N
N

N

HAL

open science

Filtering with the Crowd: CrowdScreen revisited
(technical report)

Benoit Groz, Ezra Levin, Isaac Meilijson, Tova Milo

» To cite this version:

Benoit Groz, Ezra Levin, Isaac Meilijson, Tova Milo. Filtering with the Crowd: CrowdScreen revis-
ited (technical report). 19th International Conference on Database Theory (ICDT 2016), Mar 2016,

Bordeaux, France. pp.12:1-12:18, 10.4230/LIPIcs.ICDT.2016.12 . hal-01239458

HAL Id: hal-01239458
https://hal.science/hal-01239458
Submitted on 7 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-01239458
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Filtering with the Crowd: CrowdScreen revisited
(technical report).

Benoit Groz #!, Ezra Levin #2, Isaac Meilijson #3, Tova Milo #*

Tel- Aviv, Israel

1 benoit.groz@lri.fr

2 ezralevin@gmail.com
3 isaco@post.tau.ac.il
4milo@cs.tau.ac.il

—— Abstract

Filtering a set of items, based on a set of properties that can be verified by humans, is a common
application of CrowdSourcing. When the workers are error-prone, each item is presented to
multiple users, to limit the probability of misclassification. Since the Crowd is a relatively
expensive resource, minimizing the number of questions per item may naturally result in big
savings. Several algorithms to address this minimization problem have been presented in the
CrowdScreen framework by Parameswaran et al. However, those algorithms do not scale well and

therefore cannot be used in scenarios where high accuracy is required in spite of high user error
rates. The goal of this paper is thus to devise algorithms that can cope with such situations. To
achieve this, we provide new theoretical insights to the problem, then use them to develop a new
efficient algorithm. We also propose novel optimizations for the algorithms of CrowdScreen that
improve their scalability. We complement our theoretical study by an experimental evaluation of
the algorithms on a large set of synthetic parameters as well as real-life crowdsourcing scenarios,
demonstrating the advantages of our solution.

1998 ACM Subject Classification H.3.3 Information filtering

Keywords and phrases CrowdSourcing, filtering, algorithms, sprt, hypothesis testing.

1 Introduction

CrowdSourcing for Filtering

Building upon a flourishing ecosystem of CrowdSourcing platforms, a new kind of database
systems such as CrowdDB and Qurk endeavors to exploit human inputs to extract or process
information [21, 10]. Queries in these systems rely on a small set of basic operators to elicit
missing information from the crowd. This triggered a new line of research devoted to the
optimization of such basic operations as Joins, Ordering, Aggregates, Selection, etc., in a
CrowdSourcing environment [20, 19]. In this paper we focus on the Selection operation, i.e.,
using the crowd to filter the items satisfying some specific property.

As an example, assume we are sensitive to gluten and would like to know which food
items, out of a given list or a menu, may be problematic for us. Scanning food recipes and
labels could give information on each individual item, but this is a time consuming job, and
the results may be incorrect, e.g. due to some ignored factors such as cross-contamination
issues. Asking the Crowd about their knowledge/experience with the product may provide
an alternative solution to the problem. However, contributors will sometimes provide er-
roneous answers, so that multiple answers must be gathered in order to ascertain that a
product is gluten-free. But how many people need to be asked? Let us assume that (1)
the probability that each category of food contains the ingredients, and (2) the error rates
? Benoit Groz and Ezra Levin and I.. Meilijson and T.Milo;

5v icensed under Creative Commons License CC-BY
19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume;

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Filtering with the Crowd: CrowdScreen revisited

among the answers (false positives and false negatives rates) are prior knowledge — we will
briefly discuss this assumption later. For example, suppose that some category of dishes,
e.g. cereal, contains gluten with probability 0.5, and suppose the probability of false posit-
ives and false negatives are both 0.4. How can we decide with an average precision of 90%
whether or not a given cereal contains some gluten, and how many answers will be required
for that?

A simple solution is to fix in advance some budget m for answers, and then decide that
our dish contains (resp. does not contain) gluten as soon as we get more than m/2 positive
(negative) answers. For our parameters, one can easily check that a budget of m = 41
answers is required to obtain 90% precision with this strategy. Naturally, we do not always
have to use the full budget — as soon as 21 positive (or negative) answers are obtained we
can stop and make a decision with the required precision. We will thus ask between 21
and 41 questions and, on average, about 34 questions (we omit the exact computation).
Note however that a smaller average number of questions can be used if we employ a more
efficient strategy, known in the literature as a sequential test [24], and adapt dynamically the
budget as answers are received. We can for instance show that on average only 23 answers
are sufficient to reach a decision if we use the following strategy which also guarantees an
average precision of 90%:

claim there is gluten as soon as the number of positive answers exceeds the number of

negative answers by 6

claim there is none when negative answers exceed positive answers by 6

use majority vote in the absence of conclusion after 51 questions
More generally, the challenge that we try to address in this paper is devising tests that
minimize the expected number of answers required from the crowd for deciding whether a
given object satisfies a selection criteria, while guaranteeing that the average error stays
below the required threshold.

The CrowdScreen Framework

The problem of minimizing the number of questions needed to classify items accurately
clearly predates CrowdSourcing and we discuss related work in the conclusion. Yet, Crowd-
Sourcing scenarios may be particular in the sense that errors on specific items are typically
tolerated as long as a good accuracy is guaranteed on average over the whole set of items [23].
To study the optimization of filtering, we adopt in this paper a simple and general model
by Parameswaran et al. [23], whose purpose is to compute optimal querying strategies. They
define a (deterministic) strategy as a function mapping the number of positive and negative
answers received from the users to a decision in {Pass,Fail,Cont}. A Pass (resp. Fail)
decision signifies we stop asking questions and accept the object in question as satisfying
the filter (resp. reject the object), and Cont stands for asking additional questions. They
also consider probabilistic strategies that map each point to both a probability to stop
asking questions and the decision (Pass or Fail) in case the strategy terminates at this
point. Questions to the Crowd are considered expensive and therefore the maximal number
of questions allotted to the strategy is bounded by some fixed budget. The selectivity of
the filter and the error rates of the answers, as previously mentioned, are considered prior
knowledge in the model. A problem instance thus consists of a budget bound, a maximal
bound on the expected error authorized for the strategy, and those prior probabilities.
Several algorithms and heuristics have been introduced in [23] to compute deterministic
and probabilistic strategies. While these algorithms are efficient for very small budgets
(up to 14 questions per item), larger sample sizes were hardly considered. In fact, the

B Groz, E. Levin, I. Meilijson and T.Milo

presented algorithms are not a good fit for larger budget as they either have high complexity
(exponential, or polynomial but with high degree), or suffer from numeric instability, hence
do not always return a strategy meeting the error constraint.

The restriction to small budgets may be justified by the assumption that CrowdSourcing
applications typically use little redundancy. Yet 14 questions are not sufficient to filter items
with a high precision when the error rates are high: our motivating example for instance
requires more than 40 questions, and the original works about sequential tests in statistical
testing [24, 4] generally consider budgets featuring hundreds or thousands of answers. The
goal of this paper is thus to devise algorithms that scale well for large budgets.

Contributions

Our contributions are three-fold. First, we provide new theoretical insights to the problem.
We then devise efficient algorithms based on these insights. We also propose optimizations
of algorithms in [23] to improve their scalability.

Specifically, we first show, in Section 2, that key properties of the problem derive from
well-known results on the likelihood ratio (to be formally defined). We exploit these in Sec-
tion 3 to devise a scalable algorithm: AdaptSprt inspired from the popular SPRT [24]. We
then revisit, in Section 4, the heuristics from [23]. In particular, we show that their method
that enumerates all (ladder-shaped) strategies has complexity O(2%™), and we present op-
timizations extending the range of budgets for which this enumeration is tractable by a factor
~ 1.5. We similarly show that the shrink heuristic from [23], which computes slightly subop-
timal deterministic strategies, can be optimized to run in O(m?) instead of O(m®), and fur-
ther establish, in Section 5, connections between deterministic and probabilistic strategies.
In particular we show that an optimal probabilistic strategy can be computed through a
minor modification to the shrink strategy, as an alternative to the linear programming ap-
proach that was considered there (and which we show to suffer from numeric instability). We
deferred some of the proofs to Appendix A. Finally, to complement our theoretical study we
briefly illustrate (with more details in Appendix A) the practical advantages and limitations
of our solutions by a set of experiments on (1) a large set of synthetic parameters and (2) a
small real-life scenario.

2 Preliminaries

We first list definitions and notations, as well as general properties we use to devise efficient
strategies. The formal introduction below follows [23] and we diverge afterwards.

2.1 Definitions

We wish to harness the wisdom of the crowd to determine, for each object O of a large
dataset D, whether the object has property V (V = 1) or not (V = 0). We thus ask users in
the crowd if they believe the object has the property. To compensate for possible mistakes,
we query multiple users until we have gathered enough evidence to reach a pass/fail decision
about O. The selectivity ratio s (percentage of objects in D having property V) and the
users’ error rates are assumed prior knowledge. We thus define the error rates eg and
e1 < 0.5 as the probability of a user error, given that V = 0 and V = 1 respectively. We
briefly discuss in the conclusion how these values can be estimated. Finally, we consider
that each question has a unit cost, and specify a budget constraint m; the maximal number
of questions we are allowed to ask before reaching a decision on item O.

ICDT’16

Filtering with the Crowd: CrowdScreen revisited

Strategies

The sequence of answers received when classifying an item can be visualized as a walk on
a discrete 2-dimensional grid where the x and y axes represent the number of negative and
positive answers received. The current state of the sequence is the point (z,y) matching the
number of positive and negative answers received. The transitions between states match
the answers provided by the users: if a negative answer is received in state (x,y), the state
moves to (z + 1,y). If a positive answer is received instead, the state moves to (z,y + 1).
For each point on the grid we define Pgp(2,y) as the probability that the walk terminates
upon reaching point (z,y). When terminating, a claim on the value of V is returned: Pass
(V =1) or Fail (V = 0).

A strategy is defined by the function Pg,p(z,y) mapping each point to the probability
of terminating when reaching point (z,y). In a probabilistic strategy Psop(z,y) is taken
over the interval [0, 1], whereas in a deterministic strategy Ps;op(x,y) must be either 0 or 1.
Point (z,y) is a continuing point if Pg.p(z,y) = 0, a terminating point if Pyop(x,y) = 1,
and a probabilistic point otherwise. An optimal choice betweeb Pass or Fail in case we stop
can easily be computed from x,y and the input parameters, using a well-known property of
the likelihood ratio recalled in Section 2.2 (the choice does not depend on the strategy). A
point in which the decision is Pass is an accepting point and a point in which the decision
is Fail is a rejecting point. The cost of a given strategy is the expected number of answers
needed in order to reach a decision, while the error of the strategy is the probability that
the strategy reaches a wrong decision. We formalize this next.

Strategy and Grid characteristics

We compute the cost and error of a strategy as mentioned in [23]. Intuitively, our equations
first count paths leading to (z,y) according to the strategy, then multiply the result (Path)
by the probability (Sp,S1) that answers follow any single such path. Let S;(x,y) be the
probability that by the time we have asked x + y queries we receive (in any specific order)
x negative answers and y positive answers and have V = i. We then have:

So(w,y) = (1 —5) x (1 —eo)” x €g (1)
Si(z,y) =sxef x (1 —e)? (2)

Let Path(z,y) denote the weighted number of paths (i.e., sequences of answers) that
consist of y positive and x negative answers, each path being weighted by (1—p) where p is the
probability (depending on the path and the strategy) to stop along the path before reaching
point (x,y). We partition these paths into two groups: Path(x,y) = tPath(z,y)+ cPath(z,y)
with tPath(x,y) = Psiop(x,y) X Path(z,y). Thus, tPath(x,y) and cPath(z,y) respectively
count the paths that terminate and continue after reaching point (z,y). We observe that
the strategy Piop uniquely determines the values of tPath and cPath, and reciprocally. A
point (z,y) is reachable if Path(x,y) > 0.

» Example 1. The running example illustrates the definitions along the paper with error
rates eg = .25 and e; = .2, threshold 7 = .0075, budget m = 15, and selectivity s = .8.
Figure 1 pictures the strategies returned for those parameters by the algorithms investigated
in this paper: unreachable, accepting, rejecting, and continuing points are represented as
white, blue (with a checkmark), red (with cross), and green squares respectively. Probab-
ilistic points are circles, with similar colors (and marks). Other signs in the figure will be
discussed later on.

B Groz, E. Levin, I. Meilijson and T.Milo

We further define g;(x,y) as the probability that V' = i and the point (z,y) is ever
reached for ¢ = 0,1. This value is computed as: g;(x,y) = Path(x,y) x S;(z,y). Let
Err(z,y) denote the probability of error when making a decision at point (x,y) (we detail in
the next section how to calculate Err(z,y)). The probability that we reach (x,y) and stop
there is } 5, . (90(2,y) + 91(2,y)) X Psop(z,y). The cost of a strategy is therefore:

C=> (90(,y) + 91(x,9)) X Paop(,y) X (+)
(z,y)

and the error of the strategy is:

E= (90(x,y) + g1(2,y)) X Paop(,y) x Err(z,y)
(z,y)

The Problem Definition

The error threshold 7 fixes the maximal error a strategy is allowed. A strategy is feasible
if it satisfies the budget and error constraints m and 7, and optimal if it has minimal cost
among feasible strategies. Our objective is to find the optimal strategy, given the priors
o, €1, s and the constraints m and 7.

Optimal stopping problem

Input: selectivity s, error threshold 7, error rates eg, e; and budget m
Question: find a feasible strategy that minimizes C'

The strategies (and grids) that we consider satisfy certain constraints, enumerated below.

The objective is to minimize the cost C' under the following constraints:

1. There is exactly one path going through the origin : cPath(0,0) + tPath(0,0) =1

2. Conservation of paths: the weighted number of paths reaching point (z,y) is equal to
the number of paths that continue through its predecessors (z — 1,y) and (z,y — 1):
Path(z,y) = cPath(x — 1,y) + cPath(x,y — 1)

3. All strategies are limited to m queries: V(z,y),x +y =m = cPath(z,y) =0
4. The error rate of the strategy is at most 7:
E = Z tPath(z,y) x min(So(z,y), S1(x,y)) <7
(z,y):w+y<m

algorithm cost error
SPRT 6.94 0.008
AdaptSprt 7.748 0.00741
ladder 7.59 0.00749
shrink 7.73 0.00748
linear 7.56 0.0075

0 2 4 6 8 0.2 4 6 8 02 4 6 8 0 2 4 6 8 0 2 4 6 8
(a) truncated sprt (b) adaptsprt (c) ladder (d) shrink (e) linear

Figure 1 Strategies returned for eg = .25, e; = .2, 7 = .0075, m = 15, and s = .8.

Up till now, the introduction followed the definitions and equations of [23], but the
remainder of this section presents useful properties of strategies from a different perspective.

2.2 General Framework

The probability that V' = 4 given that (z, y) has been reached is given by: g;(z,y)/(go(x, y)+
91(z,y)) = 1/(1 + (9(1-4)(2,y)/9i(z,y))), where g;(x,y), as previously defined, is the prob-
ability that V' = 4 and point (x,y) is reached for i = 0,1. The error committed when making

ICDT’16

Filtering with the Crowd: CrowdScreen revisited

a decision at (x,y) is therefore:

if the decision at (z,y) is Pass

3)

1
—) THa@y/oy)
Err(z, y) { L if the decision at (z,y) is Fail

T+go(zy)/91(2,y)

To minimize error, a strategy should therefore opt for Pass if ¢1(z,v)/go(z,y) > 1, and
Fail if g1 (z,y)/g0(z,y) < 1. The decision has no impact on error when ¢1(z,y) = go(z,y).
We henceforth assume that all strategies adopt this decision rule since it minimizes error
and has no impact on the cost. The decision to accept or reject thus only depends on
the value of the likelihood ratio g1(x,y)/go(z,y), which can be computed from z, y, and
the parameters independently from the strategy. The following equation further details the
location of accepting and rejecting points, and as such refines the property presented as the
path principle in [23]:

T 1— Yy
1oggl(x’y):log< S ><< €1) ><< 61))
go(7,y) 1-s 1—eg eo

s

1—
+ x log o + ylog a
1—s 1—e¢g €o

» Remark. The contour lines for the likelihood ratio (i.e., the set of points with likelihood
ratio g1(x,y)/go(x,y) = c for some constant ¢) form a straight line on the grid, and all
contour lines are parallel. Furthermore eg,e; < 1/2 so the ratio increases strictly with y

= log

and decreases with x.

We call the line (g1(z,v)/go(x,y)) = 1 the decision line. Points above this line satisfy
1< g1(z,y)/g0(x,y) and are therefore accepting, while points below the line are rejecting.

» Example 2. For the running example with ey = .25, e; = .2, 7 = .0075, m = 15 and

s = .8, the decision line has equation: y = —}géngggg‘x - 1og18gs(/4_)25) =~ 1.11 x 2 — 2. This line

is depicted in grey on all the grids in Figure 1.

Q

2.3 Simple Optimizations

Before presenting the algorithms we describe three basic optimizations that they all employ.
The first is borrowed from [23] and the other two are new.

Ladder Strategies

Parameswaran et al. [23] prove that under reasonable assumptions, all optimal strategies
have a particular shape. They define a ladder strategy as a strategy whose terminating
points can be partitioned into two converging sequences: the upper ladder and the lower
ladder. The points of an upper ladder are given by a non-decreasing mapping from z to y
whereas the lower ladder is a non-decreasing mapping from y to x. Furthermore, the points
of the upper ladder stay above the decision line, whereas those of the lower ladder stay
below. For example, all deterministic strategies represented in Figure 1 (i.e., a,b,c, and d)
are ladder strategies. It has been conjectured in [23] that any optimal strategy is a ladder
strategy. We adopt this conjecture and focus in this paper on ladder strategies.

Pruning the Grid

Let (Zgec, Yaec) denote the point at which the decision line and x +y = m + 1 intersect, i.e.,
the unique point such that x +y = m + 1, (x — 1,y) is accepting and (z,y — 1) rejecting.

B Groz, E. Levin, I. Meilijson and T.Milo

All points with & = Zgec Or ¥ = ¥qec are terminating in any optimal strategy, since all
points reachable from (z,y) return the same decision (e.g., Pass) so that continuing asking
questions from (x,y) is pointless.

» Example 3. In the running example, the budget bounds z +y by 15, so that (Zgec, Yaec) =
(8,8). All strategies presented in Figure 1 are therefore restricted to z,y < 8.

Deciding Feasibility

A problem instance admits a feasible strategy (strategy meeting the error and budget con-
straints) if and only if the rectangular strategy orect (Zgec, Yaec) With terminating points only
along © = Zgec and y = Yqoc is feasible. Point (Zgec,Ygec) iS obtained in constant time
as the intersection of two lines: the decision line and the line z + y = m. The error of
Orect (Tdec, Yaec) can thus be computed as B(€g; Yaecs Taec) + B(€1; Taecs Ydec), Where B de-
notes the incomplete beta function [9], incorporated in standard numeric libraries. One
can thus decide feasibility in constant time for all practical purposes, and we therefore only
consider feasible problems from now on.

3 Likelihood Ratio Test

The first solution we introduce is based on the Sequential Probability Ratio Test (SPRT),
defined by Wald [24] in the context of quality control. As it may return strategies with
unbounded budgets, we also consider its truncated variant which limits the budget but may
exceed the error constraint. We finally propose an adapted version of SPRT to accommodate
both budget and error constraints.

3.1 SPRT: Definition and Boundaries
General SPRT: Infinite Budget

The SPRT strategy defined by Wald [24] is the strategy that continues asking questions until
the likelihood ratio (defined in Section 2.2) leaves interval |a, B[, where a and 8 depend on
the error we are willing to tolerate under V =0 and V = 1. To continue asking questions
until reaching a point with Err(z,y) < 7, we thus set a = 7=, = 1_77
each decision point (hence the overall error of the strategy) is bounded by 7. As a corollary
of Remark 2.2, grid points where Err(x,y) > 7 are bound by two parallel lines, so the
continuing points of the SPRT strategy are the points located between these SPRT lines,

characterized in the following Proposition:

. The error in

» Proposition 3.1. A point (z,y) satisfies Err(z,y) < 7 if and only if gi(x,y)/g0(x,y) ¢
e

[Furthermore, the points with Err(z,y) < 7 are either the points above the line:

log (1777 X %) < xlog(—) + ylog (ﬂ> (accepting points) or the points below the

1—egp €0

T 1—s e

line: log (; X =) > zlog (1—1%

) + ylog (1761) (rejecting points). We note that both

€o
lines have identical slopes and are therefore parallel.
» Example 4. In the running example, the equations of the SPRT lines are approximately
1.11 x z — 2+ 4.2. To facilitate the comparison of strategies, the SPRT lines are represented
in blue and red on every plot of Figure 1.

As shown by Wald [24], this property allows to approximate in constant time the expected
cost of the SPRT. Even though an arbitrary number of questions may be needed to reach a
decision, the expected cost is typically small [24].

ICDT’16

Filtering with the Crowd: CrowdScreen revisited

Limitations

Although SPRT is optimal when the budget for questions is unlimited [24], it yields unboun-
ded strategies which may issue an arbitrary (possibly infinite) number of questions, and is
thereby not suitable for our limited budget.

Truncated SPRT

To limit the maximum number of questions, Wald also introduces the truncated SPRT,
similar to SPRT, except that all points with = + y = m are terminating to guarantee a
decision is reached after at most m questions. Obviously, we then prune the strategy along
the lines ¥ = Ygec and T = Z4ec as detailed in Section 2.3.

» Example 5. Figure 1(a) represents the truncated SPRT strategy for the running example
with brown dots around the truncation points. Its error; 0.008, exceeds 7, because the trun-
cation includes some decision points with Err(z,y) > 7. To compensate for this additional
error, any feasible strategy must therefore include points further from the SPRT lines.

The truncated SPRT provides a strategy within constant time, since one only needs to
compute the likelihood ratio r of the current point (z,y) to decide whether to continue
r €)1, =7, accept (r > =T or reject (r < 7).

But the error of the strategy may be larger than 7 since the truncation points have
error larger than 7. In some instances, the truncated SPRT still returns a feasible strategy,
e.g. when some decision points along the SPRT lines have an error slightly less than 7, thus
compensating for the additional error caused by the truncation. But feasibility is not always

guaranteed, and therefore the truncated SPRT cannot be trusted to solve our problem.

3.2 Adapting the SPRT Threshold

As SPRT cannot be trusted to provide feasible strategies, we propose a new adaptation of
the SPRT strategy, called AdaptSprt, which preserves the simplicity of the SPRT approach
but always returns a feasible solution.

Intuitively, the AdaptSprt algorithm computes the best strategy whose terminating
points form two lines, parallel and equidistant to the decision line, plus truncation points
along © = Zgee and Yy = Ygec- In other words, AdaptSprt starts from initial strategy
Orect (Tdec, Ydec) and turns the points further from the decision line into terminating points,
as long as the error of the strategy remains below the authorized threshold. This guarantees
that a feasible strategy will always be returned when there is one. For efficiency, we use
binary search to determine which points can be turned into terminating points.

Algorithm AdaptSprt can be defined more formally in terms of the likelihood ratio. For
all n > 0 let 0, be the strategy that continues asking questions on all points (z,y), z <
Zgec, ¥ < Yaec Where the likelihood ratio belongs to]1/n,7n[. AdaptSprt computes the max-
imal threshold 5 for which o, is feasible. Algorithm 1 details the steps in AdaptSprt. We
first build in O(m?logm) a list of all points (z,y) with & < Z4ec and y < Ygec, ordered by in-
creasing likelihood ratio r (lines 1,2 of Algorithm 1). The continuing points of the AdaptSprt
strategy will be the first ¢ points from the list, for some index i¢. As the error (resp. the
cost) increases (resp. decreases) with 4, the optimal strategy of this form is obtained by
computing the minimal ¢ that gives a feasible strategy. The strategy corresponding to index
i is evaluated by procedure EvalErr in O(m?), and we can use binary search to compute
the minimal index within log(m?) iterations. Hence an overall complexity of O(m?log(m)).

B Groz, E. Levin, I. Meilijson and T.Milo

To represent the AdaptSprt strategy, the value r of the likelihood ratio of the i*" point
is sufficient: when asking queries we can calculate in constant time whether a point has
likelihood ratio between 1/r and 7, and thus reconstruct the grid on the fly. We can also
compute the strategy Psip from the list and the index 7, as shown in procedure EvalErr
from Algorithm 1 if a grid representation is preferred.

» Proposition 3.2. The (time) complexity of AdaptSprt is O(m?log(m)).

Algorithm 1: AdaptSprt (eg,e1,7,m, s)
1 for all z,y, compute r(x,y) = g1(z,y)/go(x,y)
2 L < points (x,y) ordered by increasing r(z,y)
3 Compute ig = min{i | EvalErr(i, L) < 7}
4 return r(L(ip))

procedure EvalErr(i: int, L : point list)
for jin {0,...,i— 1}
Pstop(L(j)) — 0
for jin {i+1,...}
Pstop(L(j)) 1
Compute and return the error of strategy Psiop

© 0w 9 O w

» Example 6. Figure 1(b) presents the AdaptSprt strategy for the running example, with
termination lines represented as dashed lines. The truncation of the SPRT raises the error
substantially above 7, so that AdaptSprt must adopt a likelihood ratio threshold n much
larger than (1 — 7)/7 to compensate for the truncation. The dashed lines are thus almost
one question beyond those of SPRT.

4 Deterministic Algorithms

We next investigate the scalability of algorithms proposed by Parameswaran et al. [23] for
computing strategies. Specifically, we analyze the complexity of these algorithms and present
optimizations that drastically reduce the running time of the algorithms compared to the
more naive versions presented in [23], thereby allowing to support larger budgets.

4.1 Enumeration of Ladder Strategies

The most naive approach to compute an optimal strategy is to enumerate and evaluate
all possible strategies. This naive approach has complexity O(m? x om*/ 2) and is thus
intractable.! Parameswaran et al. [23] therefore proposed the ladder algorithm which limits
the search to ladder strategies, as explained in Section 2.3. They report running times that
are reasonable for small values of m (m < 14), but grow exponentially and become unfeasible
as m gets larger. We first establish a tight exponential bound for the complexity of ladder,
and then introduce optimizations offering much shorter running time in practice, in spite of
a similar worse case exponential complexity.

LA bound of m? x 2™ was improperly claimed in [23] for the naive enumeration of grids but it is clear
from their proof that the actual bound is O(m? x 2m2/2)[22}

ICDT’16

10

Filtering with the Crowd: CrowdScreen revisited

Asymptotic Analysis

We prove that the complexity of ladder is essentially O(22™). Our exponential bound bears
witness to the efficiency of the ladder algorithm relative to the enumeration of all possible
(not necessarily ladder-shaped) strategies. For this we can easily show the following lower
bound:

» Lemma 7. The number of possible upper and lower ladders can be roughly bounded by
O(2™/\/m). Hence, there are O(22™/m) deterministic ladder strategies.

This is an overapproximation, yet a fairly accurate one: we show in Appendix A that for
s =0.5,e9 = e1, the number of ladder strategies is (2™ /m?).

Enumeration with Incremental Evaluation

We detail in Algorithm 2 an optimized implementation that computes the cost and error of
every ladder strategy incrementally, in overall O(22™). We first discuss our representation
of a ladder strategy and then explain our optimizations.

As mentioned in Section 2.3, a ladder strategy consists of two distinct sequences of points:
the upper ladder and the lower ladder. Each ladder is represented as an array with size Zgec
storing integers from —1 up to ygec. Array up and down represent respectively the upper and
lower ladder: down(i) and up(i) record respectively the lowest and highest reachable points
on column ¢ according to the strategy.

» Example 8. Figure 1(c) represents the optimal ladder strategy for our input parameters:
up = [5,5,6,7,8,8,8,8] and down = [—1,...,—1,0, 1]. None of the other algorithms depicted
returns the optimal strategy on that instance, although the performances are quite similar.

We adapt an old technique (see [15, Algorithm P]) to iterate over all upper ladders in
increasing lexicographic order, and enumerate for each one the lower ladders in decreasing
order. As a result, arrays representing successive strategies generally differ on the last few
columns only, which reduces the amount of work required to evaluate a strategy.

Two simple optimizations allow us to speedup the enumeration: (1) we evaluate incre-
mentally the cost and error of strategies, and (2) we skip some strategies that cannot con-
tribute an optimal solution. For this, we store two arrays errorTill and costTill, where
errorTill(i) records the partial sum of F restricted to the points with « <4, and similarly
with costTill for C. We update errorTill, costTill, and Path from one strategy to
the next (line 7 of Algorithm 2). The iterator down.nezt() returns (—1, []) if down is already
the minimal ladder, and otherwise returns the greatest possible ladder down’ smaller than
down, together with the smallest index ¢ in which down and down’ differ. To skip hopeless
candidates, we set down(j) to down(¢) for all j > ¢ when the error up to column ¢ exceeds
the threshold, or the cost up to column i exceeds the cost of the best strategy encountered
so far (line 13 in Algorithm 2).

» Example 9. When experimenting on the running example, more than half the strategies
were skipped in line 13, and the average index i was 5.5. Some 16 points were visited per
strategy, on average, when updating arrays and matrix in line 7, instead of = 56 without
incremental evaluation.

We show in Appendix A that the average number of cells updated on line 7 is m. As a
consequence, Algorithm 2 has complexity O(22™/m) x O(m).

» Proposition 4.1. Algorithm 2 runs in O(22™).

B Groz, E. Levin, I. Meilijson and T.Milo

Algorithm 2: ladder (eg, e, 7,m,S)
1 errorTill, costTill « [0,0,...,0]
2 BestCost <+ m+1
3 BestStrategy < Null

4 for up in upperladders

5 down < maximal lowerladder; ¢ < 0

6 while : > 0

7 Update errorTill, costTill, Path
8 if (errorTill|m] < 7 and

9 costTill[m] < BestCost[m])

10 BestCost «+ costTill[m)]

11 BestStrategy < (up,down)

12 if (errorTill[i]| > T)

13 skip ladders until down(¢) is modified
14 else (i,down) < down.next()

15 return BestStrategy

We have thus proved that an optimal ladder can be obtained in O(2?™), and the number
of possible ladders strategies is exponential. This does not preclude the existence of faster
algorithms, and we leave lower bounds on the complexity of the problem for future research.

4.2 Shrink

Another interesting heuristic-based algorithm introduced by Parameswaran et al. [23] is
shrink. The strategies returned by this heuristic are not necessarily optimal, but are hardly
worse than the optimal ladder strategy in practice, while the running time is much improved.
A naive implementation following [23] has complexity O(m?) and therefore, does not scale
well for large values of m. We next show how shrink can be run in O(m?).

We recall the shrink heuristic from [23] in Algorithm 3. This algorithm starts with
the initial strategy oiriangie(m) having terminating points along the line z +y = m. At
each iteration, for each terminating point (x,y) on the grid, we check if the solution would
remain feasible if we were to turn one of the neighboring points (x — 1,y), (z,y — 1) into a
terminating point. For all feasible point we calculate the change in cost AC and error AFE
that would result from shrinking the point. We then shrink the point with the largest ratio

AC AC

— g and repeat this step until no more points can be shrunk. We thus use ratio —z% in

order to maximize the cost removed from the strategy while minimizing the additional error.

» Example 10. In Figure 1(d), we shade points that were turned into terminating points
along the successive iterations of shrink, with darker points corresponding to later itera-
tions®. The first point is thus (0, 7), followed by (1,7),(0,6),...,(6,1), and (5,0).

Algorithm shrink from [23] is polynomial, but still pretty slow. We next present new
equations for the ratios together with a pruning optimization, that make it run faster.

2 Terminating points with £ = 8 or y = 8 are particular in that they were not shrinked but were
terminating from the beginning. We color them in dark red and blue.

11

ICDT’16

12

Filtering with the Crowd: CrowdScreen revisited

Algorithm 3: shrink (eg, e, 7,m,s)

1 Compute Sg, S1, Tgecs Ydec
2 for all z,y:

Pstop(wyy) — {

3 Compute Path, Acest and Agpy
4 Error < Ag.(0,0)
5 S+ {(x,y) along the boundary |
Error+ Path(z,y) X Agn(2,y) < 7}

while S # ()

(z0,yo) < point of S maximizing —

Pstop(x()»yﬂ) 1

for all x,y: update Path, Acost, Agrr
10 update S
11 return Py,

lifx+y=m,
0 otherwise

Acost (,y)
Agr(z,y)

© o N O

4.2.1 Computing Cost/Error Ratios Efficiently

A major source of inefficiency in the above shrink implementation is the calculation of
the Cost/Error ratio in each iteration. The naive implementation of shrink computes the
Cost/Error ratio separately for each terminating point on the grid, by evaluating the cost
and error of the shrunken strategy. As there are 2(m) terminating points this requires
Q(m?) operations per iteration. We introduce new equations that help compute Agost (7, %)
and Ag,.(z,y) for all points (z,y), with overall complexity O(m?). Algorithm shrink was
initially designed to compute deterministic strategies, but in Section 5 we extend it to
probabilistic strategies, so we present all equations in a general probabilistic setting.

Impact of Modifying the Probability to Stop

Let us denote by CostImpact(z,y) and ErrorImpact(z,y) the average contributions to cost
and error of one single path through (z,y) (and possibly stopping at (z,y)). We then have:

CostImpact(z,y) = Psiop(z,y) * X + (1 — Pspop(x,y)) * Y
ErrorImpact(z,y) = Psiop(®,y) * Z + (1 — Pspop(x,y)) * T

where X, Y, Z and T are defined as

X = (So(z,y) + S1(z,9)) *x (x +y) Y =CostImpact(x + 1,y) + CostImpact(x,y+ 1)
Z = min(So(z,y), S1(z,v)) T = ErrorImpact(x + 1,y) + ErrorImpact(x,y + 1)

Intuitively, X and Z are the contribution to the overall cost and error from any sequence
of x negative answers and y positive answers, whereas Y and T are inductively defined as
the contribution to cost and error of a path traversing the node. To compute the impact of
modifying the strategy at (z,y) in terms of these expressions, let E, E' and C, C’ denote
the cost and error of the strategy before and after adding § € [—1,1] to Pstop(z,y). Then
E'— E = x Path(z,y) X Agy and C' — C = 6 X Path(z,y) X Acost Where

ACost =X-Y and AErr =7-T (4)

B Groz, E. Levin, I. Meilijson and T.Milo

We observe in these equations that the Cost/Error ratio is independent of § and Path(z,y),
and is given by v(z,y) = (T —Z)/(X —Y). CostImpact and ErrorImpact can be computed
recursively in O(m?) over the whole grid, starting from point (Tgec,Yaec). We have thus
proved that Ag,, and Aces; can be computed at all points in overall O(m?) according to
Equations 4. Furthermore, Path can also be computed in O(m?) according to the prelim-
inaries, so that each iteration of shrink takes time O(m?). In addition, there are at most
O(m?) such iterations, since the number of iterations is at most the number of squares on
the grid. Therefore, our implementation of shrink runs in O(m?).

» Proposition 4.2. With our optimizations, the shrink algorithm runs in O(m?).

Note however that the actual number of iterations is proportional to the number of points
removed from the grid so the running time is quadratic when few points are removed.

4.2.2 Minimizing Shrink Iterations

To further speed up the computation we show how the pruning optimization described in
subsection 2.3 can spare about half the iterations. Specifically, we prune the initial strategy
Otriangle(M) INtO Orect(Zaec,Yaec). To justify this move, we show in Appendix A that the
points that are pruned are anyway the first points eliminated by shrink.

» Proposition 4.3. The first iterations of shrink from the initial strategy oyriangie(m) elim-
inate the points with & > Zgec Or ¥ > Ygec until the strategy orect (Taec, Yaec) is considered.
Consequently the solutions returned by shrink from initial strategy otriangre(m) and from
Orect (Taec, Yaec) are identical.

» Remark. Another heuristic, symmetric to shrink, was introduced in [23]. This growth
heuristic starts with the initial strategy asking 0 questions: all points are initially terminat-
ing, and then iteratively turns terminating points into continuing points. Heuristic growth
did not always return a feasible strategy, but we show in Appendix A that adopting a better
initial strategy wipes off the problem. The performances of growth and shrink are fairly
similar, so we do not detail the heuristic further in this paper.

5 Randomized strategies

Previous sections focus on deterministic strategies, for which we have no optimal scalable
algorithm. But if we search instead for probabilistic strategies, our optimization problem
becomes continuous, and the constraints presented in Section 2.1 are all linear. We can
thus use linear programming to compute an optimal solution in PTIME [23]. How are the
probabilistic and deterministic strategies related? In particular, can we compute reasonably
good deterministic strategies from probabilistic ones?

In this section we first prove that an optimal probabilistic strategy has essentially a single
probabilistic point (point where Py, differs from 0 and 1). Continuing at this point thus
provides a deterministic strategy. Conversely, we show that a minor modification to the
shrink algorithm allows to compute an optimal probabilistic strategy.

5.1 Randomization is Limited

We prove in Appendix A that in any optimal strategy the Cost/Error ratio is the same in
all probabilistic points, and this ratio is not greater than the ratio of any terminating point
nor smaller than the ratio of any continuing point. We also prove that the probability of
terminating can be transferred from a point to any point with higher ratio without increasing
error and cost, and exploit this property to prove the following result:

13

ICDT’16

14

Filtering with the Crowd: CrowdScreen revisited

» Proposition 5.1. There exists an optimal probabilistic strategy with a single probabilistic
point. Furthermore, in any optimal strategy the probabilistic points maximize the ratio ~
among non-terminating points.

By turning the unique probabilistic point of such a strategy into a continuing point, one
thus obtains a deterministic strategy with error less than 7 and with slightly larger cost.

» Example 11. Figure 1(e) represents an optimal probabilistic strategy, with a single prob-
abilistic point, at (0,4), where the probability of terminating is Ps;0,(0,4) & 0.623. If we
set Psiop(0,4) to 0, the cost rises to &= 7.789.

The linear programming techniques mentioned above are very efficient for small values of
m, and have polynomial complexity in theory. In practice, however, our experiments with
common linear solvers show that they may be rather slow or inaccurate, returning poor
strategies even for moderately large budgets. We therefore propose an alternative efficient
algorithm based on shrink to compute optimal probabilistic strategies.

5.2 Shrink for Randomized Strategies

Algorithm shrink as defined in [23] returns a deterministic, not necessarily optimal, strategy,
but it can easily be adapted to compute an optimal randomized strategy by replacing lines 5,
6, and 8 with respectively:

line 5: S < {(z,y) | (x,y) is reachable}

line 6: while S # () and Error < 7

line 8: Putop (20, y0) < min(l, pomrr s ne—ag7)
This new algorithm shrinkp still computes the point with the maximal ratio, but adapts
the probability of terminating at this point so as not to exceed error 7, instead of restricting
the maximum to points on which one can terminate without exceeding error 7. It turns out

that shrinkp returns an optimal strategy (we leave the proof for Appendix A):

» Proposition 5.2. The probabilistic strategy returned by shrinkp is optimal, and has a
single probabilistic point.

This result sheds a new light on the shrink algorithm, but it can also be used to leverage
the running time of shrink and the linear program, since shrink and shrinkp coincide at
any step until the last iteration of shrink as we discuss in Appendix A.

6 Experimental evaluation

Synthetic and real-crowd experiments: quality of the strategies.

To complement the theoretical study we conducted experiments on a large set of synthetic
parameters. We only present a small sample of our experiments here and leave details for
Appendix B. Those experiments show that some linear program solvers become unreliable
for budgets beyond m = 30 questions, while ladder times out around m = 20 and shrink
and AdaptSprt manage hundreds of questions. The expected cost of strategies matches
theoretical expectations with AdaptSprt slightly worse than shrink and ladder, themselves
a bit more expensive than the optimal probabilistic strategies. The experiments on a real
crowd with budgets up to m = 40 exhibit similar patterns. Figure 6 depicts the quality
of strategies obtained when asking the crowd to detect (a) the presence of an ingredient in
some recipe or (b) the location of a photograph. Experiments were run with a pool of 100
workers on the Asklt [6] crowdsourcing game platform, developed in our lab.

B Groz, E. Levin, I. Meilijson and T.Milo

The error rates, summarized in Figure 6, are relatively high because answers were rarely
obvious. For question 6 in particular, e; was above .5 which means the users more often
than not missed the presence of eggs in the dishes. We focus our analysis on questions with
reasonable error rates (Q1 to Q4).

question § 1€ | 41 costy MM:linear [[:ladder [l:shrink MM:rect _
Q1 photos from Australia 18 | .25 | .36 m : AdaptSprt expected value s .
Q2 photos from Greece or Cyprus | .26 | .27 | .32
Q3 dishes containing dairy A7 11 | 27 5
Q4 dishes containing onions b4 | .38 | .27
Qb—dishes-eontaining-garlie 6244148 » 5 -

st s WS SR - o

96 dishes containing ces o 00 g) Q2 Q3 Qi

Figure 2 Question parameters(left) and average cost per item (right, with m =12, 7 = .1)

Sensitivity of the model.

Applying our algorithms on a real crowd raised new issues such as the adequacy of the model
considered. Our algorithms indeed assume the crowd behaves as a random oracle according
to error parameters known beforehand. Our synthetic experiment in Figure 3 measures the
sensitivity of a strategy computed by shrink to input parameters: it shows the expected
error and cost when the strategy is executed on an oracle with error parameters diverging
from their assumed values. A related issue is the relevance of approximating workers as
a random oracle with uniform error over tasks: a threshold effect appears when we try to
request arbitrarily high accuracy: when 7 is set to a very small values, adding workers did
not always provide in practice additional information to complete the most difficult tasks
with enough accuracy.

46 - . e e

45 ladder" —+—
a4 "xcheckdet" 0.4 0.4 401
2 "gurobi” 20 . cost/error as
O 43¢ mahrink" 0.3 0.3 13 B)
o P ‘ —o— - s 1o percentage of
g g adaptsprt” —&— 0.2 0.2 [original one
g 41 :) 50
s . 0. 0. 25

3.9 ——t t t t t f t

3.8 0.1 0.2 03 04 e€o 0.1 02 03 04 €o o @ strategy parameters

8
budget m error cost

Figure 3 For eg=.2,e; =.25,7=.05, s=.6: cost, and sensitivity (only for shrink with m=15).

7 Conclusion and Related work

This paper investigates the optimization of queries that filter data using humans. We
provided new theoretical insights into the problem, and so designed two novel algorithms —
AdaptSprt and shrinkp — that overcome the scalability issues of previous proposals. We
also optimized algorithms ladder and shrink from [23], and evaluated thoroughly all al-
gorithms. Our results show that AdaptSprt is the only algorithm which performs well for all
budgets, while 1ladder performs marginally better for small budgets, but is still extremely
slow with larger ones (even when optimized), whereas for moderate budgets our optimized
shrink works well. With regard to probabilistic strategies, the results show shrinkp to
have superior reliability, compared to the previous proposals that rely on linear solvers. In

15

ICDT’16

16

Filtering with the Crowd: CrowdScreen revisited

summary, our results show that AdaptSprt and shrinkp both scale well for large budgets.
Although cost wise shrinkp is optimal, the actual difference of cost is negligible while the
running time of AdaptSprt is superior.

We already discussed extensively the CrowdScreen framework [23] revisited in this paper.
Parameswaran et al. have reviewed in [23] the connections with the related fields in machine
learning and statistics, and we thus do not repeat this here and only briefly survey two
directions of related work: sequential testing, and classifying with the Crowd.

Sequential tests have been used in numerous fields since their introduction by Wald [24]:
quality control, clinical research, acoustic detection, econometrics, etc. Numerous variants
have been considered for computing efficient tests, depending on the number of categories
tested to which an object may belong; the cost function to be optimized; the form of the
strategy boundary [4] and budget constraint [11]; or on whether questions are issued one at
a time or in batches [16]. To the best of our knowledge, however, the problem of efficiently
computing the optimal test, in the sense studied here, has not yet been addressed. Closest
to our work is the system of [12] considering the profit/penalty of correct/wrong answers in
a multi-question scenario. Extending our work into such settings is left for future work.

The optimal strategy depends on the query selectivity and the estimated users error.
Experiments in [18] stress that classifier performance improves a lot with a proper choice of
prior error rates. In practice, the nature of error can be estimated by asking questions to the
crowd on a small test set for which the correct answer is already known. Online methods to
calculate error rates are discussed in [17], [7], [26] where the error rates are tuned based on
comparison of the strategy’s decision and the users’ answers. One goal of our framework is to
avoid any kind of computation online by fixing the filtering strategies beforehand. Adapting
strategies according to online error computation is left for further research.

Classification problems with heterogeneous workers and data have been considered in
particular in the machine learning literature, exploiting a wide range of techniques from
multi-armed bandit problems [3] to singular value decomposition [14], Bayesian learning [25]
and variational inference in graphical models [18]. Users and tasks with diverging charac-
teristics raise the challenge of selecting tasks and users to make the most of the budget. For
example, Karger et al. [14] propose an algorithm to assign questions to heterogeneous work-
ers with optimal tradeoff between redundancy and accuracy. Empirical models have also
been proposed to improve the accuracy of classification by identifying annotation patterns
(inherent difficulty of images, groups of users with similar behaviors) [25, 18]. Incorporating
some of these ideas in our work is a challenging future work.

Our results focus on binary filters that classify items in two disjoint sets, but can easily be
adapted to classify items among n classes, though complexity increases exponentially with n.
Devising optimizations to improve performance in this setting is thus a future challenge. Fur-
thermore, processing several filters simultaneously may allow to exploit correlations between
filters, or to select dynamically the questions that would be most informative [6, 8, 13].

Finally, empirical studies show that batching tasks may have positive impact on Crowd-
Sourcing efficiency [20]. Similarly, pre-recruiting schemes [5], that allow to obtain answers
from the workers within seconds, may help to exploit the full benefit of sequential testing
without increasing latency. Devising optimization strategies with batches is challenging.

Acknowledgements

The authors are very thankful to A. Parameswaran for helpful discussions. This work has
been partially funded by the European Research Council under the FP7, ERC grant MoDaS,
agreement 291071, and by the Israel Ministry of Science.

B Groz, E. Levin, I. Meilijson and T.Milo

—— References

1
2
3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

http://www.joyofkosher.com/meal-course/course-main/?sbv=2, retrieved 09/13.
Mechanical Turk. http://mturk. com.

Ittai Abraham, Omar Alonso, Vasilis Kandylas, and Aleksandrs Slivkins. Adaptive crowd-
sourcing algorithms for the bandit survey problem. To appear in JMLR WE&CP, 30, 2013.
T. W. Anderson. A modification of the sequential probability ratio test to reduce the
sample size. The Annals of Math. Stat., 31(1):pp. 165-197, 1960.

Michael S. Bernstein, David R. Karger, Robert C. Miller, and Joel Brandt. Analytic
methods for optimizing realtime crowdsourcing. In Collective Intelligence, 2012.

Rubi Boim, Ohad Greenshpan, Tova Milo, Slava Novgorodov, Neoklis Polyzotis, and
Wang Chiew Tan. Asking the right questions in crowd data sourcing. In ICDE, pages
1261-1264, 2012.

Peng Dai, Mausam, and Daniel S. Weld. Decision-theoretic control of crowd-sourced work-
flows. In AAAI 2010.

Nilesh N. Dalvi, Aditya G. Parameswaran, and Vibhor Rastogi. Minimizing uncertainty in
pipelines. In NIPS, pages 2951-2959, 2012.

Jacques Dutka. The incomplete beta function — a historical profile. Archive for History
of Ezact Sciences, 24(1):11-29, 1981.

Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and Reynold Xin.
CrowdDB: answering queries with crowdsourcing. In SIGMOD, pages 61-72, 2011.

Peter Frazier and Angela J. Yu. Sequential hypothesis testing under stochastic deadlines.
In NIPS, 2007.

Jinyang Gao, Xuan Liu, Beng Chin Ooi, Haixun Wang, and Gang Chen. An online cost
sensitive decision-making method in crowdsourcing systems. In SIGMOD, pages 217-228,
2013.

Haim Kaplan, Ilia Lotosh, Tova Milo, and Slava Novgorodov. Answering planning queries
with the crowd. PVLDB, 6(9):697-708, 2013.

David R. Karger, Sewoong Oh, and Devavrat Shah. Efficient crowdsourcing for multi-class
labeling. In SIGMETRICS, pages 81-92, 2013.

Donald E. Knuth. The Art of Computer Programming, Volume IV, draft of 7.2.1.6.
Addison-Wesley, 2004.

Walter Lehmacher and Gernot Wassmer. Adaptive sample size calculations in group se-
quential trials. Biometrics, 55(4):1286-1290, 1999.

Christopher H. Lin, Mausam, and Daniel S. Weld. Dynamically switching between syner-
gistic workflows for crowdsourcing. In AAAI 2012.

Qiang Liu, Jian Peng, and Alexander T. Ihler. Variational inference for crowdsourcing. In
NIPS, pages 701-709, 2012.

Adam Marcus, David R. Karger, Samuel Madden, Rob Miller, and Sewoong Oh. Counting
with the crowd. PVLDB, 6(2):109-120, 2012.

Adam Marcus, Eugene Wu, David R. Karger, Samuel Madden, and Robert C. Miller.
Human-powered sorts and joins. PVLDB, 5(1):13-24, 2011.

Adam Marcus, Eugene Wu, Samuel Madden, and Robert C. Miller. Crowdsourced data-
bases: Query processing with people. In CIDR, pages 211-214, 2011.

Aditya G. Parameswaran. personal communication.

Aditya G. Parameswaran, Hector Garcia-Molina, Hyunjung Park, Neoklis Polyzotis, Aditya
Ramesh, and Jennifer Widom. Crowdscreen: algorithms for filtering data with humans. In
SIGMOD, pages 361-372, 2012.

A. Wald. Sequential tests of statistical hypotheses. The Annals of Math. Stat., 16(2):pp.
117-186, 1945.

17

ICDT’16

http://www.joyofkosher.com/meal-course/course-main/?sbv=2
http://mturk.com

18

Filtering with the Crowd: CrowdScreen revisited

25 Peter Welinder, Steve Branson, Serge Belongie, and Pietro Perona. The multidimensional
wisdom of crowds. In NIPS, pages 2424-2432, 2010.

26 Jacob Whitehill, Paul Ruvolo, Tingfan Wu, Jacob Bergsma, and Javier R. Movellan. Whose
vote should count more: Optimal integration of labels from labelers of unknown expertise.
In NIPS, pages 2035-2043, 2009.

8 Appendix A

Number of ladder strategies
Lemma 7: The number of possible upper and lower ladders can be roughly bounded by

O(2™/\/m). Hence, there are O(22™/m) deterministic ladder strategies.

Proof. Every ladder strategy can be viewed as a pair of paths from (—1,—1) to (Z4ec, Ygec):
one for the upper ladder, and one for the lower one. The number of upper paths can be
bounded by the number of possible paths with z4e. rightward and yge. upward moves:

ec ec 2
<l’d + Ya > < < m) ~omy 2 (asm—>—|—oo)
Tdec m/2 mm

The number of ladder strategies is therefore bounded by

22" % 2/(mm) € O(2*™/m)

This is an overapproximation, yet a fairly accurate one:
» Lemma 12. For s = 0.5,eqg = e1, the number of ladder strategies is Q(22™ /m3).

Proof. This is because in that case Tgec = Yaec = m/2 and so the number of strategies is at
least the number of ways to combine a ladder from (—1,1) to (m/2 —2,m/2) staying above
y = x + 2 with a ladder from (1,—1) to (m/2,m/2 — 2) staying below y = z — 2, where
N = m/2. These combinations do not take into account all possible strategies, so we only
get a lower bound on the number of strategies. Nevertheless these combinations guarantee
that the upper ladder and lower ladder do not meet, which simplifies the computation since
we then simply multiply the number of upper and lower ladders. The number of such ladders
is given by the Catalan numbers, namely, if we set N =m/2 — 1:

1 2N 4N
N+1\ N N3/2\/7
hence a bound of Q(22™/m?) strategies to consider. <

Complexity of ladder enumeration

We prove in this section that our implementation of ladder meets the complexity bound
claimed in Proposition 8:
Proposition : Algorithm 2 runs in O(22™).

B Groz, E. Levin, I. Meilijson and T.Milo

Implementation details

For optimization purposes, we adopt a different order depending on whether the slope of
the decision line is greater than 1 (ey > e;) or not. In this proof we only consider the case
eo > e1 since a symmetric algorithm covers the case e; > eg. We consider strategy (up, down)
to be smaller than (up’, down’) if up <, up’, or up = up’ and —down <;., —down’. In other
words, we follow a lexicographic order on (up, —down), where —down is the array obtained
from down when multiplying every value by —1. In this case, the initial ladder strategy
has both ladders tightly close to the decision line, and the final strategy is the rectangle
Orect (Tdec, Ydec). We say that down is modified at column ¢ if down(i) is decremented and
all down(j) (j > ¢) are reset to their maximal possible value below the decision line, with
down(j) staying the same for all j < i. At each enumeration step, only two cases may occurr:
either the upper ladder is modified and the lower ladder is “reset” to the minimal one, or
the lower ladder only is modified at some column i.

We compute once and for all the values of all Sy(x,y), Si(x,y), and store them in a
matrix. We also precompute a function returning the lowest point above the decision line,
decLine, such that decLine(x) = min{y | Si(x,y) > So(x,y)}. This value can anyway be
computed in constant time based on section 2.2 since S; > Sy iff g1/g0 > 1. We then
maintain the value of Path(z,y) in a matrix and represent the upper and lower ladders as a
pair (up,down) of arrays with size Zgec + 1, where up(4) records the lowest terminating point
(x,y) of the upper ladder ladder with z = 4, and down(i) records the corresponding highest
terminating point of the lower ladder.

In order to compute incrementally the cost and error of strategies when the ladders are
modified we also store two arrays errorTill and costTill, where errorTill(i) records
the partial sum corresponding to E restricted to the points with x < ¢, and symmetrically
with costTill for C. When the strategy is modified only from column ¢, i.e., only on points
with = > 4 for some i > 1, a careful analysis of the equations shows that we can use the
previous value of Path(i,y), errorTill[i] and costTill[i] to compute in O((m — i) x m)
the error, cost, and corresponding new matrices and arrays for the new strategy.

Complexity Analysis

We show that ladder strategies can be enumerated efficiently and evaluated in amortized
cost O(m) thanks to incremental computation. Let us fix a given upper ladder and consider
the enumeration of all corresponding lower ladders. We first show that on average only the
k last columns are modified. The intuition is quite simple: down is most frequently modified
at column ygec, less frequently at ygec — 1, etc.

Every time down is modified at some column j < Zgec — %, down(¢) is then reset to its
maximal value decLine(i) in the resulting ladder (and similarly for all ' > i. Consequently,
the number of times down is modified at some column j < zgec — ¢ is exactly the number
L(i) of possible lower ladders up to (i, decLine(i)). On average, down is thus modified at
column xgec — 1 — (L(zg) + L(2) + -+ + L(xgec — 1))/ L(xqec) where zg is the smallest ¢
such that decLine(i) > 0. As we assumed the slope of the decision line to be greater than 1,
decLine(i+1) > decLine(i)+1, and therefore we claim that L(i+1) > 2x L(i) for all i > .
To prove the claim, let us denote by L(z, y) the number of possible lower ladders up to (x, y).
Then L(i) = L(i, decLine(i) — 1) and L(i + 1) = L(i + 1, decLine(i + 1) — 1) = --- = L(i +
1, decLine(i)). Furthermore, L(i + 1, decLine(i)) = L(i, decLine(i)) + L(i + 1, decLine(i) — 1)
and L(i + 1, decLine(i) — 1) > L(i, decLine(i) — 1). Combining those equations, we get
L(i+1) > 2x L(i). We thus get (L(zo)+ L(zo+1)++ -+ L(zgec — 1)) < (32, 1/2F) X L(gec)

19

ICDT’16

20

Filtering with the Crowd: CrowdScreen revisited

so that, on average, down is modified in the last two columns only. The cost of evaluating
the corresponding strategy is thus O(2 * m).

Overall, there are O(2™/+/m) upper ladders to consider, according to Lemma 7. For
each such ladder, the initial evaluation has cost m?, and the next O(2™/\/m) lower ladders
are each evaluated in linear time. The corresponding complexity is therefore O(2™ //m x
(m? +2 x m x 2™/\/m)) = O(2*™).

Algorithm shrink

Proposition 4.3: The first iterations of shrink from the initial strategy o riangre(m) elim-
inate the points with * > Tgee 0T Y > Yaee until the strateqy orect(Taec, Yaec) s considered.
Consequently the solutions returned by shrink from initial strategy oiriangie(m) and from
Orect(Tdec, Yaec) are identical.

Proof. Every point (z,y) with £ > 24e. has an infinite Cost/Error ratio since the ultimate
decision is “accept” so that deciding immediately has no impact on error while decreasing
cost. Symmetrically, every point with y > y4ec also has an infinite Cost/Error ratio. Con-
trariwise, points with & < Zgec and y < ygec have a finite ratio Cost/Error during those first
iterations since the ultimate decision may still change after that point, so that advancing
the decision at (x,y) strictly increases the error. Points with o > Zgec O ¥ > Ygec are thus
shrinked first. |

Growth

We next show how to remedy a major shortcoming of the growth algorithm from [23].
The growth heuristic proposed in [23] is essentially symmetric to shrink. This algorithm
starts with the initial strategy o, asking 0 questions: all points are initially terminating.
For each terminating point, we calculate the change in cost AC and error AFE obtained
when turning that point into a continuing point. We then turn the point with the smallest
ratio —% into a continuing point, and repeat this step until the error drops below the
threshold. This heuristic may also terminate when all terminating points have AE = 0,
however, which justifies why infeasible strategies are sometimes returned by the growth
algorithm from [23]. We next show that a more careful initialization of the strategy staves
off the problem. Specifically, we show that one should use oyect (20, yo) as the initial strategy,
where (g, yo) intuitively denotes the closest point to the origin on the decision line.

More formally, we define (zg,yo) as (0,0) if strategy onun is feasible, and otherwise let
xo > 1,yp >1 be such that (xg — 1,yo) is accepting, (xo,yo — 1) is rejecting, and zg + yo is
minimal. Remark 2.2 guarantees that (xg, o) is unique, and even that xg = 1 or yo = 1.
The following proposition shows that orect (o, yo) is a better initial strategy for growth than
Onull-

» Proposition 8.1. When the growth heuristic returns a feasible strategy from the initial
strategy opnun, it returns the same strategy from oyect (o, o). Furthermore, the growth
heuristic always returns a feasible strategy (on feasible instances) from the initial strategy

Urect(x()a yO)

Proof. If growth returns a feasible strategy, then AE < 0 for point (0,0) in oy, hence
(0,1) is accepting and (1,0) is rejecting. Consequently, g = yo = 1 so that orect (0, Yo)
is the strategy obtained after one iteration of growth: the final strategies returned in both
cases are therefore the same. With our initialization, one can easily prove that at any stage
of the algorithm the strategy contains a terminating point (x,y) such that Ag > 0, until

B Groz, E. Levin, I. Meilijson and T.Milo

the strategy equals orect (Taecs Yaec), SO that the growth heuristic always returns a feasible
strategy if there is one. <

Randomization is limited

We show here the existance of an optimal probabilistic strategy with a single probabilistic
point. For this, we show in the next two lemmas that in any probabilistic strategy, we can
transfer probabilities between specific probabilistic points without increasing the expected
error and cost of the strategy.

For any reachable point (x,y) of a given strategy, let us denote by 7(z,y) the ratio
—Acost(z,y)/Arw(z,y) between cost and error modification when the probability to con-
tinue at (x,y) is modified. We first present a simple lemma.

» Lemma 13. Let (x,y) and (2',y’) be two points such that (x,y) is not reachable from
(', y"). Modifying the strategy in (x,y) has no impact on Ag(z',y") and Acost(2’,y').

Proof. Equations 4 only involve points that are reachable from (x,y). <
We exploit this technical lemma to establish the following tranfer property:

» Lemma 14. Let (z1,y1), (x2,y2) denote reachable points with Cost/Error ratios v1 > 7
in some strategy o. There exist 61,02 > 0 such that increasing Psop(z1,y1) by d1 and
reducing Psiop(x2,y2) by 02 yields a strategy o' satisfying both (1) Psiop(x1,y1) = 1 or
Psiop(z2,y2) = 0, and (2) the cost and error of o' are smaller or equal to those of o. If
Y1 < Y2, we can even obtain a strictly smaller cost.

Proof. If Ag.(21,y1), the result is obvious. Otherwise, let us first assume that (x1,y1) is
not reachable from (z2,y2). Let us add some 6 > 0 to Pgop(x1,y1), and let Ay g, Af,, and
Path’ denote the functions mapping each point to their new variation rates and number of
paths after this operation. According to Lemma 13, AL, (T2,%2) = Agw(%2,y2). Assume

Path(z1,51) X e (@1,
that Path’(z2,y2) x AL, (72,y2) # 0, and remove dy = § x p;th/((a;zg;lz))XxAer((Zgz/;)) from

Psiop(z2,y2). The admissible values of § are those for which the modified values of Ptop
remain in [0, 1] at both points. Over the course of the process above, whatever error is added
through point (z1,y1) is removed in point (z3,¥s2), so the the process preserves the error
rate of the strategy. In addition, the expected cost of the strategy does not increase as it
varies by d X Path(z1,y1) X Apr(z1,y1) X (72 — 1) < 0. The cost even strictly decreases
when 45 — 1 > 0. The case Path’(z2,y2) X A%, (z2,y2) = 0 can be handled by continuity.
When (z1,y1) is reachable from (z2,y2), (22, y2) is not reachable from (z1,y;) so we obtain
a symmetric proof by first decreasing Psiop (%2, y2) and then increasing Pyiop(21,31) by the
appropriate amount. <

Using Lemma 14, we next prove that in any strategy with several probabilistic points, the
number of probabilistic points can be reduced without increasing the cost and error.
Proposition 5.1: There exists an optimal probabilistic strategy with a single probabilistic
point. Furthermore, in any optimal strategy the probabilistic points maximize the ratio vy
among non-terminating points.

Proof. Using the transfer property from Lemma 14, we can repeatedly reduce the number
of probabilistic points of a strategy having several such points until at most one remains.
We prove the second part of the claim by contradiction. Assume that some probabilistic
point of an optimal strategy has ratio y(z1,y1) strictly smaller than another point (z2,y2)
satisfying cPath(za,y2) > 0. Then we can obtain a strategy with smaller error and strictly

21

ICDT’16

22

Filtering with the Crowd: CrowdScreen revisited

smaller cost, according to the transfer property above. This contradicts the optimality of
the strategy. |

Optimality of shrinkp

Proposition 5.2: The probabilistic strategy returned by algorithm shrinkp is optimal.

sketch. We fix some parameters eg,e1,7,m,s, and deduce the corresponding values of
Tgec, Ydec as in Section 2.3. If the trivial strategy is feasible, the result is obvious. Oth-
erwise, we first observe that in shrinkp and in any optimal probabilistic strategy, the error
is exactly 7. Let Cgprink be the cost of the shrinkp strategy. Let o denote a feasible strategy
with error 7. Let k the number of points on which ¢ differs from the shrinkp strategy. We
show by induction on & that the cost C, of o is at least Csprink

Let (x0,yo) denote the first point, in the order of “elimination” by shrinkp, on which o
and shrinkp disagree. Let also Sy denote all the points visited before (zo,yo) by shrinkp,
and S; the remaining points. We have thus partitioned the set of all points into Sy W
S1 W {(x0,y0)}, and o and shrinkp agree on all points of Sy. By definition of shrinkp,
(z0,yo) is the maximal ratio in the strategy oo that terminates on all points of Sy and
continues on others (except those with & = Zgec Or ¥ = ygec). Let Strat denote the set of
all strategies ¢’ that satisfy the following three conditions: (1) o’ agrees with o on Sy (2)
o'(z0,y0) = shrinkp(zo,yo), and (3) o'(z,y) < o(x,y) for every (z,y) € S1. We wish to
prove that there exists a strategy in Strat with error exactly 7 and cost no higher than C,.

We first study the maximal and minimal error achieved by strategies in Strat. By
definition of shrinkp, the probability of terminating at (xg,yo) is higher in shrinkp than
in 0. Consequently, the strategy in Strat that agrees with ¢ on S; has error higher than
o, hence than 7. On the other hand, the strategy in Strat that continues with probability
1 on all points of S; except those with £ = Zgec Or ¥y = Ygec has error lower than shrinkp,
hence than 7. What is more, the error is a continuous function of the strategy, and Strat is
a connex set. Therefore, there is a strategy ¢’ in Strat with error exactly 7. We claim that
this strategy is at least as efficient as o.

Claim: the expected cost of o’ is at most that of o.

According to this claim, there is a feasible strategy, o’ with cost at most C,, that differs
with shrinkp on at most k — 1 points, which concludes our proof by induction.

Let us prove the claim. By construction of Strat, both strategies o and ¢’ can be obtained
from o by increasing the probability of terminating at (xg,yo) and some points of S;. The
increase is larger at (zg,yo) and smaller at all other points for ¢’ w.r.t. o. Furthermore,
the ratio of (xg,yo) in ¢ is higher than the ratio of any point in S;. As a consequence, the
ratio between cost and error for strategy o is no smaller than this ratio for ¢’. We conclude
that the cost of o is at least the cost of /. We next provide a more formal proof of this:
let N =|S1|+1, and let 71,73, ...,rN denote the Cost/Error ratios in og of the points from
S1W{(z0,0)}, by increasing order of z +y (with ties ordered by increasing x, for instance).
We denote by j the index of (z¢,yo) in this ordered sequence. For each 0 < i < N, we also
denote by E; (resp E}) the error of the strategy which agrees with o (resp ¢’) on the ¢ first
points in the above order, and agrees with oy on all other points. For each 1 <17 < N, we
then define §; = E; — F;_; and §, = E] — E/_,. According to Lemma 13, the cost of o differs
from the cost of oy by >, r;d;, whereas the cost of ¢’ differs from the cost of o¢ by >, 7;0..
What is more, Y. 8, =Y . 0!, §; < 6}, and for all ¢ # j we have 0; > 9] while r; > r;. The

result follows. <

B Groz, E. Levin, I. Meilijson and T.Milo

» Remark. We observe that in spite of its similarities with shrink, Algorithm growth does
not extend so easily into an optimal probabilistic algorithm. One may indeed wish to
consider the algorithm that starts with the initial strategy oyect(zo,¥y0) presented above
Proposition 8.1 and then in each iteration maximizes the probability to continue at the point
minimizing the Cost/Error ratio while preserving the error above 7. But this algorithm does
not guarantee an optimal probailistic solution.

Deterministic vs Probabilistic Strategies

One shows easily that an optimal deterministic solution will be an optimal probabilistic
solution only if it has error exactly 7, which has probability 0 when parameters are random
floats, or if the trivial strategy is feasible. In our experiments, the cost was indeed strictly
lower for the probabilistic strategy whenever the trivial strategy was not feasible (s €]r,1 —
7[). We actually observed in our experiments that the trivial strategy is feasible in = 10%
of all instances, and show in the remark below that this proportion is coherent with theory.

The small sample size in [23] could explain slight differences in figures, but does not
explain why the proportion of strictly better instances does not steadily increase with budget
in [23, Figure 5a]. We assume the discrepancy might be due to rounding approximations
in [23, Figure 5a), since the authors do not detail how they round parameters and compare
floats.

» Remark. For our choice of random parameters (s € [0,1] and 7 € [0.005,0.1]), the prob-
ability of getting a trivial instance is 0.105.

Proof. We need to compute the probability p of having s < 7 or 1 — s < 7. This is clearly
twice the probability that s < 7, hence:

0.1
p:2/ Pr(r=t) x Pr(s <t)dt
0.005
and so for our uniform sampling we get
0.1
p= 2/ (1/.095)t dt = [t*/.095]9 505
0.005

We conclude that p = 0.105. <

9 Appendix B

We complement our theoretical study with an experimental evaluation of the algorithms. We
contrast the running time and robustness of our algorithms, and compare the expected cost of
the strategies produced. Sections 9.2,9.3 and 9.4 average measures over numerous synthetic
random instances, Section 9.5 investigates particular parameters, and finally Section 9.7
reports on some experiment with real crowd answers. Figure 4 (a), (b) and (d) and Figure 5
use logarithmic scales to help distinguish the curves and emphasise small budgets.

9.1 Experimental Settings

Algorithms

Experiments in this section evaluate all algorithms described in this paper: AdaptSprt
from Section 3, ladder and shrink from Section 4, and shrinkp, as well as the linear

23

ICDT’16

Filtering with the Crowd: CrowdScreen revisited

programming approach from Section 5. The performances of growth and shrink are quite
similar, so we do not detail the heuristic further in this paper. The performance of the linear
programming approach is sensitive to the solver and so we compared three solvers, denoted
by xcheck, exact and gurobi, and we denote by linear the linear program algorithms
when there is no reason to distinguish solvers. Our gurobi program uses the commercial
Gurobi optimizer, reported to be one of the fastest, with default parameters. Our xcheck and
exact programs use the GLPSol solver from the GNU Linear Programming kit, with options
“xcheck” and “exact” respectively, and with other parameters kept to their default values.
The “exact” option implements the simplex algorithm with exact (rational) arithmetic,
whereas “xcheck” first uses the simplex with floating point arithmetic, but checks the final
basis using exact arithmetic and performs a few more simplex iterations if the solution is
not optimal. As a consequence, the Gurobi solver is faster but less accurate than GLPSol
with “exact” or “xcheck” options.

Environment

We implemented all algorithms in Python, using the default options in PyPy 1.8.0 and
CPython 2.7.3. The linear solvers Gurobi and GLPSol are written in C, but the program
itself was written in Python and issued calls to the solvers using the default options of
the PuLP interface. The experiments were run on an Intel i7-2600 CPU using a 32bit
Ubuntu 12.04 system. All experiments were planned such that each CPU would run a single
experiment at a time.

1000 100 S 40 ‘
i) +‘ lagder —+—
5] 900 - 80 | | 35 xact
g 800 | @ J\r @ 30 check
I} 2 |)
% 51 60 | J\r g 25 gurobi
s 700 § ladder T = shrink —e— |
ﬁ 600 |- S sl exact | % adaptsprt —a—
] o xcheck | = 15 ¢]
2 \ o
:“:’ 500 - [gurobi — s 10}
S 400k feasible instances —e— | 20T shrink —e— 1
= SN m m] 5]
c feasible for sprt adaptsprt —a— s s s
300 o i . . o L i . 0 ; ¢
5 10 20 100 5 10 20 100 0 100 200 300 400 500 600 700 800 900

budget m budget m (a) budget m

(a) Sample size (b) Successful termination rates (¢) Running time

100

ladder (avg) —+— A) 55
shrink (avg) —e— A 5
maximum. ----a--

1

1

1

1

1

ladder —+— | :
xcheckdet 1
T 1

1

1

1

1

1

1

1

ladder —+—
xcheckdet
gurobi
shrink —e—
shrinkprob —=— 1
adaptsprt —&—

average cost
w
(4,3

gu;obi_ ==

a-- ~ 7 shrink —e— |
shrinkprob ——]|

aqaptsgrt %)

maximal number of questions
=

510 20 30 40 50 60 70 80 90 100

budget m
(d) Budget usage

(b) budget m
(e) Quality of the strategy

Figure 4 Evaluating algorithms on random instances

B Groz, E. Levin, I. Meilijson and T.Milo

Parameters

We sample uniformly the parameters, represented as floats (not-rounded). In order to com-
pare with previous work [23], we sample

the error rates ey, e; between 0.05 and 0.45.

the average error tolerated 7, between 0.005 and 0.1

the selectivity s in [0, 1].
For each value of the parameters, we run all algorithms on increasing values of m: 5,6, ..., 25,
then 30, 35, ...,50, 60,70, ...,100, and finally 200, 300...,1000. We recall that we only con-
sider feasible instances. We point out like [23] that in general a set of parameters eg, e1, 7, $
will not be feasible for a small value of m, but will become so beyond a certain value mg
of m, as evidenced in Figure 4(a). The corresponding instances with m < mg are dropped
and those with m > mg are preserved into our aggregated results. As a result, the average
expected cost of the strategies will generally increase with m since harder strategies become
feasible.

Timeout

Some algorithms did not return any solution after several days for some values of the para-
meters with large budgets, so we decided to interrupt experiments after a timeout of 5 min.
When an algorithm fails to return a solution for some value of the parameters on m = my,
we skip the evaluation of the algorithm for those parameters on all m > my.

9.2 Success Rates

In this section, we first discuss why an algorithm might fail to return a reasonably good
strategy and then proceed to investigate the limitations of specific algorithms.

Limiting Factors

The algorithms may fall short of their formal specification on several grounds. First, floating
point arithmetics may produce inaccurate results, as many numeric approximations are
combined along the calculation of error and cost, which may affect the choice of strategy
by our algorithms. This problem may often be staved off by using high-precision numeric
libraries, such as mpmath for python, but this quick fix increases the running time by a
large factor. Another issue is the running time, as we showed that many of the algorithms
have a high complexity. Due to limited hardware resources, large budgets can cause these
algorithms to run out of time or memory.

Failure Rates

Figure 4(b) measures how often our algorithms fail to return correct strategies. We consider
the output as incorrect when either the output strategy is infeasible or the algorithm does
not terminate within 5 minutes. In addition, for all optimal probabilistic algorithms, we
also consider any solution whose cost was at least 0.01 larger than the cost of the optimal
solution to be a deviation from the expected result. The Figure attests that AdaptSprt was
successful on all instances. The same holds for the optimized shrink algorithm, except on 3
instances where it failed due to floating point approximations. Our Gurobi program suffers
even more from numerical instability as some output strategies were infeasible while others
were suboptimal from m = 30. Gurobi also ran out of memory for m > 900. The ladder,

25

ICDT’16

26

Filtering with the Crowd: CrowdScreen revisited

exact and xcheck programs systematically timed out for moderate budgets, around m = 20,
40, and 80 respectively, but otherwise returned optimal strategies.

9.3 Time and Cost Performance

We next evaluate the running time of each algorithm, and the expected cost of the strategies
produced.

Running Time

Figure 4(c) measures the average running time of each algorithm as a function of the budget.
The running times of deterministic algorithms are coherent with their theoretical complex-
ity, and in particular AdaptSprt is clearly the fastest. The running times of probabilistic
algorithms depend heavily on the choice of solvers. Unlike exact and xcheck, the gurobi
solver is generally quite efficient and returns the solution within half a minute for m < 900.
Finally we obtained a similar graph when considering the worst instances instead of aver-
aging the running time.

Quality of the Strategy

The expected cost of the strategies are reproduced on Figure 4(e). All algorithms yield
similar costs, with a 8% gap between the optimal and worst one. As expected the optimal
probabilistic solutions shrinkp, exact, and xcheck have lowest cost. Next comes the op-
timal deterministic solution ladder with the shrink heuristic close behind, while AdaptSprt
is slightly worse. The gurobi solver, however, often provides grossly suboptimal solutions,
due to numerical instability. Contrary to what was observed in [23, Figure 5al, the optimal
probabilistic solution always improved upon its deterministic counterpart except for trivial
instances (strategies terminating at (0,0)). We elaborate in the section “Deterministic vs
Probabilistic Strategies” why our numbers make more sense.

We next compare our sequential strategies with naive strategies that fix the sample-size,
i.e., with the optimal rectangle strategy rect. The cost of the optimal rectangle strategy is
up to 5 times, and on average 1.5 larger than the cost of shrink, and the gap increases with
the budget from 1.2 when m =5 to 1.8 when m > 300.

9.4 Shape of the Strategies

Some properties about the decision point (e.g., that it lies closer to the y-axis when s is
small [23]) derive from its location across the decision line. But it is more of a surprise that
optimal strategies generally do not use the full budget available. By definition, AdaptSprt
strategies use the full budget, but Figure 4(d) shows that most ladder and shrink strategies
do not. In this Figure, we plot for all m the maximal number of questions issued by an
average ladder (resp. shrink) strategy with budget m. The maximal number of questions
issued by the most demanding shrink strategy with budget m from our sample coincides
with the budget (red curve; the curve for ladder turned out to coincide, so was omitted).
Hence some ladder and shrink strategies use the maximal budget m, but on the other hand
an average strategy only uses half. What is more, shrink uses a slightly smaller part of
the budget on average than ladder. Further experiments show that shrink does not shrink
many more points than shrinkp: on average, for a budget m, the shrink and shrinkp
strategies only differ on m/2 points.

B Groz, E. Levin, I. Meilijson and T.Milo

9.5 Fixed Parameters

We also monitored the running time and cost for specific parameters, when only m varies.
The figures were similar for the running time, but not for cost, which tends to decrease with
the budget when other parameters are fixed.

27

4.6 T T e el

45| A "ladder" —+—
’ "xcheckdet" 0.4 0.4 10
"gurobi" . . 20
"shrink” —e— [| 0-3 0.3 13:
- «
" " 101
adaptsprt" —&— 0.2 0.2 -
9
50
0.1 0.1 2

44F
—_—t—t—

4.3
4.2)

10 20 0 0.1 0.2 0.3 04 e€o 0.1 0.2 0.3 04 eo
budget m

41 b9

expected cost

39
3.8
8

error cost

. cost/error as

percentage of
original one

» : strategy parameters

Figure 5 Cost of strategies with eg = .2,e1 = .25,7 = .05, s = .6, and sensitivity (for shrink
only, with m = 15).

Quality of the Strategy

Figure 5 presents the expected cost of the strategies returned by each algorithm for varying
m while all other parameters are fixed to eg = 0.2,e; = 0.25,7 = 0.05, s = 0.6, which allows
to compare with the similar experiment in [23]. We observe that the cost decreases sharply
during the first few steps but stabilizes beyond m = 14. The relative order of the strategies
is similar to their order in the aggregated results. Surprisingly, the costs for shrink do not
match the ones reported in [23, Figure 4al]: our shrink strategy is more efficient than theirs,
and in our experiment the cost of shrink decreases with m. Actually the cost of our shrink
strategy matches the cost they report for growth. We cannot explain why because they only
provide a brief explanation of shrink’s behaviour.

Sensitivity analysis

The performance of the algorithms varies with all parameters s, eg, e, 7, m. The variations
of cost with s,eq and e; were surveyed in [23] and our experiments only confirmed theirs.
We therefore focus in this paper on the variations with m. However, the exact value of
s, eg, e1 may not be available in real scenarios, so we also render in Figure 5 the performance
of a strategy when the parameters of the data and questions are slightly different from
the parameters used to build the strategy. In that picture the color at (z,y) measures the
expected cost and error that would be obtained if the strategy computed by shrink for
ep = .2,e7 = 25,7 = .05,m = 15,s = .6 is used while the real users have error rates
eo = z,e1 = y (x,y < .45). The values are measured as a percentage of the cost (3.8)
and error (.049) obtained when the error rates coincide with the strategy. We observe that
error varies much more than cost, and deviations from the expected error rates have limited
impact as long as they are small enough. We observed similar trends for other values of the
parameters [?].

Optimizations

We measured the contribution of our optimizations to the ladder and shrink heurist-
ics on selected instances. The PyPy compiler is generally above 10 times faster than

ICDT’16

28

Filtering with the Crowd: CrowdScreen revisited

cPython. Algorithmic optimizations reduce drastically the running time, especially for
shrink, and when m gets large. For instance, with the parameters of the running example
(eg = .25,e; = .2,7 = .0075,s = .8) and a budget of m = 200, the naive shrink imple-
mentation requires over 5h with CPython, and 12min with PyPy whereas the optimized
implementation completes in 1.5s (with PyPy).

9.6 Classification with multiple choices

This paper is in general focused on binary classification. But most analyses and algorithms
can be generalized to classify items in presence of multiple choices. In the general setting we
ask the crowd to determine to which class the item belongs, out of n candidate classes. The
priors are then given by an n-dimensional vector § for selectivity, and an n X n matrix e for
error probabilites, where e; ; denotes the probability that a user answers V' = ¢ when the item
belongs to class j. We again assume that the correct answer is always the most likely, i.e.,
ei;; > ej; when i # j. The sequence of answers received can then be represented as a walk
over the n-dimensional cubic lattice, and most of our analyses remain valid; shrinkp still
returns the same strategy as the linear program. .. Algorithms shrink, AdaptSprt generalize
naturally to this setting, as well as the linear program of [23].

Due to the dispersion of answers between multiple options, a large budget will gener-
ally be necessary to classify items accurately. However, the algorithms scale poorly even
with the budgets we considered for binary classification (e.g., m = 50); in the worst case,
our optimized version of shrink indeed has exponential complexity O(n x m?"), whereas
AdaptSprt runs in O(n x m™). We observe that for m = 4, our implementation of shrink
fails to scale beyond m = 40, whereas AdaptSprt manages budgets up to m = 50.

9.7 Experiments with the Crowd

Our synthetic experiments survey the theoretical performance of our algorithms when the
users behave as a random oracle specified by ey and e;. We next examine the performance
in a real-life crowdsourcing scenario.

Queries and dataset

We experimented with two classes of filtering queries. The first scenario is similar to our
motivating example in the Introduction, trying to identify which dishes contain a specific
ingredient. For this dataset we randomly selected about 50 dishes from a recipes website [1].
Users were then presented with the picture and name of the dish, and were asked to determine
whether it contains the given ingredient (e.g., onions, garlic, etc.).

The second scenario uses the crowd to identify which pictures, out of a given set, are
from a given country. The dataset was built from holiday pictures contributed by members
of the lab. For privacy, we removed those that contain individuals, which left us with about
100 pictures over which the experiments were run.

To build the ground truth for the first dataset we manually extracted the ingredients of
the recipes from the cooking instructions at the Web site, and for the second we asked the
contributors to provide the location of their photographs.

Experiment Settings

To avoid spam issues that typically arise in payment-based crowdsourcing platforms like
Amazon Mechanical Turk [2], we run the experiments on the AskIt [6] crowdsourcing game

B Groz, E. Levin, I. Meilijson and T.Milo

platform, developed in our lab, which queries the crowd using a trivia-like game and can
engage users through social network. We modified Asklt’s engine so that each question
instance is submitted to different players until sufficient answers are gathered. We built the
strategies for several accuracy and budget constraints, and then distributed the stream of
user answers to all, executing all strategies in parallel so that their behavior can be compared
on identical inputs. The crowd of 100 players provided about 10000 answers overall, which
provided us with around 35 (resp. 25) answers per question on a given dish-ingredient pair
(picture-country pair). The bulk of the answers were gathered withing 48 hours.

Table 1 illustrates the type of questions issued to users and the corresponding parameters
computed from the data for each of the filtering tasks. All parameters were computed over
the whole dataset, though in a full-fledge system, they would be estimated first on a small
sample, but parameter estimation lies outside the scope of this paper, and we refer the reader
to the previous section for sensitivity analysis. The error rates are relatively high because
answers were rarely obvious. For question 6 in particular, e; was above .5 which means the
users more often than not missed the presence of eggs in the dishes. We therefore discarded
the question from our analysis.

question s €o el
Q1 photos from Australia A8 | .25 | .36
Q2 photos from Greece or Cyprus | .26 | .27 | .32
Q3 dishes containing dairy A7 |11 .27
Q4 dishes containing onions b4 | 38 | .27
@5 dishes containing garlic .62 | 44 | 48
Q6—-dishes—containing-eggs 922157

Table 1 Questions and parameters

To meet a (rather lenient) error threshold of 10% (7 = 0.1) given these parameters, the
minimal budget that should be allotted to questions 1,2,3,4 is respectively 7,8,2 and 12.
For 5% (7 = .05), the minimal budgets for the same questions are 13,13,5,21. Q5 has
higher error rates and correspondingly requires a budget of almost 300 for 7 = 0.1 and 40
for 7 = 0.3. With m = 40 we indeed obtain for this query an error between 29% and 35%
for our algorithms, with average cost around 18 (while rect has cost above 26). However,
compared to the other questions, these results have lower statistical significance since the
error rates for @5 are close to 50%. We therefore focus in the analysis below on the other
queries.

We first discuss the strategies created by our algorithms for 7 = .1 and m = 12, the
minimal budget for which Q1-Q4 admit a feasible strategy according to the parameters in
Table 1, then examine how larger budgets affect the behavior.

Cost

Figure 6 represents the average number of answers (cost) before the strategies reach a
decision on the pictures. On this actual cost, we superimposed the theoretical values (as
a pattern in background). The costs roughly match their expected value, yet with some
variations. In particular, ladder or linear did not always outperform the other algorithms,
though they generally compare favorably. The figure also shows that the strategies computed
by our algorithms outperform the optimal rectangle strategy rect. We observed similar

29

ICDT’16

30

Filtering with the Crowd: CrowdScreen revisited

trends for other values of m and 7. In most cases, increasing budget m improves the
performance of our strategies. For m = 20, for instance, the cost of Q4 drops from 7.5 to
~ 5.7 for all of our algorithms, which justifies using strategies with larger budget bound m,
to save on average cost. Here again, as seen in the synthetic experiments, ladder runs out
of time for m > 20.

cost4 M :linear [[:ladder [:shrink M :rect

™ : AdaptSprt :expected value B
5
0 o e s S e |
Q1 Q2 Q3 Q4

Figure 6 Average cost per item (m =12, 7 = .1)

Error Model and Accuracy

As we could expect, real users do not behave as random oracles, which has an impact on
the accuracy of our strategies. In our experiment, error rates are not uniform over items,
and are not uniform among users either. The standard deviation of the error rates between
different pictures is roughly .2, and the standard deviation of error rates between different
users is slightly above 0.1.

As a consequence, the average error of the filtering process is not always close to 7.
Actually, accuracy varies substantially with the question: instead of .9, algorithm ladder
yields an accuracy around .87,.8,.9 and .79 respectively for Q1, Q2, Q3 and Q4 when 7 = .1
and m = 12, and the results are pretty similar for the other algorithms. More surprisingly
maybe, the accuracy did not significantly improve when the expected error 7 of the strategy
was lowered to .05: only for question Q3 was the accuracy improved to .96, whereas the
accuracy of other questions culminated below .85. This discrepancy is due to the limitations
of the model for this scenario: error rates are not uniform over items, because some pictures
contained only little or no clue for the question. Once “easy” items were correctly classified,
additional user answers did not help much to classify the harder ones. This issue affects
equally any strategy that is applied to all pictures indiscriminately, including the naive
rectangular strategy, and accuracy varies little with the choice of algorithm and budget,
provided the budget is large enough to allow feasibility. The error rates also fluctuate
between users, but the standard deviation is smaller and has lower impact since additional
annotations still help to classify each picture. To sum up, even when parameters allow
to build feasible strategies for high precision levels, there is no guarantee that such high
precision can indeed be obtained in practice. Nonetheless, using our strategies with large
budgets provides substantial savings in the cost of the filtering, which justifies the need for
scalability.

	Introduction
	Preliminaries
	Definitions
	General Framework
	Simple Optimizations

	Likelihood Ratio Test
	SPRT: Definition and Boundaries
	Adapting the SPRT Threshold

	Deterministic Algorithms
	Enumeration of Ladder Strategies
	Shrink
	Computing Cost/Error Ratios Efficiently
	Minimizing Shrink Iterations

	Randomized strategies
	Randomization is Limited
	Shrink for Randomized Strategies

	Experimental evaluation
	Conclusion and Related work
	Appendix A
	Appendix B
	Experimental Settings
	Success Rates
	Time and Cost Performance
	Shape of the Strategies
	Fixed Parameters
	Classification with multiple choices
	Experiments with the Crowd

