Benoît Groz
email: benoit.groz@lri.fr

Ezra Levin #
email: ezralevin@gmail.com

Isaac Meilijson

Tova Milo

Filtering with the Crowd: CrowdScreen revisited (technical report)

Keywords: 1998 ACM Subject Classification H.3.3 Information filtering Keywords and phrases CrowdSourcing, filtering, algorithms, sprt, hypothesis testing. Digital Object Identifier 10.4230/LIPIcs.ICDT.2016

Filtering a set of items, based on a set of properties that can be verified by humans, is a common application of CrowdSourcing. When the workers are error-prone, each item is presented to multiple users, to limit the probability of misclassification. Since the Crowd is a relatively expensive resource, minimizing the number of questions per item may naturally result in big savings. Several algorithms to address this minimization problem have been presented in the CrowdScreen framework by Parameswaran et al. However, those algorithms do not scale well and therefore cannot be used in scenarios where high accuracy is required in spite of high user error rates. The goal of this paper is thus to devise algorithms that can cope with such situations. To achieve this, we provide new theoretical insights to the problem, then use them to develop a new efficient algorithm. We also propose novel optimizations for the algorithms of CrowdScreen that improve their scalability. We complement our theoretical study by an experimental evaluation of the algorithms on a large set of synthetic parameters as well as real-life crowdsourcing scenarios, demonstrating the advantages of our solution.

Introduction

CrowdSourcing for Filtering

Building upon a flourishing ecosystem of CrowdSourcing platforms, a new kind of database systems such as CrowdDB and Qurk endeavors to exploit human inputs to extract or process information [START_REF] Marcus | Crowdsourced databases: Query processing with people[END_REF][START_REF] Michael | CrowdDB: answering queries with crowdsourcing[END_REF]. Queries in these systems rely on a small set of basic operators to elicit missing information from the crowd. This triggered a new line of research devoted to the optimization of such basic operations as Joins, Ordering, Aggregates, Selection, etc., in a CrowdSourcing environment [START_REF] Marcus | Human-powered sorts and joins[END_REF][START_REF] Marcus | Counting with the crowd[END_REF]. In this paper we focus on the Selection operation, i.e., using the crowd to filter the items satisfying some specific property.

As an example, assume we are sensitive to gluten and would like to know which food items, out of a given list or a menu, may be problematic for us. Scanning food recipes and labels could give information on each individual item, but this is a time consuming job, and the results may be incorrect, e.g. due to some ignored factors such as cross-contamination issues. Asking the Crowd about their knowledge/experience with the product may provide an alternative solution to the problem. However, contributors will sometimes provide erroneous answers, so that multiple answers must be gathered in order to ascertain that a product is gluten-free. But how many people need to be asked? Let us assume that (1) the probability that each category of food contains the ingredients, and (2) the error rates among the answers (false positives and false negatives rates) are prior knowledge -we will briefly discuss this assumption later. For example, suppose that some category of dishes, e.g. cereal, contains gluten with probability 0.5, and suppose the probability of false positives and false negatives are both 0.4. How can we decide with an average precision of 90% whether or not a given cereal contains some gluten, and how many answers will be required for that?

A simple solution is to fix in advance some budget m for answers, and then decide that our dish contains (resp. does not contain) gluten as soon as we get more than m/2 positive (negative) answers. For our parameters, one can easily check that a budget of m = 41 answers is required to obtain 90% precision with this strategy. Naturally, we do not always have to use the full budget -as soon as 21 positive (or negative) answers are obtained we can stop and make a decision with the required precision. We will thus ask between 21 and 41 questions and, on average, about 34 questions (we omit the exact computation). Note however that a smaller average number of questions can be used if we employ a more efficient strategy, known in the literature as a sequential test [START_REF] Wald | Sequential tests of statistical hypotheses[END_REF], and adapt dynamically the budget as answers are received. We can for instance show that on average only 23 answers are sufficient to reach a decision if we use the following strategy which also guarantees an average precision of 90%: claim there is gluten as soon as the number of positive answers exceeds the number of negative answers by 6 claim there is none when negative answers exceed positive answers by 6 use majority vote in the absence of conclusion after 51 questions More generally, the challenge that we try to address in this paper is devising tests that minimize the expected number of answers required from the crowd for deciding whether a given object satisfies a selection criteria, while guaranteeing that the average error stays below the required threshold.

The CrowdScreen Framework

The problem of minimizing the number of questions needed to classify items accurately clearly predates CrowdSourcing and we discuss related work in the conclusion. Yet, Crowd-Sourcing scenarios may be particular in the sense that errors on specific items are typically tolerated as long as a good accuracy is guaranteed on average over the whole set of items [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF].

To study the optimization of filtering, we adopt in this paper a simple and general model by Parameswaran et al. [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF], whose purpose is to compute optimal querying strategies. They define a (deterministic) strategy as a function mapping the number of positive and negative answers received from the users to a decision in {Pass, Fail, Cont}. A Pass (resp. Fail) decision signifies we stop asking questions and accept the object in question as satisfying the filter (resp. reject the object), and Cont stands for asking additional questions. They also consider probabilistic strategies that map each point to both a probability to stop asking questions and the decision (Pass or Fail) in case the strategy terminates at this point. Questions to the Crowd are considered expensive and therefore the maximal number of questions allotted to the strategy is bounded by some fixed budget. The selectivity of the filter and the error rates of the answers, as previously mentioned, are considered prior knowledge in the model. A problem instance thus consists of a budget bound, a maximal bound on the expected error authorized for the strategy, and those prior probabilities.

Several algorithms and heuristics have been introduced in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] to compute deterministic and probabilistic strategies. While these algorithms are efficient for very small budgets (up to 14 questions per item), larger sample sizes were hardly considered. In fact, the presented algorithms are not a good fit for larger budget as they either have high complexity (exponential, or polynomial but with high degree), or suffer from numeric instability, hence do not always return a strategy meeting the error constraint.

The restriction to small budgets may be justified by the assumption that CrowdSourcing applications typically use little redundancy. Yet 14 questions are not sufficient to filter items with a high precision when the error rates are high: our motivating example for instance requires more than 40 questions, and the original works about sequential tests in statistical testing [START_REF] Wald | Sequential tests of statistical hypotheses[END_REF][START_REF] Anderson | A modification of the sequential probability ratio test to reduce the sample size[END_REF] generally consider budgets featuring hundreds or thousands of answers. The goal of this paper is thus to devise algorithms that scale well for large budgets.

Contributions

Our contributions are three-fold. First, we provide new theoretical insights to the problem. We then devise efficient algorithms based on these insights. We also propose optimizations of algorithms in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] to improve their scalability.

Specifically, we first show, in Section 2, that key properties of the problem derive from well-known results on the likelihood ratio (to be formally defined). We exploit these in Section 3 to devise a scalable algorithm: AdaptSprt inspired from the popular SPRT [START_REF] Wald | Sequential tests of statistical hypotheses[END_REF]. We then revisit, in Section 4, the heuristics from [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF]. In particular, we show that their method that enumerates all (ladder-shaped) strategies has complexity O(2 2m), and we present optimizations extending the range of budgets for which this enumeration is tractable by a factor 1.5. We similarly show that the shrink heuristic from [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF], which computes slightly suboptimal deterministic strategies, can be optimized to run in O(m 4) instead of O(m 5), and further establish, in Section 5, connections between deterministic and probabilistic strategies. In particular we show that an optimal probabilistic strategy can be computed through a minor modification to the shrink strategy, as an alternative to the linear programming approach that was considered there (and which we show to suffer from numeric instability). We deferred some of the proofs to Appendix A. Finally, to complement our theoretical study we briefly illustrate (with more details in Appendix A) the practical advantages and limitations of our solutions by a set of experiments on (1) a large set of synthetic parameters and (2) a small real-life scenario.

Preliminaries

We first list definitions and notations, as well as general properties we use to devise efficient strategies. The formal introduction below follows [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] and we diverge afterwards.

Definitions

We wish to harness the wisdom of the crowd to determine, for each object O of a large dataset D, whether the object has property V (V = 1) or not (V = 0). We thus ask users in the crowd if they believe the object has the property. To compensate for possible mistakes, we query multiple users until we have gathered enough evidence to reach a pass/fail decision about O. The selectivity ratio s (percentage of objects in D having property V) and the users' error rates are assumed prior knowledge. We thus define the error rates e 0 and e 1 < 0.5 as the probability of a user error, given that V = 0 and V = 1 respectively. We briefly discuss in the conclusion how these values can be estimated. Finally, we consider that each question has a unit cost, and specify a budget constraint m; the maximal number of questions we are allowed to ask before reaching a decision on item O.

I C D T ' 1 6

Filtering with the Crowd: CrowdScreen revisited

Strategies

The sequence of answers received when classifying an item can be visualized as a walk on a discrete 2-dimensional grid where the x and y axes represent the number of negative and positive answers received. The current state of the sequence is the point (x, y) matching the number of positive and negative answers received. The transitions between states match the answers provided by the users: if a negative answer is received in state (x, y), the state moves to (x + 1, y). If a positive answer is received instead, the state moves to (x, y + 1).

For each point on the grid we define P stop (x, y) as the probability that the walk terminates upon reaching point (x, y). When terminating, a claim on the value of V is returned:

Pass (V = 1) or Fail (V = 0).
A strategy is defined by the function P stop (x, y) mapping each point to the probability of terminating when reaching point (x, y). In a probabilistic strategy P stop (x, y) is taken over the interval [0, 1], whereas in a deterministic strategy P stop (x, y) must be either 0 or 1. Point (x, y) is a continuing point if P stop (x, y) = 0, a terminating point if P stop (x, y) = 1, and a probabilistic point otherwise. An optimal choice betweeb Pass or Fail in case we stop can easily be computed from x, y and the input parameters, using a well-known property of the likelihood ratio recalled in Section 2.2 (the choice does not depend on the strategy). A point in which the decision is Pass is an accepting point and a point in which the decision is Fail is a rejecting point. The cost of a given strategy is the expected number of answers needed in order to reach a decision, while the error of the strategy is the probability that the strategy reaches a wrong decision. We formalize this next.

Strategy and Grid characteristics

We compute the cost and error of a strategy as mentioned in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF]. Intuitively, our equations first count paths leading to (x, y) according to the strategy, then multiply the result (Path) by the probability (S 0 , S 1) that answers follow any single such path. Let S i (x, y) be the probability that by the time we have asked x + y queries we receive (in any specific order) x negative answers and y positive answers and have V = i. We then have:

S 0 (x, y) = (1 -s) × (1 -e 0) x × e y 0 (1) S 1 (x, y) = s × e x 1 × (1 -e 1) y (2)
Let Path(x, y) denote the weighted number of paths (i.e., sequences of answers) that consist of y positive and x negative answers, each path being weighted by (1-p) where p is the probability (depending on the path and the strategy) to stop along the path before reaching point (x, y). We partition these paths into two groups: Path(x, y) = tPath(x, y)+cPath(x, y) with tPath(x, y) = P stop (x, y) × Path(x, y). Thus, tPath(x, y) and cPath(x, y) respectively count the paths that terminate and continue after reaching point (x, y). We observe that the strategy P stop uniquely determines the values of tPath and cPath, and reciprocally. A point (x, y) is reachable if Path(x, y) > 0.

Example 1. The running example illustrates the definitions along the paper with error rates e 0 = .25 and e 1 = .2, threshold τ = .0075, budget m = 15, and selectivity s = .8. Figure 1 pictures the strategies returned for those parameters by the algorithms investigated in this paper: unreachable, accepting, rejecting, and continuing points are represented as white, blue (with a checkmark), red (with cross), and green squares respectively. Probabilistic points are circles, with similar colors (and marks). Other signs in the figure will be discussed later on.

We further define g i (x, y) as the probability that V = i and the point (x, y) is ever reached for i = 0, 1. This value is computed as: g i (x, y) = Path(x, y) × S i (x, y). Let Err(x, y) denote the probability of error when making a decision at point (x, y) (we detail in the next section how to calculate Err(x, y)). The probability that we reach (x, y) and stop there is (x,y) (g 0 (x, y) + g 1 (x, y)) × P stop (x, y). The cost of a strategy is therefore:

C = (x,y) (g 0 (x, y) + g 1 (x, y)) × P stop (x, y) × (x + y)
and the error of the strategy is:

E = (x,y) (g 0 (x, y) + g 1 (x, y)) × P stop (x, y) × Err(x, y)

The Problem Definition

The error threshold τ fixes the maximal error a strategy is allowed. A strategy is feasible if it satisfies the budget and error constraints m and τ , and optimal if it has minimal cost among feasible strategies. Our objective is to find the optimal strategy, given the priors e 0 , e 1 , s and the constraints m and τ .

Optimal stopping problem

Input: selectivity s, error threshold τ , error rates e 0 , e 1 and budget m Question: find a feasible strategy that minimizes C

The strategies (and grids) that we consider satisfy certain constraints, enumerated below. The objective is to minimize the cost C under the following constraints: 1. There is exactly one path going through the origin : cPath(0, 0) + tPath(0, 0) = 1 2. Conservation of paths: the weighted number of paths reaching point (x, y) is equal to the number of paths that continue through its predecessors (x -1, y) and (x, y -1): Path(x, y) = cPath(x -1, y) + cPath(x, y -1) 3. All strategies are limited to m queries: ∀(x, y), x + y = m =⇒ cPath(x, y) = 0 4. The error rate of the strategy is at most τ : Up till now, the introduction followed the definitions and equations of [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF], but the remainder of this section presents useful properties of strategies from a different perspective.

E = (x,y):x+y≤m tPath(x, y) × min(S 0 (x, y), S 1 (x, y)) ≤ τ (a)

General Framework

The probability that V = i given that (x, y) has been reached is given by: g i (x, y)/(g 0 (x, y)+ g 1 (x, y)) = 1/(1 + (g (1-i) (x, y)/g i (x, y))), where g i (x, y), as previously defined, is the probability that V = i and point (x,y) is reached for i = 0, 1. The error committed when making I C D T ' 1 6 a decision at (x, y) is therefore:

Err(x, y) = 1 1+g1(x,y)/g0(x,y)
if the decision at (x, y) is Pass

1 1+g0(x,y)/g1(x,y) if the decision at (x, y) is Fail (3)
To minimize error, a strategy should therefore opt for Pass if g 1 (x, y)/g 0 (x, y) > 1, and Fail if g 1 (x, y)/g 0 (x, y) < 1. The decision has no impact on error when g 1 (x, y) = g 0 (x, y).

We henceforth assume that all strategies adopt this decision rule since it minimizes error and has no impact on the cost. The decision to accept or reject thus only depends on the value of the likelihood ratio g 1 (x, y)/g 0 (x, y), which can be computed from x, y, and the parameters independently from the strategy. The following equation further details the location of accepting and rejecting points, and as such refines the property presented as the path principle in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF]:

log g 1 (x, y) g 0 (x, y) = log s 1 -s × e 1 1 -e 0 x × 1 -e 1 e 0 y = log s 1 -s + x log e 1 1 -e 0 + y log 1 -e 1 e 0
Remark. The contour lines for the likelihood ratio (i.e., the set of points with likelihood ratio g 1 (x, y)/g 0 (x, y) = c for some constant c) form a straight line on the grid, and all contour lines are parallel. Furthermore e 0 , e 1 < 1/2 so the ratio increases strictly with y and decreases with x.

We call the line (g 1 (x, y)/g 0 (x, y)) = 1 the decision line. Points above this line satisfy 1 < g 1 (x, y)/g 0 (x, y) and are therefore accepting, while points below the line are rejecting.

Example 2. For the running example with e 0 = .25, e 1 = .2, τ = .0075, m = 15 and s = .8, the decision line has equation: y = -log(.2/.75) log(.8/.25) x -log (4) log(.8/.25)

1.11 × x -2. This line is depicted in grey on all the grids in Figure 1.

Simple Optimizations

Before presenting the algorithms we describe three basic optimizations that they all employ. The first is borrowed from [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] and the other two are new.

Ladder Strategies

Parameswaran et al. [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] prove that under reasonable assumptions, all optimal strategies have a particular shape. They define a ladder strategy as a strategy whose terminating points can be partitioned into two converging sequences: the upper ladder and the lower ladder. The points of an upper ladder are given by a non-decreasing mapping from x to y whereas the lower ladder is a non-decreasing mapping from y to x. Furthermore, the points of the upper ladder stay above the decision line, whereas those of the lower ladder stay below. For example, all deterministic strategies represented in Figure 1 (i.e., a,b,c, andd) are ladder strategies. It has been conjectured in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] that any optimal strategy is a ladder strategy. We adopt this conjecture and focus in this paper on ladder strategies.

Pruning the Grid

Let (x dec , y dec) denote the point at which the decision line and x + y = m + 1 intersect, i.e., the unique point such that x + y = m + 1, (x -1, y) is accepting and (x, y -1) rejecting.

All points with x = x dec or y = y dec are terminating in any optimal strategy, since all points reachable from (x, y) return the same decision (e.g., Pass) so that continuing asking questions from (x, y) is pointless.

Example 3. In the running example, the budget bounds x + y by 15, so that (x dec , y dec) = [START_REF] Nilesh | Minimizing uncertainty in pipelines[END_REF][START_REF] Nilesh | Minimizing uncertainty in pipelines[END_REF]. All strategies presented in Figure 1 are therefore restricted to x, y ≤ 8.

Deciding Feasibility

A problem instance admits a feasible strategy (strategy meeting the error and budget constraints) if and only if the rectangular strategy σ rect (x dec , y dec) with terminating points only along x = x dec and y = y dec is feasible. Point (x dec , y dec) is obtained in constant time as the intersection of two lines: the decision line and the line x + y = m. The error of σ rect (x dec , y dec) can thus be computed as B(e 0 ; y dec , x dec) + B(e 1 ; x dec , y dec), where B denotes the incomplete beta function [START_REF] Dutka | The incomplete beta function -a historical profile[END_REF], incorporated in standard numeric libraries. One can thus decide feasibility in constant time for all practical purposes, and we therefore only consider feasible problems from now on.

Likelihood Ratio Test

The first solution we introduce is based on the Sequential Probability Ratio Test (SPRT), defined by Wald [START_REF] Wald | Sequential tests of statistical hypotheses[END_REF] in the context of quality control. As it may return strategies with unbounded budgets, we also consider its truncated variant which limits the budget but may exceed the error constraint. We finally propose an adapted version of SPRT to accommodate both budget and error constraints.

SPRT: Definition and Boundaries

General SPRT: Infinite Budget

The SPRT strategy defined by Wald [START_REF] Wald | Sequential tests of statistical hypotheses[END_REF] is the strategy that continues asking questions until the likelihood ratio (defined in Section 2.2) leaves interval]α, β[, where α and β depend on the error we are willing to tolerate under V = 0 and V = 1. To continue asking questions until reaching a point with Err(x, y) ≤ τ , we thus set α = τ 1-τ , β = 1-τ τ . The error in each decision point (hence the overall error of the strategy) is bounded by τ . As a corollary of Remark 2.2, grid points where Err(x, y) > τ are bound by two parallel lines, so the continuing points of the SPRT strategy are the points located between these SPRT lines, characterized in the following Proposition: Proposition 3.1. A point (x, y) satisfies Err(x, y) ≤ τ if and only if g 1 (x, y)/g 0 (x, y) / ∈] 1-τ τ , τ 1-τ [. Furthermore, the points with Err(x, y) ≤ τ are either the points above the line:

log 1-τ τ × 1-s s ≤ x log e1 1-e0 + y log 1-e1 e0
(accepting points) or the points below the line:

log τ 1-τ × 1-s s ≥ x log e1 1-e0 + y log 1-e1 e0
(rejecting points). We note that both lines have identical slopes and are therefore parallel.

Example 4. In the running example, the equations of the SPRT lines are approximately 1.11 × x -2 ± 4.2. To facilitate the comparison of strategies, the SPRT lines are represented in blue and red on every plot of Figure 1.

As shown by Wald [START_REF] Wald | Sequential tests of statistical hypotheses[END_REF], this property allows to approximate in constant time the expected cost of the SPRT. Even though an arbitrary number of questions may be needed to reach a decision, the expected cost is typically small [START_REF] Wald | Sequential tests of statistical hypotheses[END_REF].

I C D T ' 1 6

Filtering with the Crowd: CrowdScreen revisited

Limitations

Although SPRT is optimal when the budget for questions is unlimited [START_REF] Wald | Sequential tests of statistical hypotheses[END_REF], it yields unbounded strategies which may issue an arbitrary (possibly infinite) number of questions, and is thereby not suitable for our limited budget.

Truncated SPRT

To limit the maximum number of questions, Wald also introduces the truncated SPRT, similar to SPRT, except that all points with x + y = m are terminating to guarantee a decision is reached after at most m questions. Obviously, we then prune the strategy along the lines y = y dec and x = x dec as detailed in Section 2.3.

Example 5. Figure 1(a) represents the truncated SPRT strategy for the running example with brown dots around the truncation points. Its error; 0.008, exceeds τ , because the truncation includes some decision points with Err(x, y) > τ . To compensate for this additional error, any feasible strategy must therefore include points further from the SPRT lines.

The truncated SPRT provides a strategy within constant time, since one only needs to compute the likelihood ratio r of the current point (x, y) to decide whether to continue

r ∈] τ 1-τ , 1-τ τ [, accept (r ≥ 1-τ τ) or reject (r ≤ τ 1-τ]
). But the error of the strategy may be larger than τ since the truncation points have error larger than τ . In some instances, the truncated SPRT still returns a feasible strategy, e.g. when some decision points along the SPRT lines have an error slightly less than τ , thus compensating for the additional error caused by the truncation. But feasibility is not always guaranteed, and therefore the truncated SPRT cannot be trusted to solve our problem.

Adapting the SPRT Threshold

As SPRT cannot be trusted to provide feasible strategies, we propose a new adaptation of the SPRT strategy, called AdaptSprt, which preserves the simplicity of the SPRT approach but always returns a feasible solution.

Intuitively, the AdaptSprt algorithm computes the best strategy whose terminating points form two lines, parallel and equidistant to the decision line, plus truncation points along x = x dec and y = y dec . In other words, AdaptSprt starts from initial strategy σ rect (x dec , y dec) and turns the points further from the decision line into terminating points, as long as the error of the strategy remains below the authorized threshold. This guarantees that a feasible strategy will always be returned when there is one. For efficiency, we use binary search to determine which points can be turned into terminating points.

Algorithm AdaptSprt can be defined more formally in terms of the likelihood ratio. For all η > 0 let σ η be the strategy that continues asking questions on all points (x, y), x ≤ x dec , y ≤ y dec where the likelihood ratio belongs to]1/η, η[. AdaptSprt computes the maximal threshold η for which σ η is feasible. Algorithm 1 details the steps in AdaptSprt. We first build in O(m 2 log m) a list of all points (x, y) with x < x dec and y < y dec , ordered by increasing likelihood ratio r (lines 1,2 of Algorithm 1). The continuing points of the AdaptSprt strategy will be the first i points from the list, for some index i. As the error (resp. the cost) increases (resp. decreases) with i, the optimal strategy of this form is obtained by computing the minimal i that gives a feasible strategy. The strategy corresponding to index i is evaluated by procedure EvalErr in O(m 2), and we can use binary search to compute the minimal index within log(m 2) iterations. Hence an overall complexity of O(m 2 log(m)).

To represent the AdaptSprt strategy, the value r of the likelihood ratio of the i th point is sufficient: when asking queries we can calculate in constant time whether a point has likelihood ratio between 1/r and r, and thus reconstruct the grid on the fly. We can also compute the strategy P stop from the list and the index i, as shown in procedure EvalErr from Algorithm 1 if a grid representation is preferred.

Proposition 3.2. The (time) complexity of AdaptSprt is O(m 2 log(m)).
Algorithm 1: AdaptSprt (e 0 , e 1 , τ, m, s)

1 for all x, y, compute r(x, y) = g 1 (x, y)/g 0 (x, y) 2 L ← points (x, y) ordered by increasing r(x, y) 3 Compute i 0 = min{i | EvalErr(i, L) < τ } 4 return r(L(i 0)) procedure EvalErr(i : int, L : point list) 5 for j in {0, . . . , i -1} 6 P stop (L(j)) ← 0 7 for j in {i + 1, . . . } 8 P stop (L(j)) ← 1 9
Compute and return the error of strategy P stop Example 6. Figure 1(b) presents the AdaptSprt strategy for the running example, with termination lines represented as dashed lines. The truncation of the SPRT raises the error substantially above τ , so that AdaptSprt must adopt a likelihood ratio threshold η much larger than (1 -τ)/τ to compensate for the truncation. The dashed lines are thus almost one question beyond those of SPRT.

Deterministic Algorithms

We next investigate the scalability of algorithms proposed by Parameswaran et al. [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] for computing strategies. Specifically, we analyze the complexity of these algorithms and present optimizations that drastically reduce the running time of the algorithms compared to the more naïve versions presented in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF], thereby allowing to support larger budgets.

Enumeration of Ladder Strategies

The most naïve approach to compute an optimal strategy is to enumerate and evaluate all possible strategies. This naïve approach has complexity O(m2 × 2 m 2 /2) and is thus intractable.1 Parameswaran et al. [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] therefore proposed the ladder algorithm which limits the search to ladder strategies, as explained in Section 2.3. They report running times that are reasonable for small values of m (m ≤ 14), but grow exponentially and become unfeasible as m gets larger. We first establish a tight exponential bound for the complexity of ladder, and then introduce optimizations offering much shorter running time in practice, in spite of a similar worse case exponential complexity.

Filtering with the Crowd: CrowdScreen revisited

Asymptotic Analysis

We prove that the complexity of ladder is essentially O(2 2m). Our exponential bound bears witness to the efficiency of the ladder algorithm relative to the enumeration of all possible (not necessarily ladder-shaped) strategies. For this we can easily show the following lower bound: This is an overapproximation, yet a fairly accurate one: we show in Appendix A that for s = 0.5, e 0 = e 1 , the number of ladder strategies is Ω(2 2m /m 3).

Lemma

Enumeration with Incremental Evaluation

We detail in Algorithm 2 an optimized implementation that computes the cost and error of every ladder strategy incrementally, in overall O(2 2m). We first discuss our representation of a ladder strategy and then explain our optimizations. As mentioned in Section 2.3, a ladder strategy consists of two distinct sequences of points: the upper ladder and the lower ladder. Each ladder is represented as an array with size x dec storing integers from -1 up to y dec . Array up and down represent respectively the upper and lower ladder: down(i) and up(i) record respectively the lowest and highest reachable points on column i according to the strategy. Example 8. Figure 1(c) represents the optimal ladder strategy for our input parameters: up = [5, 5, 6, 7, 8, 8, 8, 8] and down = [-1, . . . , -1, 0, 1]. None of the other algorithms depicted returns the optimal strategy on that instance, although the performances are quite similar.

We adapt an old technique (see [15, Algorithm P]) to iterate over all upper ladders in increasing lexicographic order, and enumerate for each one the lower ladders in decreasing order. As a result, arrays representing successive strategies generally differ on the last few columns only, which reduces the amount of work required to evaluate a strategy.

Two simple optimizations allow us to speedup the enumeration: (1) we evaluate incrementally the cost and error of strategies, and (2) we skip some strategies that cannot contribute an optimal solution. For this, we store two arrays errorTill and costTill, where errorTill(i) records the partial sum of E restricted to the points with x ≤ i, and similarly with costTill for C. We update errorTill, costTill, and Path from one strategy to the next (line 7 of Algorithm 2). The iterator down.next() returns (-1, []) if down is already the minimal ladder, and otherwise returns the greatest possible ladder down smaller than down, together with the smallest index i in which down and down differ. To skip hopeless candidates, we set down(j) to down(i) for all j > i when the error up to column i exceeds the threshold, or the cost up to column i exceeds the cost of the best strategy encountered so far (line 13 in Algorithm 2).

Example 9. When experimenting on the running example, more than half the strategies were skipped in line 13, and the average index i was 5.5. Some 16 points were visited per strategy, on average, when updating arrays and matrix in line 7, instead of 56 without incremental evaluation.

We show in Appendix A that the average number of cells updated on line 7 is m. As a consequence, Algorithm 2 has complexity O(2 2m /m) × O(m). We have thus proved that an optimal ladder can be obtained in O(2 2m), and the number of possible ladders strategies is exponential. This does not preclude the existence of faster algorithms, and we leave lower bounds on the complexity of the problem for future research.

Shrink

Another interesting heuristic-based algorithm introduced by Parameswaran et al. [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] is shrink. The strategies returned by this heuristic are not necessarily optimal, but are hardly worse than the optimal ladder strategy in practice, while the running time is much improved. A naïve implementation following [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] has complexity O(m 5) and therefore, does not scale well for large values of m. We next show how shrink can be run in O(m 4).

We recall the shrink heuristic from [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] in Algorithm 3. This algorithm starts with the initial strategy σ triangle (m) having terminating points along the line x + y = m. At each iteration, for each terminating point (x, y) on the grid, we check if the solution would remain feasible if we were to turn one of the neighboring points (x -1, y), (x, y -1) into a terminating point. For all feasible point we calculate the change in cost ∆C and error ∆E that would result from shrinking the point. We then shrink the point with the largest ratio -∆C ∆E and repeat this step until no more points can be shrunk. We thus use ratio -∆C ∆E in order to maximize the cost removed from the strategy while minimizing the additional error.

Example 10. In Figure 1(d), we shade points that were turned into terminating points along the successive iterations of shrink, with darker points corresponding to later iterations 2 . The first point is thus (0, 7), followed by (1, 7), (0, 6), . . . , (6, 1), and (5, 0). Algorithm shrink from [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] is polynomial, but still pretty slow. We next present new equations for the ratios together with a pruning optimization, that make it run faster.

2 Terminating points with x = 8 or y = 8 are particular in that they were not shrinked but were terminating from the beginning. We color them in dark red and blue.

Algorithm 3: shrink (e 0 , e 1 , τ, m, s)

1 Compute S 0 , S 1 , x dec , y dec 2 for all x, y:

P stop (x, y) ← 1 if x + y = m, 0 otherwise 3 Compute Path, ∆ Cost and ∆ Err 4 Error ← ∆ Err (0, 0) 5 S ← {(x,y) along the boundary | Error+Path(x, y) × ∆ Err (x, y) < τ } 6 while S = ∅ 7 (x 0 , y 0) ← point of S maximizing -∆ Cost (x,

Computing Cost/Error Ratios Efficiently

A major source of inefficiency in the above shrink implementation is the calculation of the Cost/Error ratio in each iteration. The naïve implementation of shrink computes the Cost/Error ratio separately for each terminating point on the grid, by evaluating the cost and error of the shrunken strategy. As there are Ω(m) terminating points this requires Ω(m 3) operations per iteration. We introduce new equations that help compute ∆ Cost (x, y) and ∆ Err (x, y) for all points (x, y), with overall complexity O(m 2). Algorithm shrink was initially designed to compute deterministic strategies, but in Section 5 we extend it to probabilistic strategies, so we present all equations in a general probabilistic setting.

Impact of Modifying the Probability to Stop

Let us denote by CostImpact(x, y) and ErrorImpact(x, y) the average contributions to cost and error of one single path through (x, y) (and possibly stopping at (x, y)). We then have:

CostImpact(x, y) = P stop (x, y) * X + (1 -P stop (x, y)) * Y ErrorImpact(x, y) = P stop (x, y) * Z + (1 -P stop (x, y)) * T
where X, Y , Z and T are defined as

X = (S 0 (x, y) + S 1 (x, y)) * (x + y) Y = CostImpact(x + 1, y) + CostImpact(x, y + 1) Z = min(S 0 (x, y), S 1 (x, y)) T = ErrorImpact(x + 1, y) + ErrorImpact(x, y + 1)
Intuitively, X and Z are the contribution to the overall cost and error from any sequence of x negative answers and y positive answers, whereas Y and T are inductively defined as the contribution to cost and error of a path traversing the node. To compute the impact of modifying the strategy at (x, y) in terms of these expressions, let E, E and C, C denote the cost and error of the strategy before and after adding δ ∈ [-1, 1] to P stop (x, y). Then

E -E = δ × Path(x, y) × ∆ Err and C -C = δ × Path(x, y) × ∆ Cost where ∆ Cost = X -Y and ∆ Err = Z -T (4)
We observe in these equations that the Cost/Error ratio is independent of δ and Path(x, y), and is given by γ(x, y) = (T -Z)/(X -Y). CostImpact and ErrorImpact can be computed recursively in O(m 2) over the whole grid, starting from point (x dec , y dec). We have thus proved that ∆ Err and ∆ Cost can be computed at all points in overall O(m 2) according to Equations 4. Furthermore, Path can also be computed in O(m 2) according to the preliminaries, so that each iteration of shrink takes time O(m 2). In addition, there are at most O(m 2) such iterations, since the number of iterations is at most the number of squares on the grid. Therefore, our implementation of shrink runs in O(m 4).

Proposition 4.2. With our optimizations, the shrink algorithm runs in O(m 4).

Note however that the actual number of iterations is proportional to the number of points removed from the grid so the running time is quadratic when few points are removed.

Minimizing Shrink Iterations

To further speed up the computation we show how the pruning optimization described in subsection 2.3 can spare about half the iterations. Specifically, we prune the initial strategy σ triangle (m) into σ rect (x dec , y dec). To justify this move, we show in Appendix A that the points that are pruned are anyway the first points eliminated by shrink.

Proposition 4.3. The first iterations of shrink from the initial strategy σ triangle (m) eliminate the points with x > x dec or y > y dec until the strategy σ rect (x dec , y dec) is considered. Consequently the solutions returned by shrink from initial strategy σ triangle (m) and from σ rect (x dec , y dec) are identical.

Remark. Another heuristic, symmetric to shrink, was introduced in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF]. This growth heuristic starts with the initial strategy asking 0 questions: all points are initially terminating, and then iteratively turns terminating points into continuing points. Heuristic growth did not always return a feasible strategy, but we show in Appendix A that adopting a better initial strategy wipes off the problem. The performances of growth and shrink are fairly similar, so we do not detail the heuristic further in this paper.

Randomized strategies

Previous sections focus on deterministic strategies, for which we have no optimal scalable algorithm. But if we search instead for probabilistic strategies, our optimization problem becomes continuous, and the constraints presented in Section 2.1 are all linear. We can thus use linear programming to compute an optimal solution in Ptime [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF]. How are the probabilistic and deterministic strategies related? In particular, can we compute reasonably good deterministic strategies from probabilistic ones?

In this section we first prove that an optimal probabilistic strategy has essentially a single probabilistic point (point where P stop differs from 0 and 1). Continuing at this point thus provides a deterministic strategy. Conversely, we show that a minor modification to the shrink algorithm allows to compute an optimal probabilistic strategy.

Randomization is Limited

We prove in Appendix A that in any optimal strategy the Cost/Error ratio is the same in all probabilistic points, and this ratio is not greater than the ratio of any terminating point nor smaller than the ratio of any continuing point. We also prove that the probability of terminating can be transferred from a point to any point with higher ratio without increasing error and cost, and exploit this property to prove the following result:

I C D T ' 1 6

The error rates, summarized in Figure 6, are relatively high because answers were rarely obvious. For question 6 in particular, e 1 was above .5 which means the users more often than not missed the presence of eggs in the dishes. We focus our analysis on questions with reasonable error rates (Q1 to Q4).

Sensitivity of the model.

Applying our algorithms on a real crowd raised new issues such as the adequacy of the model considered. Our algorithms indeed assume the crowd behaves as a random oracle according to error parameters known beforehand. Our synthetic experiment in Figure 3 measures the sensitivity of a strategy computed by shrink to input parameters: it shows the expected error and cost when the strategy is executed on an oracle with error parameters diverging from their assumed values. A related issue is the relevance of approximating workers as a random oracle with uniform error over tasks: a threshold effect appears when we try to request arbitrarily high accuracy: when τ is set to a very small values, adding workers did not always provide in practice additional information to complete the most difficult tasks with enough accuracy.

Conclusion and Related work

This paper investigates the optimization of queries that filter data using humans. We provided new theoretical insights into the problem, and so designed two novel algorithms -AdaptSprt and shrinkp -that overcome the scalability issues of previous proposals. We also optimized algorithms ladder and shrink from [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF], and evaluated thoroughly all algorithms. Our results show that AdaptSprt is the only algorithm which performs well for all budgets, while ladder performs marginally better for small budgets, but is still extremely slow with larger ones (even when optimized), whereas for moderate budgets our optimized shrink works well. With regard to probabilistic strategies, the results show shrinkp to have superior reliability, compared to the previous proposals that rely on linear solvers. In

I C D T ' 1 6

summary, our results show that AdaptSprt and shrinkp both scale well for large budgets.

Although cost wise shrinkp is optimal, the actual difference of cost is negligible while the running time of AdaptSprt is superior. We already discussed extensively the CrowdScreen framework [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] revisited in this paper. Parameswaran et al. have reviewed in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] the connections with the related fields in machine learning and statistics, and we thus do not repeat this here and only briefly survey two directions of related work: sequential testing, and classifying with the Crowd.

Sequential tests have been used in numerous fields since their introduction by Wald [START_REF] Wald | Sequential tests of statistical hypotheses[END_REF]: quality control, clinical research, acoustic detection, econometrics, etc. Numerous variants have been considered for computing efficient tests, depending on the number of categories tested to which an object may belong; the cost function to be optimized; the form of the strategy boundary [START_REF] Anderson | A modification of the sequential probability ratio test to reduce the sample size[END_REF] and budget constraint [START_REF] Frazier | Sequential hypothesis testing under stochastic deadlines[END_REF]; or on whether questions are issued one at a time or in batches [START_REF] Lehmacher | Adaptive sample size calculations in group sequential trials[END_REF]. To the best of our knowledge, however, the problem of efficiently computing the optimal test, in the sense studied here, has not yet been addressed. Closest to our work is the system of [START_REF] Gao | An online cost sensitive decision-making method in crowdsourcing systems[END_REF] considering the profit/penalty of correct/wrong answers in a multi-question scenario. Extending our work into such settings is left for future work.

The optimal strategy depends on the query selectivity and the estimated users error. Experiments in [START_REF] Liu | Variational inference for crowdsourcing[END_REF] stress that classifier performance improves a lot with a proper choice of prior error rates. In practice, the nature of error can be estimated by asking questions to the crowd on a small test set for which the correct answer is already known. Online methods to calculate error rates are discussed in [START_REF] Lin | Dynamically switching between synergistic workflows for crowdsourcing[END_REF], [START_REF] Dai | Decision-theoretic control of crowd-sourced workflows[END_REF], [26] where the error rates are tuned based on comparison of the strategy's decision and the users' answers. One goal of our framework is to avoid any kind of computation online by fixing the filtering strategies beforehand. Adapting strategies according to online error computation is left for further research.

Classification problems with heterogeneous workers and data have been considered in particular in the machine learning literature, exploiting a wide range of techniques from multi-armed bandit problems [START_REF] Abraham | Adaptive crowdsourcing algorithms for the bandit survey problem[END_REF] to singular value decomposition [START_REF] Karger | Efficient crowdsourcing for multi-class labeling[END_REF], Bayesian learning [25] and variational inference in graphical models [START_REF] Liu | Variational inference for crowdsourcing[END_REF]. Users and tasks with diverging characteristics raise the challenge of selecting tasks and users to make the most of the budget. For example, Karger et al. [START_REF] Karger | Efficient crowdsourcing for multi-class labeling[END_REF] propose an algorithm to assign questions to heterogeneous workers with optimal tradeoff between redundancy and accuracy. Empirical models have also been proposed to improve the accuracy of classification by identifying annotation patterns (inherent difficulty of images, groups of users with similar behaviors) [25,[START_REF] Liu | Variational inference for crowdsourcing[END_REF]. Incorporating some of these ideas in our work is a challenging future work.

Our results focus on binary filters that classify items in two disjoint sets, but can easily be adapted to classify items among n classes, though complexity increases exponentially with n. Devising optimizations to improve performance in this setting is thus a future challenge. Furthermore, processing several filters simultaneously may allow to exploit correlations between filters, or to select dynamically the questions that would be most informative [START_REF] Boim | Asking the right questions in crowd data sourcing[END_REF][START_REF] Nilesh | Minimizing uncertainty in pipelines[END_REF][START_REF] Kaplan | Answering planning queries with the crowd[END_REF].

Finally, empirical studies show that batching tasks may have positive impact on Crowd-Sourcing efficiency [START_REF] Marcus | Human-powered sorts and joins[END_REF]. Similarly, pre-recruiting schemes [START_REF] Michael | Analytic methods for optimizing realtime crowdsourcing[END_REF], that allow to obtain answers from the workers within seconds, may help to exploit the full benefit of sequential testing without increasing latency. Devising optimization strategies with batches is challenging. Appendix A Proof. Every ladder strategy can be viewed as a pair of paths from (-1, -1) to (x dec , y dec): one for the upper ladder, and one for the lower one. The number of upper paths can be bounded by the number of paths with x dec rightward and y dec upward moves:

Number of ladder strategies

x dec + y dec x dec ≤ m m/2 ∼ 2 m 2 mπ (as m → +∞)
The number of ladder strategies is therefore bounded by

2 2m * 2/(mπ) ∈ O(2 2m /m)
This is an overapproximation, yet a fairly accurate one:

Lemma 12. For s = 0.5, e 0 = e 1 , the number of ladder strategies is Ω(2 2m /m 3).

Proof. This is because in that case x dec = y dec = m/2 and so the number of strategies is at least the number of ways to combine a ladder from (-1, 1) to (m/2 -2, m/2) staying above y = x + 2 with a ladder from (1, -1) to (m/2, m/2 -2) staying below y = x -2, where N = m/2. These combinations do not take into account all possible strategies, so we only get a lower bound on the number of strategies. Nevertheless these combinations guarantee that the upper ladder and lower ladder do not meet, which simplifies the computation since we then simply multiply the number of upper and lower ladders. The number of such ladders is given by the Catalan numbers, namely, if we set N = m/2 -1:

1 N + 1 2N N ∼ 4 N N 3/2 √ π
hence a bound of Ω(2 2m /m 3) strategies to consider.

Complexity of ladder enumeration

We prove in this section that our implementation of ladder meets the complexity bound claimed in Proposition 8:

Proposition : Algorithm 2 runs in O(2 2m).

Implementation details

For optimization purposes, we adopt a different order depending on whether the slope of the decision line is greater than 1 (e 0 ≥ e 1) or not. In this proof we only consider the case e 0 ≥ e 1 since a symmetric algorithm covers the case e 1 > e 0 . We consider strategy (up, down) to be smaller than (up , down) if up < lex up , or up = up and -down < lex -down . In other words, we follow a lexicographic order on (up, -down), where -down is the array obtained from down when multiplying every value by -1. In case, the initial ladder strategy has both ladders tightly close to the decision line, and the final strategy is the rectangle σ rect (x dec , y dec). We say that down is modified at column i if down(i) is decremented and all down(j) (j > i) are reset to their maximal possible value below the decision line, with down(j) staying the same for all j < i. At each enumeration step, only two cases may occurr: either the upper ladder is modified and the lower ladder is "reset" to the minimal one, or the lower ladder only is modified at some column i.

We compute once and for all the values of all S 0 (x, y), S 1 (x, y), and store them in a matrix. We also precompute a function returning the lowest point above the decision line, decLine, such that decLine(x) = min{y | S 1 (x, y) ≥ S 0 (x, y)}. This value can anyway be computed in constant time based on section 2.2 since S 1 > S 0 iff g 1 /g 0 > 1. We then maintain the value of Path(x, y) in a matrix and represent the upper and lower ladders as a pair (up, down) of arrays with size x dec + 1, where up(i) records the lowest terminating point (x, y) of the upper ladder ladder with x = i, and down(i) records the corresponding highest terminating point of the lower ladder.

In order to compute incrementally the cost and error of strategies when the ladders are modified we also store two arrays errorTill and costTill, where errorTill(i) records the partial sum corresponding to E restricted to the points with x ≤ i, and symmetrically with costTill for C. When the strategy is modified only from column i, i.e., only on points with x > i for some i ≥ 1, a careful analysis of the equations shows that we can use the previous value of Path(i, y), errorTill[i] and costTill[i] to compute in O((m -i) × m) the error, cost, and corresponding new matrices and arrays for the new strategy.

Complexity Analysis

We show that ladder strategies can be enumerated efficiently and evaluated in amortized cost O(m) thanks to incremental computation. Let us fix a given upper ladder and consider the enumeration of all corresponding lower ladders. We first show that on average only the k last columns are modified. The intuition is quite simple: down is most frequently modified at column y dec , less frequently at y dec -1, etc.

Every time down is modified at some column j ≤ x dec -i, down(i) is then reset to its maximal value decLine(i) in the resulting ladder (and similarly for all i ≥ i. Consequently, the number of times down is modified at some column j ≤ x dec -i is exactly the number L(i) of possible lower ladders up to (i, decLine(i)). On average, down is thus modified at column

x dec -1 -(L(x 0) + L(2) + • • • + L(x dec -1))/L(x dec
) where x 0 is the smallest i such that decLine(i) > 0. As we assumed the slope of the decision line to be greater than 1, decLine(i+1) ≥ decLine(i)+1, and therefore we claim that L(i+1) ≥ 2×L(i) for all i ≥ x 0 . To prove the claim, let us denote by L(x, y) the number of possible lower ladders up to (x, y). Then L(i) = L(i, decLine(i) -1) and

L(i + 1) = L(i + 1, decLine(i + 1) -1) = • • • = L(i + 1, decLine(i)). Furthermore, L(i + 1, decLine(i)) = L(i, decLine(i)) + L(i + 1, decLine(i) -1)
and L(i + 1, decLine(i) -1) ≥ L(i, decLine(i) -1). Combining those equations, we get

L(i + 1) ≥ 2 × L(i). We thus get (L(x 0) + L(x 0 + 1) + • • • + L(x dec -1)) ≤ (k 1/2 k) × L(x dec) I C D T ' 1 6
Filtering with the Crowd: CrowdScreen revisited so that, on average, down is modified in the last two columns only. The cost of evaluating the corresponding strategy is thus O(2 * m).

Overall, there are O(2 m / √ m) upper ladders to consider, according to Lemma 7. For each such ladder, the initial evaluation has cost m 2 , and the next O(2 m / √ m) lower ladders are each evaluated in linear time. The corresponding complexity is therefore

O(2 m / √ m × (m 2 + 2 × m × 2 m / √ m)) = O(2 2m).

Algorithm shrink Proposition 4.3:

The first iterations of shrink from the initial strategy σ triangle (m) eliminate the points with x > x dec or y > y dec until the strategy σ rect (x dec , y dec) is considered. Consequently the solutions returned by shrink from initial strategy σ triangle (m) and from σ rect (x dec , y dec) are identical.

Proof. Every point (x, y) with x > x dec has an infinite Cost/Error ratio since the ultimate decision is "accept" so that deciding immediately has no impact on error while decreasing cost. Symmetrically, every point with y > y dec also has an infinite Cost/Error ratio. Contrariwise, points with x < x dec and y < y dec have a finite ratio Cost/Error during those first iterations since the ultimate decision may still change after that point, so that advancing the decision at (x, y) strictly increases the error. Points with x > x dec or y > y dec are thus shrinked first.

Growth

We next show how to remedy a major shortcoming of the growth algorithm from [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF].

The growth heuristic proposed in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] is essentially symmetric to shrink. This algorithm starts with the initial strategy σ null asking 0 questions: all points are initially terminating.

For each terminating point, we calculate the change in cost ∆C and error ∆E obtained when turning that point into a continuing point. We then turn the point with the smallest ratio -∆C ∆E into a continuing point, and repeat this step until the error drops below the threshold. This heuristic may also terminate when all terminating points have ∆E = 0, however, which justifies why infeasible strategies are sometimes returned by the growth algorithm from [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF]. We next show that a more careful initialization of the strategy staves off the problem. Specifically, we show that one should use σ rect (x 0 , y 0) as the initial strategy, where (x 0 , y 0) intuitively denotes the closest point to the origin on the decision line.

More formally, we define (x 0 , y 0) as (0, 0) if strategy σ null is feasible, and otherwise let x 0 ≥ 1, y 0 ≥ 1 be such that (x 0 -1, y 0) is accepting, (x 0 , y 0 -1) is rejecting, and x 0 + y 0 is minimal. Remark 2.2 guarantees that (x 0 , y 0) is unique, and even that x 0 = 1 or y 0 = 1. The following proposition shows that σ rect (x 0 , y 0) is a better initial strategy for growth than σ null . Proposition 8.1. When the growth heuristic returns a feasible strategy from the initial strategy σ null , it returns the same strategy from σ rect (x 0 , y 0). Furthermore, the growth heuristic always returns a feasible strategy (on feasible instances) from the initial strategy σ rect (x 0 , y 0).

Proof. If growth returns a feasible strategy, then ∆E < 0 for point (0, 0) in σ null , hence (0, 1) is accepting and (1, 0) is rejecting. Consequently, x 0 = y 0 = 1 so that σ rect (x 0 , y 0) is the strategy obtained after one iteration of growth: the final strategies returned in both cases are therefore the same. With our initialization, one can easily prove that at any stage of the algorithm the strategy contains a terminating point (x, y) such that ∆ E > 0, until smaller cost, according to the transfer property above. This contradicts the optimality of the strategy.

Optimality of shrinkp

Proposition 5.2: The probabilistic strategy returned by algorithm shrinkp is optimal. sketch. We fix some parameters e 0 , e 1 , τ, m, s, and deduce the corresponding values of x dec , y dec as in Section 2.3. If the trivial strategy is feasible, the result is obvious. Otherwise, we first observe that in shrinkp and in any optimal probabilistic strategy, the error is exactly τ . Let C shrink be the cost of the shrinkp strategy. Let σ denote a feasible strategy with error τ . Let k the number of points on which σ differs from the shrinkp strategy. We show by induction on k that the cost C σ of σ is at least C shrink Let (x 0 , y 0) denote the first point, in the order of "elimination" by shrinkp, on which σ and shrinkp disagree. Let also S 0 denote all the points visited before (x 0 , y 0) by shrinkp, and S 1 the remaining points. We have thus partitioned the set of all points into S 0 S 1 {(x 0 , y 0)}, and σ and shrinkp agree on all points of S 0 . By definition of shrinkp, (x 0 , y 0) is the maximal ratio in the strategy σ 0 that terminates on all points of S 0 and continues on others (except those with x = x dec or y = y dec). Let Strat denote the set of all strategies σ that satisfy the following three conditions: (1) σ agrees with σ on S 0 (2) σ (x 0 , y 0) = shrinkp(x 0 , y 0), and (3) σ (x, y) ≤ σ(x, y) for every (x, y) ∈ S 1 . We wish to prove that there exists a strategy in Strat with error exactly τ and cost no higher than C σ .

We first study the maximal and minimal error achieved by strategies in Strat. By definition of shrinkp, the probability of terminating at (x 0 , y 0) is higher in shrinkp than in σ. Consequently, the strategy in Strat that agrees with σ on S 1 has error higher than σ, hence than τ . On the other hand, the strategy in Strat that continues with probability 1 on all points of S 1 except those with x = x dec or y = y dec has error lower than shrinkp, hence than τ . What is more, the error is a continuous function of the strategy, and Strat is a connex set. Therefore, there is a strategy σ in Strat with error exactly τ . We claim that this strategy is at least as efficient as σ.

Claim: the expected cost of σ is at most that of σ.

According to this claim, there is a feasible strategy, σ with cost at most C σ that differs with shrinkp on at most k -1 points, which concludes our proof by induction.

Let us prove the claim. By construction of Strat, both strategies σ and σ can be obtained from σ 0 by increasing the probability of terminating at (x 0 , y 0) and some points of S 1 . The increase is larger at (x 0 , y 0) and smaller at all other points for σ w.r.t. σ. Furthermore, the ratio of (x 0 , y 0) in σ 0 is higher than the ratio of any point in S 1 . As a consequence, the ratio between cost and error for strategy σ is no smaller than this ratio for σ . We conclude that the cost of σ is at least the cost of σ . We next provide a more formal proof of this: let N = |S 1 | + 1, and let r 1 , r 2 , . . . , r N denote the Cost/Error ratios in σ 0 of the points from S 1 {(x 0 , y 0)}, by increasing order of x + y (with ties ordered by increasing x, for instance). We denote by j the index of (x 0 , y 0) in this ordered sequence. For each 0 ≤ i ≤ N , we also denote by E i (resp E i) the error of the strategy which agrees with σ (resp σ) on the i first points in the above order, and agrees with σ 0 on all other points. For each 1 ≤ i ≤ N , we then define δ i = E i -E i-1 and δ i = E i -E i-1 . According to Lemma 13, the cost of σ differs from the cost of σ 0 by i r i δ i , whereas the cost of σ differs from the cost of σ 0 by i r i δ i . What is more, i δ i = i δ i , δ j ≤ δ j , and for all i = j we have δ i ≥ δ i while r j > r i . The result follows.

Remark. We observe that in spite of its similarities with shrink, Algorithm growth does not extend so easily into an optimal probabilistic algorithm. One may indeed wish to consider the algorithm that starts with the initial strategy σ rect (x 0 , y 0) presented above Proposition 8.1 and then in each iteration maximizes the probability to continue at the point minimizing the Cost/Error ratio while preserving the error above τ . But this algorithm does not guarantee an optimal probailistic solution.

Deterministic vs Probabilistic Strategies

One shows easily that an optimal deterministic solution will be an optimal probabilistic solution only if it has error exactly τ , which has probability 0 when parameters are random floats, or if the trivial strategy is feasible. In our experiments, the cost was indeed strictly lower for the probabilistic strategy whenever the trivial strategy was not feasible (s ∈]τ, 1τ [). We actually observed in our experiments that the trivial strategy is feasible in 10% of all instances, and show in the remark below that this proportion is coherent with theory.

The small sample size in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] could explain slight differences in figures, but does not explain why the proportion of strictly better instances does not steadily increase with budget in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF]Figure 5a]. We assume the discrepancy might be due to rounding approximations in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF]Figure 5a], since the authors do not detail how they round parameters and compare floats.

Remark. For our choice of random parameters (s ∈ [0, 1] and τ ∈ [0.005, 0.1]), the probability of getting a trivial instance is 0.105.

Proof. We need to compute the probability p of having s ≤ τ or 1 -s ≤ τ . This is clearly twice the probability that s ≤ τ , hence: We conclude that p = 0.105.

Appendix B

We complement our theoretical study with an experimental evaluation of the algorithms. We contrast the running time and robustness of our algorithms, and compare the expected cost of the strategies produced. Sections 9.2,9.3 and 9.4 average measures over numerous synthetic random instances, Section 9.5 investigates particular parameters, and finally Section 9.7 reports on some experiment with real crowd answers. Figure 4 (a), (b) and (d) and Figure 5 use logarithmic scales to help distinguish the curves and emphasise small budgets.

Experimental Settings Algorithms

Experiments in this section evaluate all algorithms described in this paper: AdaptSprt from Section 3, ladder and shrink from Section 4, and shrinkp, as well as the linear

I C D T ' 1 6
Filtering with the Crowd: CrowdScreen revisited programming approach from Section 5. The performances of growth and shrink are quite similar, so we do not detail the heuristic further in this paper. The performance of the linear programming approach is sensitive to the solver and so we compared three solvers, denoted by xcheck, exact and gurobi, and we denote by linear the linear program algorithms when there is no reason to distinguish solvers. Our gurobi program uses the commercial Gurobi optimizer, reported to be one of the fastest, with default parameters. Our xcheck and exact programs use the GLPSol solver from the GNU Linear Programming kit, with options "xcheck" and "exact" respectively, and with other parameters kept to their default values.

The "exact" option implements the simplex algorithm with exact (rational) arithmetic, whereas "xcheck" first uses the simplex with floating point arithmetic, but checks the final basis using exact arithmetic and performs a few more simplex iterations if the solution is not optimal. As a consequence, the Gurobi solver is faster but less accurate than GLPSol with "exact" or "xcheck" options.

Environment

We implemented all algorithms in Python, using the default options in PyPy 1.8.0 and CPython 2.7.3. The linear solvers Gurobi and GLPSol are written in C, but the program itself was written in Python and issued calls to the solvers using the default options of the PuLP interface. The experiments were run on an Intel i7-2600 CPU using a 32bit Ubuntu 12.04 system. All experiments were planned such that each CPU would run a single experiment at a time.

Parameters

We sample uniformly the parameters, represented as floats (not-rounded). In order to compare with previous work [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF], we sample the error rates e 0 , e 1 between 0.05 and 0.45. the average error tolerated τ , between 0.005 and 0.1 the selectivity s in [0, 1]. For each value of the parameters, we run all algorithms on increasing values of m: 5, 6, . . . , 25, then 30, 35, . . . , 50, 60, 70, . . . , 100, and finally 200, 300 . . . , 1000. We recall that we only consider feasible instances. We point out like [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] that in general a set of parameters e 0 , e 1 , τ, s will not be feasible for a small value of m, but will become so beyond a certain value m 0 of m, as evidenced in Figure 4(a). The corresponding instances with m < m 0 are dropped and those with m ≥ m 0 are preserved into our aggregated results. As a result, the average expected cost of the strategies will generally increase with m since harder strategies become feasible.

Timeout

Some algorithms did not return any solution after several days for some values of the parameters with large budgets, so we decided to interrupt experiments after a timeout of 5 min. When an algorithm fails to return a solution for some value of the parameters on m = m 0 , we skip the evaluation of the algorithm for those parameters on all m > m 0 .

Success Rates

In this section, we first discuss why an algorithm might fail to return a reasonably good strategy and then proceed to investigate the limitations of specific algorithms.

Limiting Factors

The algorithms may fall short of their formal specification on several grounds. First, floating point arithmetics may produce inaccurate results, as many numeric approximations are combined along the calculation of error and cost, which may affect the choice of strategy by our algorithms. This problem may often be staved off by using high-precision numeric libraries, such as mpmath for python, but this quick fix increases the running time by a large factor. Another issue is the running time, as we showed that many of the algorithms have a high complexity. Due to limited hardware resources, large budgets can cause these algorithms to run out of time or memory.

Failure Rates

Figure 4(b) measures how often our algorithms fail to return correct strategies. We consider the output as incorrect when either the output strategy is infeasible or the algorithm does not terminate within 5 minutes. In addition, for all optimal probabilistic algorithms, we also consider any solution whose cost was at least 0.01 larger than the cost of the optimal solution to be a deviation from the expected result. The Figure attests that AdaptSprt was successful on all instances. The same holds for the optimized shrink algorithm, except on 3 instances where it failed due to floating point approximations. Our Gurobi program suffers even more from numerical instability as some output strategies were infeasible while others were suboptimal from m = 30. Gurobi also ran out of memory for m > 900. The ladder,

I C D T ' 1 6

exact and xcheck programs systematically timed out for moderate budgets, around m = 20, 40, and 80 respectively, but otherwise returned optimal strategies.

Time and Cost Performance

We next evaluate the running time of each algorithm, and the expected cost of the strategies produced.

Running Time

Figure 4(c) measures the average running time of each algorithm as a function of the budget. The running times of deterministic algorithms are coherent with their theoretical complexity, and in particular AdaptSprt is clearly the fastest. The running times of probabilistic algorithms depend heavily on the choice of solvers. Unlike exact and xcheck, the gurobi solver is generally quite efficient and returns the solution within half a minute for m ≤ 900. Finally we obtained a similar graph when considering the worst instances instead of averaging the running time.

Quality of the Strategy

The expected cost of the strategies are reproduced on Figure 4(e). All algorithms yield similar costs, with a 8% gap between the optimal and worst one. As expected the optimal probabilistic solutions shrinkp, exact, and xcheck have lowest cost. Next comes the optimal deterministic solution ladder with the shrink heuristic close behind, while AdaptSprt is slightly worse. The gurobi solver, however, often provides grossly suboptimal solutions, due to numerical instability. Contrary to what was observed in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF]Figure 5a], the optimal probabilistic solution always improved upon its deterministic counterpart except for trivial instances (strategies terminating at (0, 0)). We elaborate in the section "Deterministic vs Probabilistic Strategies" why our numbers make more sense.

We next compare our sequential strategies with naïve strategies that fix the sample-size, i.e., with the optimal rectangle strategy rect. The cost of the optimal rectangle strategy is up to 5 times, and on average 1.5 larger than the cost of shrink, and the gap increases with the budget from 1.2 when m = 5 to 1.8 when m > 300.

Shape of the Strategies

Some properties about the decision point (e.g., that it lies closer to the y-axis when s is small [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF]) derive from its location across the decision line. But it is more of a surprise that optimal strategies generally do not use the full budget available. By definition, AdaptSprt strategies use the full budget, but Figure 4(d) shows that most ladder and shrink strategies do not. In this Figure , we plot for all m the maximal number of questions issued by an average ladder (resp. shrink) strategy with budget m. The maximal number of questions issued by the most demanding shrink strategy with budget m from our sample coincides with the budget (red curve; the curve for ladder turned out to coincide, so was omitted). Hence some ladder and shrink strategies use the maximal budget m, but on the other hand an average strategy only uses half. What is more, shrink uses a slightly smaller part of the budget on average than ladder. Further experiments show that shrink does not shrink many more points than shrinkp: on average, for a budget m, the shrink and shrinkp strategies only differ on m/2 points.

Fixed Parameters

We also monitored the running time and cost for specific parameters, when only m varies. The figures were similar for the running time, but not for cost, which tends to decrease with the budget when other parameters are fixed.

Quality of the Strategy

Figure 5 presents the expected cost of the strategies returned by each algorithm for varying m while all other parameters are fixed to e 0 = 0.2, e 1 = 0.25, τ = 0.05, s = 0.6, which allows to compare with the similar experiment in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF]. We observe that the cost decreases sharply during the first few steps but stabilizes beyond m = 14. The relative order of the strategies is similar to their order in the aggregated results. Surprisingly, the costs for shrink do not match the ones reported in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF]Figure 4a]: our shrink strategy is more efficient than theirs, and in our experiment the cost of shrink decreases with m. Actually the cost of our shrink strategy matches the cost they report for growth. We cannot explain why because they only provide a brief explanation of shrink's behaviour.

Sensitivity analysis

The performance of the algorithms varies with all parameters s, e 0 , e 1 , τ, m. The variations of cost with s, e 0 and e 1 were surveyed in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] and our experiments only confirmed theirs. We therefore focus in this paper on the variations with m. However, the exact value of s, e 0 , e 1 may not be available in real scenarios, so we also render in Figure 5 the performance of a strategy when the parameters of the data and questions are slightly different from the parameters used to build the strategy. In that picture the color at (x, y) measures the expected cost and error that would be obtained if the strategy computed by shrink for e 0 = .2, e 1 = .25, τ = .05, m = 15, s = .6 is used while the real users have error rates e 0 = x, e 1 = y (x, y ≤ .45). The values are measured as a percentage of the cost (3.8) and error (.049) obtained when the error rates coincide with the strategy. We observe that error varies much more than cost, and deviations from the expected error rates have limited impact as long as they are small enough. We observed similar trends for other values of the parameters [?].

Optimizations

We measured the contribution of our optimizations to the ladder and shrink heuristics on selected instances. The PyPy compiler is generally above 10 times faster than

I C D T ' 1 6

Filtering with the Crowd: CrowdScreen revisited cPython. Algorithmic optimizations reduce drastically the running time, especially for shrink, and when m gets large. For instance, with the parameters of the running example (e 0 = .25, e 1 = .2, τ = .0075, s = .8) and a budget of m = 200, the naïve shrink implementation requires over 5h with CPython, and 12min with PyPy whereas the optimized implementation completes in 1.5s (with PyPy).

Classification with multiple choices

This paper is in general focused on binary classification. But most analyses and algorithms can be generalized to classify items in presence of multiple choices. In the general setting we ask the crowd to determine to which class the item belongs, out of n candidate classes. The priors are then given by an n-dimensional vector s for selectivity, and an n × n matrix e for error probabilites, where e i,j denotes the probability that a user answers V = i when the item belongs to class j. We again assume that the correct answer is always the most likely, i.e., e i,i > e j,i when i = j. The sequence of answers received can then be represented as a walk over the n-dimensional cubic lattice, and most of our analyses remain valid; shrinkp still returns the same strategy as the linear program. . . Algorithms shrink, AdaptSprt generalize naturally to this setting, as well as the linear program of [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF].

Due to the dispersion of answers between multiple options, a large budget will generally be necessary to classify items accurately. However, the algorithms scale poorly even with the budgets we considered for binary classification (e.g., m = 50); in the worst case, our optimized version of shrink indeed has exponential complexity O(n × m 2n), whereas AdaptSprt runs in O(n × m n). We observe that for m = 4, our implementation of shrink fails to scale beyond m = 40, whereas AdaptSprt manages budgets up to m = 50.

Experiments with the Crowd

Our synthetic experiments survey the theoretical performance of our algorithms when the users behave as a random oracle specified by e 0 and e 1 . We next examine the performance in a real-life crowdsourcing scenario.

Queries and dataset

We experimented with two classes of filtering queries. The first scenario is similar to our motivating example in the Introduction, trying to identify which dishes contain a specific ingredient. For this dataset we randomly selected about 50 dishes from a recipes website [1]. Users were then presented with the picture and name of the dish, and were asked to determine whether it contains the given ingredient (e.g., onions, garlic, etc.).

The second scenario uses the crowd to identify which pictures, out of a given set, are from a given country. The dataset was built from holiday pictures contributed by members of the lab. For privacy, we removed those that contain individuals, which left us with about 100 pictures over which the experiments were run.

To build the ground truth for the first dataset we manually extracted the ingredients of the recipes from the cooking instructions at the Web site, and for the second we asked the contributors to provide the location of their photographs.

Experiment Settings

To avoid spam issues that typically arise in payment-based crowdsourcing platforms like Amazon Mechanical Turk [2], we run the experiments on the AskIt [START_REF] Boim | Asking the right questions in crowd data sourcing[END_REF] crowdsourcing game platform, developed in our lab, which queries the crowd using a trivia-like game and can engage users through social network. We modified AskIt's engine so that each question instance is submitted to different players until sufficient answers are gathered. We built the strategies for several accuracy and budget constraints, and then distributed the stream of user answers to all, executing all strategies in parallel so that their behavior can be compared on identical inputs. The crowd of 100 players provided about 10000 answers overall, which provided us with around 35 (resp. 25) answers per question on a given dish-ingredient pair (picture-country pair). The bulk of the answers were gathered withing 48 hours.

Table 1 illustrates the type of questions issued to users and the corresponding parameters computed from the data for each of the filtering tasks. All parameters were computed over the whole dataset, though in a full-fledge system, they would be estimated first on a small sample, but parameter estimation lies outside the scope of this paper, and we refer the reader to the previous section for sensitivity analysis. The error rates are relatively high because answers were rarely obvious. For question 6 in particular, e 1 was above .5 which means the users more often than not missed the presence of eggs in the dishes. We therefore discarded the question from our analysis. To meet a (rather lenient) error threshold of 10% (τ = 0.1) given these parameters, the minimal budget that should be allotted to questions 1,2,3,4 is respectively 7, 8, 2 and 12. For 5% (τ = .05), the minimal budgets for the same questions are 13, 13, 5, 21. Q5 has higher error rates and correspondingly requires a budget of almost 300 for τ = 0.1 and 40 for τ = 0.3. With m = 40 we indeed obtain for this query an error between 29% and 35% for our algorithms, with average cost around 18 (while rect has cost above 26). However, compared to the other questions, these results have lower statistical significance since the error rates for Q5 are close to 50%. We therefore focus in the analysis below on the other queries.

We first discuss the strategies created by our algorithms for τ = .1 and m = 12, the minimal budget for which Q1-Q4 admit a feasible strategy according to the parameters in Table 1, then examine how larger budgets affect the behavior.

Cost

Figure 6 represents the average number of answers (cost) before the strategies reach a decision on the pictures. On this actual cost, we superimposed the theoretical values (as a pattern in background). The costs roughly match their expected value, yet with some variations. In particular, ladder or linear did not always outperform the other algorithms, though they generally compare favorably. The figure also shows that the strategies computed by our algorithms outperform the optimal rectangle strategy rect. We observed similar Filtering with the Crowd: CrowdScreen revisited trends for other values of m and τ . In most cases, increasing budget m improves the performance of our strategies. For m = 20, for instance, the cost of Q4 drops from 7.5 to ∼ 5.7 for all of our algorithms, which justifies using strategies with larger budget bound m, to save on average cost. Here again, as seen in the synthetic experiments, ladder runs out of time for m > 20.

Error Model and Accuracy

As we could expect, real users do not behave as random oracles, which has an impact on the accuracy of our strategies. In our experiment, error rates are not uniform over items, and are not uniform among users either. The standard deviation of the error rates between different pictures is roughly .2, and the standard deviation of error rates between different users is slightly above 0.1.

As a consequence, the average error of the filtering process is not always close to τ . Actually, accuracy varies substantially with the question: instead of .9, algorithm ladder yields an accuracy around .87, .8, .9 and .79 respectively for Q1, Q2, Q3 and Q4 when τ = .1 and m = 12, and the results are pretty similar for the other algorithms. More surprisingly maybe, the accuracy did not significantly improve when the expected error τ of the strategy was lowered to .05: only for question Q3 was the accuracy improved to .96, whereas the accuracy of other questions culminated below .85. This discrepancy is due to the limitations of the model for this scenario: error rates are not uniform over items, because some pictures contained only little or no clue for the question. Once "easy" items were correctly classified, additional user answers did not help much to classify the harder ones. This issue affects equally any strategy that is applied to all pictures indiscriminately, including the naïve rectangular strategy, and accuracy varies little with the choice of algorithm and budget, provided the budget is large enough to allow feasibility. The error rates also fluctuate between users, but the standard deviation is smaller and has lower impact since additional annotations still help to classify each picture. To sum up, even when parameters allow to build feasible strategies for high precision levels, there is no guarantee that such high precision can indeed be obtained in practice. Nonetheless, using our strategies with large budgets provides substantial savings in the cost of the filtering, which justifies the need for scalability.

Figure 1

 1 Figure 1 Strategies returned for e0 = .25, e1 = .2, τ = .0075, m = 15, and s = .8.

 Proposition 4.1. Algorithm 2 runs in O(2 2m).

Algorithm 2 : 6 while i ≥ 0 7

 260 ladder (e 0 , e 1 , τ, m, s)1 errorTill, costTill ← [0, 0, . . . , 0] 2 BestCost ← m + 1 3 BestStrategy ← Null4 for up in upperladders 5 down ← maximal lowerladder; i ← 0 Update errorTill, costTill, Path 8 if (errorTill[m] < τ and 9 costTill[m] < BestCost[m]) 10 BestCost ← costTill[m] 11 BestStrategy ← (up, down) 12 if (errorTill[i] > τ) 13 skip ladders until down(i) is modified 14 else (i, down) ← down.next() 15 return BestStrategy

Figure 2

 2 Figure 2 Question parameters(left) and average cost per item (right, with m = 12, τ = .1)

Figure 3

 3 Figure 3 For e0 = .2, e1 = .25, τ = .05, s = .6: cost, and sensitivity (only for shrink with m = 15).

Lemma 7 :

 7 The number of possible upper and lower ladders can be roughly bounded by O(2 m / √ m). Hence, there are O(2 2m /m) deterministic ladder strategies.

 = t) × Pr(s ≤ t) dt and so for our uniform sampling we get .095)t dt = [t 2 /.095] 0.1 0.005

Figure 4

 4 Figure 4 Evaluating algorithms on random instances

Figure 5

 5 Figure 5 Cost of strategies with e0 = .2, e1 = .25, τ = .05, s = .6, and sensitivity (for shrink only, with m = 15).

Figure 6

 6 Figure 6 Average cost per item (m = 12, τ = .1)

Table 1

 1 Questions and parameters

	question	s	e0	e1
	Q1 photos from Australia	.18 .25 .36
	Q2 photos from Greece or Cyprus .26 .27 .32
	Q3 dishes containing dairy	.17 .11 .27
	Q4 dishes containing onions	.54 .38 .27
	Q5 dishes containing garlic	.62 .44 .48
	Q6 dishes containing eggs	.19 .22 .57

A bound of m

× 2 m was improperly claimed in[START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] for the naïve enumeration of grids but it is clear from their proof that the actual bound is O(m 2 × 2 m 2 /2)[START_REF] Parameswaran | [END_REF] I C D T ' 1 6

Acknowledgements

The authors are very thankful to A. Parameswaran for helpful discussions. This work has been partially funded by the European Research Council under the FP7, ERC grant MoDaS, agreement 291071, and by the Israel Ministry of Science.

Filtering with the Crowd: CrowdScreen revisited Proposition 5.1. There exists an optimal probabilistic strategy with a single probabilistic point. Furthermore, in any optimal strategy the probabilistic points maximize the ratio γ among non-terminating points.

By turning the unique probabilistic point of such a strategy into a continuing point, one thus obtains a deterministic strategy with error less than τ and with slightly larger cost.

Example 11. Figure 1(e) represents an optimal probabilistic strategy, with a single probabilistic point, at (0, 4), where the probability of terminating is P stop (0, 4) 0.623. If we set P stop (0, 4) to 0, the cost rises to 7.789.

The linear programming techniques mentioned above are very efficient for small values of m, and have polynomial complexity in theory. In practice, however, our experiments with common linear solvers show that they may be rather slow or inaccurate, returning poor strategies even for moderately large budgets. We therefore propose an alternative efficient algorithm based on shrink to compute optimal probabilistic strategies.

Shrink for Randomized Strategies

Algorithm shrink as defined in [START_REF] Parameswaran | Crowdscreen: algorithms for filtering data with humans[END_REF] returns a deterministic, not necessarily optimal, strategy, but it can easily be adapted to compute an optimal randomized strategy by replacing lines 5, 6, and 8 with respectively: line 5: S ← {(x, y) | (x,y) is reachable} line 6: while S = ∅ and Error < τ line 8:

Path(x,y)×∆ Err (x,y)) This new algorithm shrinkp still computes the point with the maximal ratio, but adapts the probability of terminating at this point so as not to exceed error τ , instead of restricting the maximum to points on which one can terminate without exceeding error τ . It turns out that shrinkp returns an optimal strategy (we leave the proof for Appendix A):

Proposition 5.2. The probabilistic strategy returned by shrinkp is optimal, and has a single probabilistic point. This result sheds a new light on the shrink algorithm, but it can also be used to leverage the running time of shrink and the linear program, since shrink and shrinkp coincide at any step until the last iteration of shrink as we discuss in Appendix A.

6

Experimental evaluation

Synthetic and real-crowd experiments: quality of the strategies.

To complement the theoretical study we conducted experiments on a large set of synthetic parameters. We only present a small sample of our experiments here and leave details for Appendix B. Those experiments show that some linear program solvers become unreliable for budgets beyond m = 30 questions, while ladder times out around m = 20 and shrink and AdaptSprt manage hundreds of questions. The expected cost of strategies matches theoretical expectations with AdaptSprt slightly worse than shrink and ladder, themselves a bit more expensive than the optimal probabilistic strategies. The experiments on a real crowd with budgets up to m = 40 exhibit similar patterns. Figure 6 depicts the quality of strategies obtained when asking the crowd to detect (a) the presence of an ingredient in some recipe or (b) the location of a photograph. Experiments were run with a pool of 100 workers on the AskIt [START_REF] Boim | Asking the right questions in crowd data sourcing[END_REF] crowdsourcing game platform, developed in our lab.

Filtering with the Crowd: CrowdScreen revisited

Randomization is limited

We show here the existance of an optimal probabilistic strategy with a single probabilistic point. For this, we show in the next two lemmas that in any probabilistic strategy, we can transfer probabilities between specific probabilistic points without increasing the expected error and cost of the strategy.

For any reachable point (x, y) of a given strategy, let us denote by γ(x, y) the ratio -∆ Cost (x, y)/∆ Err (x, y) between cost and error modification when the probability to continue at (x, y) is modified. We first present a simple lemma.

Lemma 13. Let (x, y) and (x , y) be two points such that (x, y) is not reachable from (x , y). Modifying the strategy in (x, y) has no impact on ∆ Err (x , y) and ∆ Cost (x , y).

Proof. Equations 4 only involve points that are reachable from (x, y).

We exploit this technical lemma to establish the following tranfer property: Lemma 14. Let (x 1 , y 1), (x 2 , y 2) denote reachable points with Cost/Error ratios γ 1 ≥ γ 2 in some strategy σ. There exist δ 1 , δ 2 ≥ 0 such that increasing P stop (x 1 , y 1) by δ 1 and reducing P stop (x 2 , y 2) by δ 2 yields a strategy σ satisfying both (1) P stop (x 1 , y 1) = 1 or P stop (x 2 , y 2) = 0, and (2) the cost and error of σ are smaller or equal to those of σ. If γ 1 < γ 2 , we can even obtain a strictly smaller cost.

Proof. If ∆ Err (x 1 , y 1), the result is obvious. Otherwise, let us first assume that (x 1 , y 1) is not reachable from (x 2 , y 2). Let us add some δ > 0 to P stop (x 1 , y 1), and let ∆ Cost , ∆ Err and Path denote the functions mapping each point to their new variation rates and number of paths after this operation. According to Lemma 13, ∆ Err (x 2 , y 2) = ∆ Err (x 2 , y 2). Assume that Path (x 2 , y 2) × ∆ Err (x 2 , y 2) = 0, and remove δ 2 = δ × Path(x1,y1)×∆ Err (x1,y1)

Path (x2,y2)×∆ Err (x2,y2) from P stop (x 2 , y 2). The admissible values of δ are those for which the modified values of P stop remain in [0, 1] at both points. Over the course of the process above, whatever error is added through point (x 1 , y 1) is removed in point (x 2 , y 2), so the the process preserves the error rate of the strategy. In addition, the expected cost of the strategy does not increase as it varies by δ × Path(x 1 , y 1) × ∆ Err (x 1 , y 1) × (γ 2 -γ 1) ≤ 0. The cost even strictly decreases when γ 2 -γ 1 > 0. The case Path (x 2 , y 2) × ∆ Err (x 2 , y 2) = 0 can be handled by continuity. When (x 1 , y 1) is reachable from (x 2 , y 2), (x 2 , y 2) is not reachable from (x 1 , y 1) so we obtain a symmetric proof by first decreasing P stop (x 2 , y 2) and then increasing P stop (x 1 , y 1) by the appropriate amount.

Using Lemma 14, we next prove that in any strategy with several probabilistic points, the number of probabilistic points can be reduced without increasing the cost and error. Proposition 5.1: There exists an optimal probabilistic strategy with a single probabilistic point. Furthermore, in any optimal strategy the probabilistic points maximize the ratio γ among non-terminating points.

Proof. Using the transfer property from Lemma 14, we can repeatedly reduce the number of probabilistic points of a strategy having several such points until at most one remains. We prove the second part of the claim by contradiction. Assume that some probabilistic point of an optimal strategy has ratio γ(x 1 , y 1) strictly smaller than another point (x 2 , y 2) satisfying cPath(x 2 , y 2) > 0. Then we can obtain a strategy with smaller error and strictly