresponding normalized trace nTrkµ |adpbq| is denoted simply
by nTrkµ |b|.

17



Proposition 4.12 Let b P k and denote by β the corresponding element in
k˚. Let λ, µ be elements of k˚ fixed by b. Assume that λ is very regular and
that µ´ λ “ β. Then

}β}2 ě
1

2
nTrkµ |b|.

If the equality holds, then µ belongs to the positive Weyl chamber Cλ and

1. λ´ρpλq “ µ´ρpµq, hence λ is admissible if and only if µ is admissible,

2. spKµq “ Kλ.

Proof. Indeed, as λ is fixed by b, we see that β belong to k˚λ. We may
assume that k˚λ “ t˚. Thus β, λ and µ “ λ´ β belong to t˚. The element λ
is a very regular element of t˚. Note that the element of k corresponding to
µ acts trivially on kµ. So the inequality of Proposition 4.12 is a restatement
of Inequality 4.2. If the equality holds, we apply Theorem 4.3 and we obtain
the proposition. l

5 Admissible coadjoint orbits and associated rep-
resentations

In this section, we give some more information on the map P Ñ Qspin
K pPq.

The following proposition follows almost immediately from Theorem 4.8.

Theorem 5.1 Let P be an admissible orbit.

• P˚ :“ ´P is also admissible and Qspin
K pP˚q “ Qspin

K pPq˚.

• If spPq is not regular, then Qspin
K pPq “ 0.

• If spPq is regular, then spPq is a regular admissible coadjoint orbit and
Qspin
K pPq “ Qspin

K pspPqq “ πspPq.

For the remaining part of this section, we fix a conjugacy class phq. Let
k˚
phq be the Dixmier sheet determined by phq.

Definition 5.2 Let O Ă k˚ be a regular orbit. A K-orbit P in is called a
phq-ancestor of O if P P k˚

phq and spPq “ O.

Lemma 5.3 If P P k˚
phq and spPq is regular, then spPq is admissible if and

only P is admissible.
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Proof. Let O “ spPq. Assume that O is admissible. We may assume that
O “ Kλ with λ P ρK ` t˚ě0 regular admissible, and P “ Kµ, with µ P t˚ě0.
Let σ be the stratum of t˚ě0 containing µ. By Theorem 4.12, λ “ µ ` ρKσ .
We have µ´ ρpµq “ λ´ ρK , so µ is admissible. The converse is proved the
same way. l

Theorem 5.4 Let O Ă k˚ be a regular admissible orbit.

• If P is a phq-ancestor of O, then P is admissible and at distance }ρH}
of O.

• If P is an element in k˚
phq at distance }ρH} of O, then P is admissible,

spPq “ O and Qspin
K pPq “ Qspin

K pOq.

Proof. We need only to prove the second point. Assume that the
distance between O and P is equal to }ρH}. We may assume that O “ Kλ
with λ P ρK ` t˚ě0 regular admissible. We write P “ Kµ, with µ a point in
t˚, such that }λ´µ}2 “ }ρKµ}. This implies that µ belongs to t˚ě0, and that

spPq “ O. So Qspin
K pPq “ Qspin

K pOq. l

Example 5.5 Let us go back to Example 3.7 for the group K “ SUp3q. We
see that the orbit of ρK has one ancestor (itself) in the regular sheet, two
ancestors in the subregular sheet, and one ancestor 0 in the sheet t0u.

In general an orbit O “ Kµ has only one ancestor, that is itself. Only the
orbits O belonging to the boundary of the shifted Weyl chamber might have
lower dimensional ancestors. For example the orbits Pσ of the orthogonal
projections of ρK on the 2r linear spaces Rσ (σ P Fk) are ancestors of
opkq. For all these orbits Pσ, the representation Qspin

K pPσq is the trivial
representation of K. As the number of sheets is usually less than 2r, some
of the ancestors of ρK lie in the same sheet.

Finally we end this article by an induction formula relating H-admissible
coadjoint orbits to K-admissible coadjoint orbits.

Consider the open subset h˚0 :“ tξ P h˚ |Kξ Ă Hu. Equivalently, the
element ξ, identified to an element of h, is such that the transformation
adpξq is invertible on q :“ k{h, so it determines a complex structure Jξ on
q. We see that the complex structure Jξ depends only of the connected
component C of h˚0 containing ξ. We denote it by JC (remark that JC is
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H-invariant). We denote qC the complex H-module pq, JCq, and ρC the
element of z˚ defined by the relation

xρC , Xy “
1

2i
TrqCadpXq, X P h.

We define the holomorphic induction map Hol
K

H : RpHq Ñ RpKq by the
relation

HolKHpV q “ IndKH

´

ľ‚
qC b V

¯

.

The following proposition explains the interaction between the holomor-
phic induction map HolKH and the spin quantization procedure.

Proposition 5.6 Let Hµ be an admissible orbit for H.
‚ If µ` ρC R h

˚
0 , then HolKHpQ

spin
H pHµqq “ 0.

‚ If µ` ρC P h
˚
0 , then µ` ρC is K-admissible and

HolKHpQ
spin
H pHµqq “ εCC1 Q

spin
K pKpµ` ρCqq

where C 1 is the connected component of h˚0 containing µ`ρC , and εCC1 is the
ratio of the orientation opJCq and opJC1q on q.

Proof. Let ICµ “ IndKH

´

Ź‚
pk{hqC bQspin

H pHµq
¯

. By definition

Qspin
H pHµq “ IndHHµ

´

Ź‚
ph{hµq

µ b Cµ´ρHpµq
¯

.

Assume first that µ1 :“ µ`ρC P h
˚
0 : let C 1 be the connected component

of h˚0 containing µ1. As Kµ1 “ Hµ1 “ Hµ, we have

ICµ “ IndKKµ1

´

ľ‚
pk{hqC b

ľ‚
ph{hµ1q

µ1 b Cµ1´ρC´ρHpµ1q
¯

.

Now we use the fact that the graded Kµ1-module
Ź‚
pk{hqC is equal to

εCC1
Ź‚
pk{hqC

1

b CρC´ρC1 . It gives that

ICµ “ εCC1 IndKKµ1

´

ľ‚
pk{hqC

1

b
ľ‚

ph{hµ1q
µ1 b Cµ1´ρC1´ρHpµ1q

¯

“ εCC1 IndKKµ1

´

ľ‚
pk{kµ1q

µ1 b Cµ1´ρpµ1q
¯

“ εCC1 Q
spin
K pKµ1q.

Here we have used that ρpµ1q “ ρC1 ` ρ
Hpµ1q.

Assume now that ICµ ‰ 0. Thus Qspin
H pHµq must be non zero. Hence we

have Qspin
H pHµq “ Qspin

H pHµ̃q where µ̃ P µ ` ophµq is an H-admissible and
H-regular element.
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Consider the maximal torus T :“ Hµ̃, and a Weyl chamber C “ t˚ě0 for
K containing µ̃. Let JC be the corresponding complex structure on k{t. Let
ρK be the ρ-element associated to the choice of Weyl chamber. Let C 1 be
the connected component of h˚0 that contains the open face t˚ą0.

If we use the relation ρK “ ρC1 ` ρ
Hpµ̃q, one has like before

ICµ “ IndKH

´

ľ‚
pk{hqC bQspin

H pHµ̃q
¯

“ IndKT

´

ľ‚
pk{hqC b

ľ‚
ph{tqµ̃ b Cµ̃´ρHpµ̃q

¯

“ εCC1 IndKT

´

ľ‚
pk{tqC b Cµ̃`ρC´ρK

¯

.

We see then that ICµ ‰ 0 only if λ :“ µ̃` ρC “ µ1 ` ρHµ1 is a K-regular
element.

Here we have }ρHµ1 } “ }λ ´ µ1}, and on the other hand by the magical
inequality we must have }λ´µ1} ě }ρKµ1 } since λ is K-regular and admissi-
ble. It forces }ρKµ1 } to be equal to }ρHµ1 }, and then Kµ1 “ Hµ1 : the element
µ1 “ µ` ρC belongs to h˚0 .

The proof is completed. l

Proposition 5.6 is a very special case of the formula for equivariant in-
dices of twisted Dirac operators obtained in [3]. Indeed the representation
HolKHpQ

spin
H pHµqq is the equivariant index for a Spinc-bundle on M “ K{Hµ.

The infinitesimal stabilizer kM is the conjugacy classes of hµ “ kµ`ρC . It is
indeed a representation associated to the Dixmier sheet attached to pkµ`ρC q.
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