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1) INTRODUCTION

The language of differential modules has been recently introduced in control theory as a way to understand in an intrinsic way the structural properties of systems of ordinary differential (OD) equations (controllability, observability, identifiability, ...), but it can also be applied to systems of partial differential (PD) equations ( [START_REF] Bjork | Analytic D-Modules and Applications[END_REF], [START_REF] Kashiwara | Algebraic Study of Systems of Partial Differential Equations[END_REF], [START_REF] Oberst | Multidimensional Constant Linear Systems[END_REF], [START_REF] Oberst | The Computation of Purity Filtrations over Commutative Noetherian Rings of Operators and their Applications to Behaviours[END_REF], [START_REF] Palamodov | Linear Differential Operators with Constant Coefficients[END_REF], [START_REF] Pommaret | Partial Differential Control Theory[END_REF], [START_REF] Pommaret | QUADRAT: Localization and parametrization of linear multidimensional control systems[END_REF], [START_REF] Pommaret | QUADRAT: Algebraic Analysis of Linear Multidimensional Control Systems[END_REF], [START_REF] Quadrat | A Constructive Study of the Module Structure of Rings of Partial Differential Operators[END_REF], [START_REF] Zerz | Topics in Multidimensional Linear Systems Theory[END_REF]). A similar comment can be done for optimal control, that is for variational calculus with differential constraints and the author thanks Prof. Lars Andersson (Einstein Institute, Potsdam) for having suggested him to study the Lanczos potential within this new framework.

We start providing a few explicit examples in order to convince the reader that the corresponding computations are often becoming so tricky that nobody could achieve them or even imagine any underlying general algorithm, for example in the study of the mathematical foundations of control theory, elasticity theory or general relativity.

EXAMPLE 1.1: OD Control Theory

With one independent variable x, for example the time t in control theory or the curvilinear abcissa s in the study of a beam, and three unknowns (y 1 , y 2 , y 3 ). Setting formally d x y k = y k

x for k = 1, 2, 3 and so on, let us consider the system made by the two first order OD equations depending on a variable coefficient a(x): y 3

xa(x)y 2y 1 x = 0, y 3y 2 x + y 1 x = 0 In control theory, if a = cst is a constant parameter, one could bring the system to any first order Kalman form and check that the corresponding control system is controllable if and only if a(a -1) = 0, that is a = 0 and a = 1 (exercise), independently of the choice of 1 input and 2 outputs among the 3 control variables. In addition to that, using the second OD equation in the form y 3 = y 2

xy 1

x and substituting in the first, we get the only second order OD equation:

y 1 xx + y 1
xy 2 xx + a(x)y 2 = 0 a result leading to a kind of "vicious circle" because the only way to test controllability is ... to bring this second order equation back to a first order system and there are a lot of possibilities. Again, in any case, the only critical values are a = 0 and a = 1. Of course, one could dream about a direct approach providing the same result in an intrinsic way. Introducing the operator d = d x as the (formal) derivative with respect to x, we may rewrite the last equation in the form:

d(d + 1)y 1 = (d 2 -a)y 2
Replacing the operators d(d + 1) and d 2a by the polynomials χ(χ + 1) and χ 2a, the two polynomials have a common root χ = 0 ⇒ a = 0 or χ = -1 ⇒ a = 1 and we find back the desired critical values but such a result is not intrinsic at all. However, we notice that, for example a = 0 ⇒ d((d + 1)y 1dy 2 ) = 0. Introducing z ′ = y 1

x + y 1y 2 x , we get z ′ x = 0 while a = 1 ⇒ (d + 1)(dy 1 -(d -1)y 2 that is, setting z" = y 1

xy 2 , we get now z" x + z" = 0. Calling "torsion element " any scalar quantity made from the unknowns and their derivatives but satisfying at least one OD equation, we discover that such quantities do exist ... if and only if a = 0 or a = 1 (exercise). Of course, the existence of any torsion element breaks at once the controllability of the system but the converse is not evident at all, a result leading nevertheless to the feeling that a control system is controllable if and only if no torsion element can be found and such an idea can be extended "mutatis mutandis " to any system of PD equations ( [START_REF] Pommaret | Partial Differential Control Theory[END_REF]). However, this result could be useful if and only if there is a test for checking such a property of the system. Now, using a variable parameter a(x), not a word of the preceding approach is left but the concept of a torsion element still exists. Let us prove that the condition a(a -1) = 0 becomes ∂ x a + a 2a = 0 and that the computations needed are quite far from the previous ones. We ask the reader familiar with classical control theory to make his mind a few minutes (or hours !) to agree with us before going ahead by recovering himself such a differential condition. For this purpose, let us introduce the formal adjoint operators ad(d 2 and to two possibilities:

• ∂ x a + a 2 -a = 0
Finding y and substituting it into y xxay = u, we get two third order operators P and Q such that, among the CC of the previous system, we have P u -Qv = 0. Using the adjoint, we obtain therefore two identities in the operator sense:

P (d 2 -a) ≡ Q(d 2 -d) ⇒ (d 2 -a)ad(P ) ≡ (d 2 + d)ad(Q)
Writing y 1 = (d 2 + d) -1 (d 2a)y 2 in a symbolic way and setting y 2 = ad(P )ξ, we obtain finally:

y 1 = (d 2 + d) -1 (d 2 -a)ad(P )ξ = (d 2 + d) -1 (d 2 + d)ad(Q)ξ = ad(Q)ξ
and discover the true reason for introducing the adjoint operator in order to invert the position of the factors. It is easy to check that we have obtained a third order parametrization of the control system. Of course, the situation a = cst is much simpler as we can choose P = d 2d, Q = d 2a and get the second order parametrization y 1 = (d 2a)ξ, y 2 = (d 2 + d)ξ which is easily seen to be injective, in a coherent way with controllability (exercise).

However, the aim of this example is to point out the fact that things are in fact quite more tricky indeed because, substituting y into into y xxay = u, after a painful computation largely simplified by assuming that ∂ x a + a 2a = 1, we obtain the third order OD equation:

v xxx + av xx + (2∂ x a -a)v x + (∂ xx a -a 2 )v = u xxx + (a -1)u xx + (2∂ x a -a)u x + (∂ xx a + ∂ x a)u
Under the same assumption, using now the OD equation y xay = vu already obtained by substraction, we only get the "simpler " second order OD equation P ′ (d 2a) = Q ′ (d 2d) in the form:

v xx + (2∂ x a -a)v = u xx -u x + 2∂ x au
which is leading, exactly as before, to the new second order parametrization:

y 1 = ad(Q ′ )ξ ′ = (d 2 + 2∂ x a -a)ξ ′ , y 2 = ad(P ′ )ξ ′ = (d 2 + d + 2∂ x a)ξ ′
which is injective as we obtain easily y 1 xy 2

x + (1a)y 1 + ay 2 = (∂ x a + a 2a)ξ ′ = ξ ′ and we let the reader check the identity:

(d 2 + d)(d 2 + 2∂ x a -a) ≡ (d 2 -a)(d 2 + d + 2∂ x a)
The reason is that the third order CC already considered are in fact generated by the above only second order CC as it can be seen by applying the operator d + a to this CC. We have indeed:

P = (d + a)P ′ , Q = (d + a)Q ′ ⇒ ad(P ) = ad(P ′ )(d -a), ad(Q) = ad(Q ′ )(d -a)
and it just remains to set ξ ′ = (da)ξ in order to get coherent parametrizations. As a byproduct, the third order parametrization is not injective as it should only lead to ξ ′ = 0 and thus to ξ xaξ = 0. Needless to say that, if the situation is already tricky for OD equations, it should become worst for PD equations as we shall see in the next examples.

•

∂ x a + a 2a = 0 Multiplying the control system by a test function λ and integrating by parts, the kernel of the operator thus obtained is defined by the OD equations:

λ xx -λ x = 0, λ xx -aλ = 0 ⇒ λ x -aλ = 0 ⇒ (∂ x a + a 2 -a)λ = 0
The formal adjoint of the operator defining the control system is thus no longer injective but we can repeat the previous computations in order to find the only generating CC v x + av = u x + (a -1)u that should lead to the injective parametrization y 1 = ξ xaξ, y 2 = ξ x + (1a)ξ because it gives by substraction y 2y 1 = ξ. However, such a procedure is no longer working because we get by substitution the first order OD equation:

z ≡ y 2
xay 2ay 2y 1

x + (a -1)y 1 = 0 We notice that z is a torsion element as it satisfies z x + az = 0 under the assumptions made on a.

We finally point out that such a situation cannot be found when a parametrization is existing because we may substitute it into the torsion element and get a contradiction as this procedure should provide at least one OD or PD equation among the arbitrary functions or potentials used for the parametrization. EXAMPLE 1.2: OD Optimal Control Theory OD optimal control is the study of OD variational calculus with OD constraints described by OD control systems. However, while studying optimal control, the author of this paper has been surprised to discover that, in all cases, the OD constraints were defined by means of controllable control systems. It is only at the end of this paper that the importance of such an assumption will be explained. For the moment, we shall provide an example allowing to exhibit all the difficulties involved. For this, let y 1 = f 1 (x), y 2 = f 2 (x) be a solution of the following single input/single output (SISO) OD control system where a is a constant parameter:

y 1
x + y 1y 2

xay 2 = 0 Proceeding as before, the two polynomials replacing the respective operators are χ + 1, χ + a and can only have the common root a = 1. Accordingly, the system is controllable if and only if a = 1 for any choice of input and output. Now, let us introduce the so-called " cost function " and let us look at the extremum of the integral 1 2 ((y 1 ) 2 -(y 2 ) 2 )dx under the previous OD constraint.It is well known that the proper way to study such a problem is to introduce a Lagrange multiplier λ and to vary the new integral:

[ 1 2 ((y 1 ) 2 -(y 2 ) 2 ) + λ(y 1 x + y 1 -y 2 x -ay 2 )]dx
The corresponding Euler-Lagrange (EL) equations are:

y 1 → -λ x + λ + y 1 = 0 y 2 → λ x -aλ -y 2 = 0
to which we must add the OD constraint when varying λ. Summing the two EL equations, we get (a -1)λ = y 1y 2 and two possibilities: 1) a = 1 ⇒ y 1y 2 = 0 compatible with the constaint.

2) a = 1 ⇒ λ = (y 1y 2 )/(a -1). Substituting, we get:

y 1 x -y 2 x -ay 1 + y 2 = 0 y 1
xy 2 x + y 1ay 2 = 0 This system may not be formally integrable. Indeed, by substraction, we get (a + 1)(y 1y 2 ) = 0 and must consider the following two possibilities:

• a = -1 ⇒ y 1 x + y 1 -y 2 x + y 2 = 0 • a = -1 ⇒ y 1 = y 2 = 0
Summarising the results so far obtained, we discover that the Lagrange multiplier is known if and only if the system is controllable. Also, if a = -1, we may exhibit the parametrization ξ xξ = y 1 , ξ x + ξ = y 2 and the cost function becomes 2ξξ x = d x (ξ 2 ). Equivalently, when the system is controllable it can be parametrized and the variational problem with constraint becomes a variational problem without constraint which, sometimes, does not provide EL equations. We finally understand that extending such a situation to PD variational calculus with PD constraints needs new techniques.

EXAMPLE 1.3: Classical Elasticity Theory

In classical elasticity, the stress tensor density σ = (σ ij = σ ji ) existing inside an elastic body is a symmetric 2-tensor density intoduced by A. Cauchy in 1822. The corresponding Cauchy stress equations can be written as ∂ r σ ir = f i where the right member describes the local density of forces applied to the body, for example gravitation. With zero second member, we study the possibility to "parametrize " the system of PD equations ∂ r σ ir = 0, namely to express its general solution by means of a certain number of arbitrary functions or potentials, called stress functions. Of course, the problem is to know about the number of such functions and the order of the parametrizing operator. In what follows, the space has n local coordinates x = (x i ) = (x 1 , ..., x n ). For n = 1, 2, 3 one may introduce the Euclidean metric ω = (ω ij = ω ji ) while, for n = 4, one may consider the Minkowski metric. A few definitions used thereafter will be provided later on.

• n = 1: There is no possible parametrization of ∂ x σ = 0.

• n = 2: The stress equations become ∂ 1 σ 11 + ∂ 2 σ 12 = 0, ∂ 1 σ 21 + ∂ 2 σ 22 = 0. Their second order parametrization σ 11 = ∂ 22 φ, σ 12 = σ 21 = -∂ 12 φ, σ 22 = ∂ 11 φ has been provided by George Biddell Airy (1801-1892) in 1863 ( [START_REF] Airy | On the Strains in the Interior of Beams[END_REF]). It can be recovered by simply rewriting the stress equations in the following manner:

∂ 1 σ 11 = ∂ 2 (-σ 12 ) ⇒ ∃ϕ, σ 11 = ∂ 2 ϕ, σ 12 = -∂ 1 ϕ, ∂ 2 σ 22 = ∂ 1 (-σ 21 ) ⇒ ∃ψ, σ 22 = ∂ 1 ψ, σ 21 = -∂ 2 ψ σ 12 = σ 21 ⇒ ∂ 1 ϕ = ∂ 2 ψ ⇒ ∃φ, ϕ = ∂ 2 φ, ψ = ∂ 1 φ
We get the second order system:

   σ 11 ≡ ∂ 22 φ = 0 -σ 12 ≡ ∂ 12 φ = 0 σ 22 ≡ ∂ 11 φ = 0 1 2 1 • 1 •
which is involutive with one equation of class 2, 2 equations of class 1 and it is easy to check that the 2 corresponding first order CC are just the stress equations.

As we have a system with constant coefficients, we may use localization in order to transform the 2 PD equations into the 2 linear equations χ 1 σ 11 + χ 2 σ 12 = 0, χ 1 σ 21 + χ 2 σ 22 = 0 and get

σ 11 = - χ 2 χ 1 σ 12 = - (χ 2 ) 2 χ 1 χ 2 σ 12 , σ 22 = - χ 1 χ 2 σ 12 = - (χ 1 ) 2 χ 1 χ 2 σ 12
Setting σ 12 = -χ 1 χ 2 φ, we finally get σ 11 = (χ 2 ) 2 φ, σ 22 = (χ 1 ) 2 φ and obtain the previous parametrization by delocalizing, that is replacing now χ i by ∂ i .

• n = 3: Things become quite more delicate when we try to parametrize the 3 PD equations:

∂ 1 σ 11 + ∂ 2 σ 12 + ∂ 3 σ 13 = 0, ∂ 1 σ 21 + ∂ 2 σ 22 + ∂ 3 σ 23 = 0, ∂ 1 σ 31 + ∂ 2 σ 32 + ∂ 3 σ 33 = 0
Of course, localization could be used similarly by dealing with the 3 linear equations:

χ 1 σ 11 + χ 2 σ 12 + χ 3 σ 13 = 0, χ 1 σ 21 + χ 2 σ 22 + χ 3 σ 23 = 0, χ 1 σ 31 + χ 2 σ 32 + χ 3 σ 33 = 0
having rank 3 for 6 unknowns but, even if we succeed bringing all the fractions to the same denominator as before after easy but painful calculus, there is an additional difficulty which is well hidden. Indeed, coming back to the previous Example when a = cst, say a = 1, we should get

(d 2 + d)y 1 = (d 2 -1)y 2 ⇒ χ(χ + 1)y 1 = (χ + 1)(χ -1)y 2 ⇒ χy 1 = (χ -1)y 2 ⇒ y 1 = χ-1 χ y 2 .
Hence, setting y 2 = χy, y 1 = (χ -1)y, we only get a parametrization of the first order OD equation z ≡ ẏ1 -ẏ2 + y 2 = 0 leading to ż + z = 0. Accordingly, localization does indeed provide a parametrization, ... if we already know there exists a possibility to parametrize the given system or if we are able to check that we have obtained such a parametrization by using involution, a way to supersede the use of Janet or Gröbner bases as was proved for the case n = 2 ( [START_REF] Pommaret | Gröbner Bases in Algebraic Analysis: New perspectives for applications[END_REF]). Also, if we proceed along such a way, we should surely loose any geometric argument that could stay behind such a procedure, ... if there is one !.

A direct computational approach has been provided by Eugenio Beltrami (1835Beltrami ( -1900) ) in 1892 ( [START_REF] Beltrami | Osservazioni sulla Nota Precedente[END_REF]), James Clerk Maxwell (1831-1879) in 1870 ( [START_REF] Maxwell | On Reciprocal Figures, Frames and Diagrams of Forces[END_REF]) and Giacinto Morera (1856Morera ( -1909) ) in 1892 ( [START_REF] Morera | Soluzione Generale della Equazioni Indefinite dell'Equilibrio di un Corpo Continuo[END_REF]) by introducing the 6 stress functions φ ij = φ ji through the parametrization obtained by considering:

σ 11 = ∂ 33 φ 22 + ∂ 22 φ 33 -2∂ 23 φ 23 σ 12 = σ 21 = ∂ 13 φ 23 + ∂ 23 φ 13 -∂ 33 φ 12 -∂ 12 φ 33
and the additional 4 relations obtained by using a cyclic permutation of [START_REF] Airy | On the Strains in the Interior of Beams[END_REF][START_REF] Bampi | CAVIGLIA: Third-order Tensor Potentials for the Riemann and Weyl Tensors[END_REF][START_REF] Beltrami | Osservazioni sulla Nota Precedente[END_REF]. The corresponding system:

               σ 11 ≡ ∂ 33 φ 22 + ∂ 22 φ 33 -2∂ 23 φ 23 = 0 -σ 12 ≡ ∂ 33 φ 12 + ∂ 12 φ 33 -∂ 13 φ 23 -∂ 23 φ 13 = 0 σ 22 ≡ ∂ 33 φ 11 + ∂ 11 φ 33 -2∂ 13 φ 13 = 0 σ 13 ≡ ∂ 23 φ 12 + ∂ 12 φ 23 -∂ 22 φ 13 -∂ 13 φ 22 = 0 -σ 23 ≡ ∂ 23 φ 11 + ∂ 11 φ 23 -∂ 12 φ 13 -∂ 13 φ 12 = 0 σ 33 ≡ ∂ 22 φ 11 + ∂ 11 φ 22 -2∂ 12 φ 12 = 0 1 2 3 1 2 3 1 2 3 1 2 • 1 2 • 1 2 •
is involutive with 3 equations of class 3, 3 equations of class 2 and no equation of class 1. The 3 CC are describing the stress equations which admit therefore a parametrization ... justifying the localization approach "a posteriori " but without any geometric framework.

Surprisingly, the Maxwell parametrization is obtained by keeping φ 11 = A, φ 22 = B, φ 33 = C while setting φ 12 = φ 23 = φ 31 = 0 in order to obtain the system:

               σ 11 ≡ ∂ 33 B + ∂ 22 C = 0 σ 22 ≡ ∂ 33 A + ∂ 11 C = 0 -σ 23 ≡ ∂ 23 A = 0 σ 33 ≡ ∂ 22 A + ∂ 11 B = 0 -σ 13 ≡ ∂ 13 B = 0 -σ 12 ≡ ∂ 12 C = 0 1 2 3 1 2 3 1 2 • 1 2 • 1 • • 1 • •
However, this system may not be involutive and no CC can be found "a priori " because the coordinate system is surely not δ-regular. Indeed, effecting the linear change of coordinates

x 1 → x 1 + x 3 , x 2 → x 2 + x 3 , x 3 → x 3
, we obtain the involutive system:

               ∂ 33 C + ∂ 13 C + ∂ 23 C + ∂ 12 C = 0 ∂ 33 B + ∂ 13 B = 0 ∂ 33 A + ∂ 23 A = 0 ∂ 23 C -∂ 13 B -∂ 13 C -∂ 12 C + ∂ 22 C = 0 ∂ 23 A -∂ 22 C + ∂ 13 B + 2∂ 12 C -∂ 11 C = 0 ∂ 22 A + ∂ 22 C -2∂ 12 C + ∂ 11 B + ∂ 11 C = 0 1 2 3 1 2 3 1 2 3 1 2 • 1 2 • 1 2 •
and it is easy to check that the 3 CC obtained just amount to the desired 3 stress equations when coming back to the original system of coordinates. Again, if there is a geometrical background, this change of local coordinates is hidding it totally. Moreover, we notice that the stress functions kept in the procedure are just the ones on which ∂ 33 is acting. The reason for such an apparently technical choice is related to very general deep arguments in the theory of differential modules that will only be explained at the end of the paper.

Finally, the Morera parametrization is obtained by keeping now φ 23 = L, φ 13 = M, φ 12 = N while setting φ 11 = φ 22 = φ 33 = 0 in order to obtain the system:

               σ 11 ≡ -2∂ 23 L = 0 σ 22 ≡ -2∂ 13 M = 0 σ 33 ≡ -2∂ 12 N = 0 σ 12 ≡ ∂ 13 L + ∂ 23 M -∂ 33 N = 0 σ 23 ≡ ∂ 12 M + ∂ 13 N -∂ 11 L = 0 σ 13 ≡ ∂ 23 N + ∂ 12 L -∂ 22 M = 0
which is involutive because convenient δ-regular coordinates can be similarly exhibited and provide again the 3 desired stress equations (exercise) (Compare to [START_REF] Teodorescu | Stress Functions in 3-Dimensional Elastodynamics[END_REF]).

• n ≥ 4: As already explained, localization cannot be applied directly as we don't know if a parametrization may exist and in any case no analogy with the previous situations n = 1, 2, 3 could be used. Moreover, no known differential geometric background could be used at first sight in order to provide a hint towards the solution. Now, if ω is the Minkowski metric and φ = GM/r is the gravitational potential, then φ/c 2 ≪ 1 and a perturbation Ω ∈ S 2 T * of ω may satisfy in vacuum the 10 second order Einstein equations for the 10 Ω:

E ij ≡ ω rs (d ij Ω rs + d rs Ω ij -d ri Ω sj -d sj Ω ri ) -ω ij (ω rs ω uv d rs Ω uv -ω ru ω sv d rs Ω uv ) = 0
by introducing the corresponding second order Einstein operator S 2 T * Einstein -→ S 2 T * : Ω → E when n = 4 ( [START_REF] Einstein | Die Feldgleichungen der Gravitation[END_REF]). Though it is well known that the corresponding second order Einstein operator is parametrizing the stress equations, the challenge of parametrizing Einstein equations has been proposed in 1970 by J. Wheeler for 1000 $ and solved negatively in 1995 by the author who only received 1 $. We shall see that, exactly as before and though it is quite striking, the key ingredient will be to use the linearized Riemann tensor considered as a second order operator ( [START_REF] Pommaret | Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach[END_REF], [START_REF] Pommaret | Partial Differential Control Theory[END_REF]). As an even more striking fact, we shall discover that the condition n ≥ 4 has only to do with Spencer cohomology for the symbol of the conformal Killing equations.

EXAMPLE 1.4: PD Control Theory

The aim of this last example is to prove that the possibility to exhibit two different parametrizations of the stress equations which has been presented in the previous example has surely nothing to do with the proper mathematical background of elasticity theory !. For this, let us consider the (trivially involutive) inhomogeneous PD equations with two independent variables (x 1 , x 2 ), two unknown functions (η 1 , η 2 ) and a second member ζ:

∂ 2 η 1 -∂ 1 η 2 + x 2 η 2 = ζ
Multiplying on the left by a test function λ and integrating by parts, the corresponding inhomogeneous system of PD equations is:

η 1 → -∂ 2 λ = µ 1 η 2 → ∂ 1 λ + x 2 λ = µ 2
Using crossed derivatives, we get λ = ∂ 2 µ 2 + ∂ 1 µ 1 + x 2 µ 1 and substituting, we get the two CC:

-∂ 22 µ 2 -∂ 12 µ 1 -x 2 ∂ 2 µ 1 -2µ 1 = ν 1 ∂ 12 µ 2 + ∂ 11 µ 1 + 2x 2 ∂ 1 µ 1 + x 2 ∂ 2 µ 2 + (x 2 ) 2 µ 1 -µ 2 = ν 2
The corresponding generating CC for the second member (ν 1 , ν 2 ) is:

∂ 2 ν 2 + ∂ 1 ν 1 + x 2 ν 1 = 0
Therefore ν 2 is differentially dependent on ν 1 but ν 1 is also differentially dependent on ν 2 . Multiplying the first equation by the test function ξ 1 , the second equation by the test function ξ 2 , adding and integrating by parts, we get the canonical parametrization (ξ 1 , ξ 2 ) → (η 1 , η 2 ):

µ 2 → -∂ 22 ξ 1 + ∂ 12 ξ 2 -x 2 ∂ 2 ξ 2 -2ξ 2 = η 2 µ 1 → -∂ 12 ξ 1 + x 2 ∂ 2 ξ 1 -ξ 1 + ∂ 11 ξ 2 -2x 2 ∂ 1 ξ 2 + (x 2 ) 2 ξ 2 = η 1 1 2 1 •
of the initial system with zero second member. The system (up to sign) is involutive and the kernel of this parametrization has differential rank equal to 1. Keeping ξ 1 = ξ while setting ξ 2 = 0, we get the first minimal parametrization ξ → (η 1 , η 2 ):

-∂ 22 ξ = η 2 -∂ 12 ξ + x 2 ∂ 2 ξ -ξ = η 1 1 2 1 •
The system is again involutive (up to sign) and the parametrization is minimal because the kernel of this parametrization has differential rank equal to 0. Setting now ξ 1 = 0 while keeping ξ 2 = ξ ′ , we get the second minimal parametrization ξ ′ → (η 1 , η 2 ):

∂ 11 ξ ′ -2x 2 ∂ 1 ξ ′ + (x 2 ) 2 ξ ′ = η 1 ∂ 12 ξ ′ -x 2 ∂ 2 ξ ′ -2ξ ′ = η 2
with a similar comment.

EXAMPLE 1.5: PD Optimal Control Theory

Let us revisit briefly the foundation of n-dimensional elasticity theory as it can be found today in any textbook, restricting our study to n = 2 for simplicity. If x = (x 1 , x 2 ) is a point in the plane and ξ = (ξ 1 (x), ξ 2 (x)) is the displacement vector, lowering the indices by means of the Euclidean metric, we may introduce the "small" deformation tensor ǫ = (ǫ ij = ǫ ji = (1/2)(∂ i ξ j + ∂ j ξ i )) with n(n + 1)/2 = 3 (independent) components (ǫ 11 , ǫ 12 = ǫ 21 , ǫ 22 ). If we study a part of a deformed body, for example a thin elastic plane sheet, by means of a variational principle, we may introduce the local density of free energy ϕ(ǫ) = ϕ(ǫ ij |i ≤ j) = ϕ(ǫ 11 , ǫ 12 , ǫ 22 ) and vary the total free energy Φ = ϕ(ǫ)dx with dx = dx 1 ∧ dx 2 by introducing σ ij = ∂ϕ/∂ǫ ij for i ≤ j in order to obtain δΦ = (σ 11 δǫ 11 + σ 12 δǫ 12 + σ 22 δǫ 22 )dx. Accordingly, the "decision" to define the stress tensor σ by a symmetric matrix with σ 12 = σ 21 is purely artificial within such a variational principle. Indeed, the usual Cauchy device (1828) assumes that each element of a boundary surface is acted on by a surface density of force σ with a linear dependence σ = (σ ir (x)n r ) on the outward normal unit vector n = (n r ) and does not make any assumption on the stress tensor. It is only by an equilibrium of forces and couples, namely the well known phenomenological static torsor equilibrium, that one can " prove " the symmetry of σ. However, even if we assume this symmetry, we now need the different summation σ ij δǫ ij = σ 11 δǫ 11 + 2σ 12 δǫ 12 + σ 22 δǫ 22 = σ ir ∂ r δξ i . An integration by parts and a change of sign produce the integral (∂ r σ ir )δξ i dx leading to the stress equations ∂ r σ ir = 0 already considered. This classical approach to elasticity theory, based on invariant theory with respect to the group of rigid motions, cannot therefore describe equilibrium of torsors by means of a variational principle where the proper torsor concept is totally lacking. It is however widely used through the technique of " finite elements " where it can also be applied to electromagnetism (EM) with similar quadratic (piezoelectricity) or cubic (photoelasticity) lagrangian integrals. In this situation, the 4-potential A of EM is used in place of ξ while the EM field dA = F = ( B, E) is used in place of ǫ and the Maxwell equations dF = 0 are used in place of the Riemann CC for ǫ.

However, there exists another equivalent procedure dealing with a variational calculus with constraint. Indeed, as we shall see later on, the deformation tensor is not any symmetric tensor as it must satisfy n 2 (n 2 -1)/12 compatibility conditions (CC), that is only ∂ 22 ǫ 11 + ∂ 11 ǫ 22 -2∂ 12 ǫ 12 = 0 when n = 2. In this case, introducing the Lagrange multiplier λ, we have to vary the new integral [ϕ(ǫ) + λ(∂ 22 ǫ 11 + ∂ 11 ǫ 22 -2∂ 12 ǫ 12 )]dx for an arbitrary ǫ. Setting λ = -φ, a double integration by parts now provides the parametrization σ 11 = ∂ 22 φ, σ 12 = σ 21 = -∂ 12 φ, σ 22 = ∂ 11 φ of the stress equations by means of the Airy function φ and the formal adjoint of the Riemann CC, on the condition to observe that we have in fact 2σ 12 = -2∂ 12 φ as another way to understand the deep meaning of the factor "2" in the summation. The same variational calculus with constraint may thus also be used in order to " shortcut " the introduction of the EM potential. Finally, using the constitutive relations of the material establishing an isomorphism σ ←→ ǫ, one can also introduce a local free energy ψ(σ) in a similar variational problem having for constraint the stress equations, with the same comment as above (See [START_REF] Pommaret | Partial Differential Control Theory[END_REF], p 915, for more details). The well known Minkowski constitutive relations ( B, E) ←→ ( H, D) can be similarly used for EM.

In arbitrary dimension, the above compatibility conditions are nothing else but the linearized Riemann tensor in Riemannian geometry, a crucial mathematical tool in the theory of general relativity and a good reason for studying the work of Cornelius Lanczos (1893Lanczos ( -1974) ) as it can be found in ( [START_REF] Lanczos | Lagrange Multiplier and Riemannian Spaces[END_REF], [START_REF] Lanczos | The Splitting of the Riemann Tensor[END_REF], [START_REF] Lanczos | The Variation Principles of Mechanics[END_REF]) or in a few modern references ([2], [START_REF] Edgar | On Effective Constraints for the Riemann-Lanczos Systems of Equations[END_REF]- [START_REF] Edgar | A Local Potential for the Weyl tensor in all dimensions[END_REF], [START_REF] Massa | Is the Rieman Tensor Derivable from a Tensor Potential[END_REF], [START_REF] Donnell | A Brief Historical Review of the Important Developments in Lanczos Potential Theory[END_REF], [START_REF] Roberts | The Physical Interpretation of the Lanczos Tensor[END_REF]). The starting point of Lanczos has been to take EM as a model in order to introduce a Lagrangian that should be quadratic in the Riemann tensor (ρ k l,ij ⇒ ρ ij = ρ r i,rj = ρ ji ⇒ ρ = ω ij ρ ij ) while considering it independently of its expression through the second order derivatives of a metric (ω ij ) with inverse (ω ij ) or the first order derivatives of the corresponding Christoffel symbols (γ k ij ). According to the previous paragraph, the corresponding variational calculus must involve PD constraints made by the Bianchi identities and the new lagrangian to vary must therefore contain as many Lagrange multipliers as the number of Bianchi identities that can be written under the form: Lanczos and followers have been looking for a kind of parametrization of the Bianchi identities, exactly like the Lagrange multiplier has been used as an Airy potential for the stress equations. However, we shall prove that the definition of a Riemann candidate and the answer to this question cannot be done without the knowledge of the Spencer cohomology. Moreover, we have pointed out the existence of well known couplings between elasticity and electromagnetism, namely piezoelectricity and photoelasticity, which are showing that, in the respective Lagrangians, the EM field is on equal footing with the deformation tensor and not with the Riemann tensor. This fact is showing the shift by one step that must be used in the physical interpretation of the differential sequences involved and cannot be avoided. Meanwhile, the ordinary derivatives ∂ i can be used in place of the covariant derivatives ∇ i when dealing with the linearized framework as the Christoffel symbols vanish when Euclidean or Minkowskian metrics are used. The next tentative of Lanczos has been to extend his approach to the Weyl tensor:

∇ r ρ k l,ij + ∇ i ρ k l,jr + ∇ j ρ k l,ri = 0 ⇒ ∇ r ρ r l,ij = ∇ i ρ lj -∇ j ρ li Meanwhile,
τ k l,ij = ρ k l,ij - 1 (n -2) (δ k i ρ lj -δ k j ρ li + ω lj ω ks ρ si -ω li ω ks ρ sj ) + 1 (n -1)(n -2) (δ k i ω lj -δ k j ω li )ρ
The main problem is now that the Spencer cohomology of the symbols of the conformal Killing equations, in particular the 2-acyclicity, will be absolutely needed in order to study the Vessiot structure equations providing the Weyl tensor and its relation with the Riemann tensor. It will follow that the CC for the Weyl tensor are not first order contrary to the CC for the Riemann tensor made by the Bianchi identities, another reason for justifying the shift by one step already quoted. In order to provide an idea of the difficulty involved, let us define the following tensors:

Schouten = (σ ij = ρ ij - 1 2(n -1) ω ij ρ) ⇒ Cotton = (σ k,ij = ∇ i σ kj -∇ j σ ki )
An elementary but tedious computation allows to prove the formula:

∇ r τ r k,ij = (n -3) (n -2) σ k,ij
Then, of course, if Einstein equations in vacuum are valid, the Schouten and Cotton tensors vanish but the left member is by no way a differential identity for the Weyl tensor as care must be taken when mixing up mathematics with physics.

Finally, comparing the various parametrizations already obtained in the previous examples, it seems that the procedures are similar, even when dealing with systems having variable coefficients. The purpose of the paper is to prove that, in order to obtain a general algorithm, we shall need a lot of new tools involving at the same time commutative algebra, homological algebra, differential algebra and differential geometry that will be recalled in the next sections. Moreover, we want to point out the fact that the use of differential modules is necessary as it is the only possibility to avoid any functional background like the concept of "solutions" that must be introduced when dealing with differential operators. Finally, like in any good crime story, it is only at the real end of the paper that we shall be able to revisit and compare all these examples in a unique framework.

2) MODULE THEORY

Before entering the heart of this section dealing with extension modules, we need a few technical definitions and results from commutative algebra ( [START_REF] Kunz | Introduction to Commutative Algebra and Algebraic Geometry[END_REF], [START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF], [START_REF] Rotman | An Introduction to Homological Algebra[END_REF]).

DEFINITION 2.1:

A ring A is a non-empty set with two associative binary operations called addition and multiplication, respectively sending a, b ∈ A to a + b ∈ A and ab ∈ A in such a way that A becomes an abelian group for the multiplication, so that A has a zero element denoted by 0, every a ∈ A has an additive inverse denoted by -a and the multiplication is distributive over the addition, that is to say a(b

+ c) = ab + ac, (a + b)c = ac + bc, ∀a, b, c ∈ A. A ring A is said to be unitary if it has a (unique) element 1 ∈ A such that 1a = a1 = a, ∀a ∈ A and commutative if ab = ba, ∀a, b ∈ A. A non-zero element a ∈ A is called a zero-divisor if one can find a non-zero b ∈ A such that ab = 0 and a ring is called an integral domain if it has no zero-divisor. DEFINITION 2.2: A ring K is called a field if every non-zero element a ∈ K is a unit, that is one can find an element b ∈ K such that ab = 1 ∈ K.

DEFINITION 2.3:

A module M over a ring A or simply an A-module is a set of elements x, y, z, ... which is an abelian group for an addition (x, y) → x + y with an action A × M → M : (a, x) → ax satisfying:

• a(x + y) = ax + ay, ∀a ∈ A, ∀x, y ∈ M • a(bx) = (ab)x, ∀a, b ∈ A, ∀x ∈ M • (a + b)x = ax + bx, ∀a, b ∈ A, ∀x ∈ M • 1x = x, ∀x ∈ M
The set of modules over a ring A will be denoted by mod(A). A module over a field is called a vector space.

DEFINITION 2.4:

A map f : M → N between two A-modules is called a homomorphism over A if f (x + y) = f (x) + f (y), ∀x, y ∈ M and f (ax) = af (x), ∀a ∈ A, ∀x ∈ M . We successively define: • ker(f ) = {x ∈ M |f (x) = 0} • coim(f ) = M/ker(f ) • im(f ) = {y ∈ N |∃x ∈ M, f (x) = y} • coker(f ) = N/im(f ) with an isomorphism coim(f ) ≃ im(f ) induced by f . DEFINITION 2.5:
We say that a chain of modules and homomorphisms is a sequence if the composition of two successive such homomorphisms is zero. A sequence is said to be exact if the kernel of each map is equal to the image of the map preceding it. An injective homomorphism is called a monomorphism, a surjective homomorphism is called an epimorphism and a bijective homomorphism is called an isomorphism. A short exact sequence is an exact sequence made by a monomorphism followed by an epimorphism.

The proof of the following proposition is left to the reader as an exercise: PROPOSITION 2.6: If one has a short exact sequence:

0 -→ M ′ f -→ M g -→ M ′′ -→ 0
then the following conditions are equivalent:

• There exists an epimorphism u :

M → M ′ such that u • f = id M ′ .
• There exists a monomorphism v :

M ′′ → M such that g • v = id M ′′ . • There are maps u : M → M ′ and v : M ′′ → M such that f • u + v • g = id M and this relation provides an isomorphism (u, g) : M → M ′ ⊕ M ′′ with inverse f + v : M ′ ⊕ M " → M .
DEFINITION 2.7: In the above situation, we say that the short exact sequence splits and u(v) is called a lift for f (g). The short exact sequence 0

→ Z → Q → Q/Z → 0 cannot split over Z.
DEFINITION 2.8: A left (right) ideal a in a ring A is a submodule of A considered as a left (right) module over itself. When the inclusion a ⊂ A is strict, we say that a is a proper ideal of A.

LEMMA 2.9: If a is an ideal in a ring A, the set of elements rad(a) = {a ∈ A|∃n ∈ N, a n ∈ a} is an ideal of A containing a and called the radical of a. An ideal is called perfect or radical if it is equal to its radical.

DEFINITION 2.10: For any subset S ⊂ A, the smallest ideal containing S is called the ideal generated by S. An ideal generated by a single element is called a principal ideal and a ring is called a principal ideal ring if any ideal is principal. The simplest example is that of polynomial rings in one indeterminate over a field. When a and b are two ideals of A, we shall denote by a + b (ab) the ideal generated by all the sums a + b (products ab) with a ∈ a, b ∈ b.

DEFINITION 2.11: An ideal p of a ring A is called a prime ideal if, whenever ab ∈ p (aAb ∈ p in the non-commutative case) then either a ∈ p or b ∈ p. The set of proper prime ideals of A is denoted by spec(A) and called the spectrum of A.

DEFINITION 2.12: The annihilator of a module M in A is the ideal ann A (M ) of A made by all the elements a ∈ A such that ax = 0, ∀x ∈ M .

From now on, all rings considered will be unitary integral domains, that is rings containing 1 and having no zero-divisor as we shall deal mainly with rings of partial differential operators. For the sake of clarity, as a few results will also be valid for modules over non-commutative rings, we shall denote by A M B a bimodule M which is a left module for A with operation (a, x) → ax and a right module for B with operation (x, b) → xb. In the commutative case, lower indices are not needed. If M = A M and N = A N are two left A-modules, the set of A-linear maps f : M → N will be denoted by hom A (M, N ) or simply hom(M, N ) when there will be no confusion and there is a canonical isomorphism hom(A, M ) ≃ M : f → f (1) with inverse x → (a → ax). When A is commutative, hom(M, N ) is again an A-module for the law (bf )(x) = f (bx) as we have indeed:

(bf )(ax) = f (bax) = f (abx) = af (bx) = a(bf )(x).
In the non-commutative case, things are much more complicate and we have:

LEMMA 2.13: Given A M and A N B , then hom A (M, N ) becomes a right module over B for the law (f b)(x) = f (x)b.
Proof: We just need to check the two relations:

(f b)(ax) = f (ax)b = af (x)b = a(f b)(x), ((f b ′ )b")(x) = (f b ′ )(x)b" = (f (x)b ′ )b" = f (x)(b ′ b ′′ ) = (f (b ′ b ′′ ))(x). Q.E.D.
A similar result can be obtained with A M B and A N , where hom A (M, N ) now becomes a left module over B for the law (bf )(x) = f (xb). THEOREM 2.14: If M, M ′ , M ′′ are A-modules, the sequence:

M ′ f → M g → M ′′ → 0
is exact if and only if the sequence:

0 → hom(M ′′ , N ) → hom(M, N ) → hom(M ′ , N )
is exact for any A-module N .

Proof: Let us consider homomorphisms

h : M → N , h ′ : M ′ → N , h ′′ : M ′′ → N such that h ′′ • g = h, h • f = h ′ . If h = 0, then h ′′ • g = 0 implies h ′′ (x ′′ ) = 0, ∀x ′′ ∈ M ′′ because g is surjective and we can find x ∈ M such that x ′′ = g(x). Then h ′′ (x ′′ ) = h ′′ (g(x)) = h ′′ • g(x) = 0. Now, if h ′ = 0, we have h • f = 0 and h factors through g because the initial sequence is exact.
Hence there exists h ′′ : M ′′ → N such that h = h ′′ • g and the second sequence is exact. We let the reader prove the converse as an exercise.

Q.E.D.

COROLLARY 2.15:

The short exact sequence:

0 → M ′ → M → M ′′ → 0
splits if and only if the short exact sequence:

0 → hom(M ′′ , N ) → hom(M, N ) → hom(M ′ , N ) → 0
is exact for any module N .

DEFINITION 2.16: If M is a module over a ring A, a system of generators of M over A is a family {x i } i∈I of elements of M such that any element of M can be written x = i∈I a i x i with only a finite number of nonzero a i . An A-module is called noetherian if every submodule of M (and thus M itself) is finitely generated.

One has the following standard technical result:

PROPOSITION 2.17: In a short exact sequence of modules, the central module is noetherian if and only if the two other modules are noetherian. As a byproduct, if A is a noetherian ring and M is a finitely generated module over A, then M is noetherian.

Accordingly, if M is generated by {x 1 , ..., x r }, there is an epimorphism A r → M : (1, 0, ..., 0) → x 1 , ..., (0, ..., 1) → x r . The kernel of this epimorphism is thus also finitely generated, say by {y 1 , ..., y s } and we therefore obtain the exact sequence A s → A r → M → 0 that can be extended inductively to the left. Such a property will always be assumed in the sequel. DEFINITION 2.18: In this case, we say that M is finitely presented.

We now turn to the definition and brief study of tensor products of modules over rings that will not be necessarily commutative unless stated explicitly. Let M = M A be a right A-module and N = A N be a left A-module. We may introduce the free Z-module made by finite formal linear combinations of elements of M × N with coefficients in Z.

DEFINITION 2.19:

The tensor product of M and N over A is the Z-module M ⊗ A N obtained by quotienting the above Z-module by the submodule generated by the elements of the form:

(x + x ′ , y) -(x, y) -(x ′ , y), (x, y + y ′ ) -(x, y) -(x, y ′ ), (xa, y) -(x, ay)
and the image of (x, y) will be denoted by x ⊗ y.

It follows from the definition that we have the relations:

(x + x ′ ) ⊗ y = x ⊗ y + x ′ ⊗ y, x ⊗ (y + y ′ ) = x ⊗ y + x ⊗ y ′ , xa ⊗ y = x ⊗ ay
and there is a canonical isomorphism M ⊗ A A ≃ M, A⊗ A N ≃ N . When A is commutative, we may use left modules only and M ⊗ A N becomes a left A-module.

EXAMPLE 2.20:

If A = Z, M = Z/2Z and N = Z/3Z, we have (Z/2Z)⊗ Z (Z/3Z) = 0 because x ⊗ y = 3(x ⊗ y) -2(x ⊗ y) = x ⊗ 3y -2x ⊗ y = 0 -0 = 0.
We present the technique of localization in order to introduce rings and modules of fractions. We shall define the procedure in the non-commutative case but the reader will discover that, in the commutative case, localization is just the formal counterpart superseding Laplace transform. However, it is essential to notice that only the localization technique can be applied to systems with variable coefficients. We start with a basic definition: Definition 2.21: A subset S of a ring A is said to be multiplicatively closed if ∀s, t ∈ S ⇒ st ∈ S and 1 ∈ S.

In a general way, whenever A is a non-commutative ring, that is ab = ba when a, b ∈ A, we shall set the following definition: Definition 2.22: By a left ring of fractions or left localization of a noncommutative ring A with respect to a multiplicatively closed subset S of A, we mean a ring denoted by S -1 A with a monomorphism A → S -1 A : a → 1 -1 a or simply a such that: 1) s is invertible in S -1 A, with inverse s -1 1 or simply s -1 , ∀s ∈ S.

2) Each element of S -1 A or fraction has the form s -1 a for some s ∈ S, a ∈ A. A right ring of fractions or right localization can be similarly defined.

In actual practice, we have to distinguish carefully s -1 a from as -1 . We shall recover the standard notation a/s of the commutative case when two fractions a/s and b/t can be reduced to the same denominator st = ts. The following proposition is essential and will be completed by a technical lemma that will be used for constructing localizations. Proof: As S -1 A must be a ring, the element as -1 in S -1 A must be of the form t -1 b for some

t ∈ S, b ∈ A. Accordingly, as -1 = t -1 b ⇒ ta = bs with t ∈ S, b ∈ A. Q.E.D.
Definition 2.24: A set S satisfying this condition is called a left Ore set.

Lemma 2.25: If S is a left Ore set in a ring A, then As ∩ At ∩ S = ∅, ∀s, t ∈ S and two fractions can be brought to the same denominator.

Proof: From the left Ore condition, we can find u ∈ S and a ∈ A such that us = at ∈ S. More generally, we can find u, v ∈ A such that us = vt ∈ S and we successively get:

(us) -1 (ua) = s -1 u -1 ua = s -1 a, (vt) -1 (vb) = t -1 v -1 vb = t -1 b
so that the two fractions s -1 a and t -1 b can be brought to the same denominator us = vt. Q.E.D.

We are now in position to construct the ring of fractions S -1 A whenever S satifies the two conditions of the last proposition. For this, using the preceding lemma, let us define an equivalence relation on S × A by saying that (s, a) ∼ (t, b) if one can find u, v ∈ S such that us = vt ∈ S and ua = vb. Such a relation is clearly reflexive and symmetric, thus we only need to prove that it is transitive. So let (s 1 , a 1 ) ∼ (s 2 , a 2 ) and (s 2 , a 2 ) ∼ (s 3 , a 3 ). Then we can find u 1 , u 2 ∈ A such that u 1 s 1 = u 2 s 2 ∈ S and u 1 a 1 = u 2 a 2 . Also we can find v 2 , v 3 ∈ A such that v 2 s 2 = v 3 s 3 ∈ S and v 2 a = v 3 a 3 . Now, from the Ore condition, one can find w 1 , w 3 ∈ A such that w 1 u 1 s 1 = w 3 v 3 s 3 ∈ S and thus w 1 u 2 s 2 = w 3 v 2 s 2 ∈ S, that is to say (w 1 u 2w 3 v 2 )s 2 = 0. As A is an integral domain, we have

w 1 u 2 -w 3 v 2 = 0 ⇒ w 1 u 2 = w 3 v 2 ⇒ w 1 u 1 a 1 = w 1 u 2 a 2 = w 3 v 2 a 2 = w 3 v 3 a 3 as wished.
We finally define S -1 A to be the quotient of S × A by the above equivalence relation with θ : A → S -1 A : a → 1 -1 a. The sum (s, a) + (t, b) will be defined to be (us = vt, ua + vb) and the product (s, a) × (t, b) will be defined to be (s

-1 a)(t -1 b) = s -1 (at -1 )b = s -1 u -1 cb = (us) -1 (cb) whenever ua = ct .
A similar approach can be used in order to define and construct modules of fractions whenever S satifies the two conditions of the last proposition. For this we need a preliminary lemma: LEMMA 2.26: If S is a left Ore set in a ring A and M is a left module over A, the set:

t S (M ) = {x ∈ M |∃s ∈ S, sx = 0}
is a submodule of M called the S-torsion submodule of M .

Proof: If x, y ∈ t S (M ), we may find s, t ∈ S such that sx = 0, ty = 0. Now, we can find u, v ∈ A such that us = vt ∈ S and we successively get us(x + y) = usx + vty = 0 ⇒ x + y ∈ t S (M ). Also, ∀a ∈ A, using the Ore condition for S, we can find b ∈ A, t ∈ S such that ta = bs and we get tax = bsx = 0 ⇒ ax ∈ t S (M ).

Q.E.D.

DEFINITION 2.27: By a left module of fractions or left localization of M with respect to S, we mean a left module S -1 M over S -1 A both with a homomorphism θ = θ S :

M → S -1 M : x → 1 -1 x = s -1 sx such that: 1) Each element of S -1 M has the form s -1 x for s ∈ S, x ∈ M . 2) ker(θ S ) = t S (M ).
In order to construct S -1 M , we shall define an equivalence relation on S × M by saying that (s, x) ∼ (t, y) if there exists u, v ∈ A such that us = vt ∈ S and ux = vy. Checking that this relation is reflexive, symmetric and transitive can be done as before (exercise) and we define S -1 M to be the quotient of S × M by this equivalence relation. The main property of localization is expressed by the following theorem: Theorem 2.28: If one has an exact sequence:

M ′ f -→ M g -→ M ′′
then one also has the exact sequence:

S -1 M ′ S -1 f -→ S -1 M S -1 g -→ S -1 M ′′ where S -1 f (s -1 x) = s -1 f (x).
Proof: As g • f = 0, we also have S -1 g • S -1 f = 0 and thus im(S -1 f ) ⊆ ker(S -1 g).

In order to prove the reverse inclusion, let s -1 x ∈ ker(S -1 g). We have therefore s -1 g(x) = 0 in S -1 M ′′ and there exists t ∈ S such that tg(x) = g(tx) = 0 in M ′′ . As the initial sequence is exact, we can find

x ′ ∈ M ′ such that tx = f (x ′ ). Accordingly, in S -1 M we have s -1 x = s -1 t -1 tx = (ts) -1 tx = (ts) -1 f (x ′ ) = S -1 f ((ts) -1 x ′ ) and thus ker(S -1 g) ⊆ im(S -1 f ). Q.E.D.
As a link between tensor product and localization, we notice that the multiplication map S -1 A × M → S -1 M given by (s -1 a, x) → s -1 ax induces an isomorphism S -1 A⊗ A M → S -1 M of modules over S -1 A when S -1 A is considered as a right module over A with (s -1 a)b = s -1 ab and M as a left module over A. In particular, when A is a commutative integral domain and S = A -{0}, the field K = Q(A) = S -1 A is called the field of fractions of A and we have the short exact sequence:

0 -→ A -→ K -→ K/A -→ 0
If now M is a left A-module, we may tensor this sequence by M on the right with A ⊗ M = M but we do not get in general an exact sequence. The defect of exactness on the left is nothing else but the torsion submodule t(M ) = {x ∈ M |∃0 = s ∈ A, sx = 0} ⊆ M and we have the long exact sequence:

0 -→ t(M ) -→ M -→ K⊗ A M -→ K/A⊗ A M -→ 0
as we may describe the central map as follows:

x -→ 1 ⊗ x = s -1 s ⊗ x = s -1 ⊗ sx , ∀0 = s ∈ A
As we saw in the Introduction, such a result allows to understand why controllability has to do with localization which is introduced implicitly through the transfer matrix in control theory. In particular, a module M is said to be a torsion module if t(M ) = M and a torsion-free module if t(M ) = 0.

DEFINITION 2.29: A module in mod(A) is called a free module if it has a basis, that is a system of generators linearly independent over A. When a module F is free, the number of generators in a basis, and thus in any basis, is called the rank of F over A and is denoted by rank A (F ). In particular, if F is free of finite rank r, then F ≃ A r .

More generally, if M is any module over a ring A and F is a maximum free submodule of M , then M/F = T is a torsion module. Indeed, if x ∈ M, x / ∈ F , then one can find a ∈ A such that ax ∈ F because, otherwise, F ⊂ {F, x} should be free submodules of M with a strict inclusion. In that case, the rank of M is by definition the rank of F over A. When A is commutative, one has equivalently :

LEMMA 2.30: rk A (M ) = dim K (K⊗ A M ).
Proof: Taking the tensor product by K over A of the short exact sequence 0 → F → M → T → 0, we get an isomorphism K⊗ A F ≃ K⊗ A M because K⊗ A T = 0 (exercise) and the lemma follows from the definition of the rank.

Q.E.D.

We now provide two proofs of the additivity property of the rank:

PROPOSITION 2.31: If 0 → M ′ f → M g → M ′′ → 0 is a short exact sequence of modules over a ring A, then we have rk A (M ) = rk A (M ′ ) + rk A (M ′′ ).
Proof 1: In the commutative case, using a localization with respect to the multiplicatively closed subset S = A -{0}, this proposition is just a straight consequence of the definition of rank and the fact that localization preserves exactness. Proof 2: Let us consider the following diagram with exact left/right columns and central row:

0 0 0 ↓ ↓ ↓ 0 → F ′ → F ′ ⊕ F ′′ → F ′′ → 0 ↓ i ′ ↓ i ↓ i ′′ 0 → M ′ f → M g → M ′′ → 0 ↓ p ′ ↓ p ↓ p ′′ 0 → T ′ → T → T ′′ → 0 ↓ ↓ ↓ 0 0 0
where F ′ (F ′′ ) is a maximum free submodule of M ′ (M ′′ ) and T ′ = M ′ /F ′ (T ′′ = M ′′ /F ′′ ) is a torsion module. Pulling back by g the image under i ′′ of a basis of F ′′ , we may obtain by linearity a map σ : F ′′ → M and we define i = f • i ′ • π ′ + σ • π ′′ where π ′ : F ′ ⊕ F ′′ → F ′ and π ′′ : F ′ ⊕ F ′′ → F ′′ are the canonical projections on each factor of the direct sum. We have

i| F ′ = f • i ′ and g • i = g • σ • π ′′ = i ′′ • π ′′ .
Hence, the diagram is commutative and thus exact with rk A (F ′ ⊕ F ′′ ) = rk A (F ′ ) + rk A (F ′′ ) trivially. Finally, if T ′ and T ′′ are torsion modules, it is easy to check that T is a torsion module too and F ′ ⊕ F ′′ is thus a maximum free submodule of M . Q.E.D.

DEFINITION 2.32: If f : M → N is any morphism, the rank of f will be defined to be rk A (f ) = rk A (im(f )).

We provide a few additional properties of the rank that will be used in the sequel. For this we shall set M * = hom A (M, A) and, for any morphism f : M → N we shall denote by f * :

N * → M * the corresponding morphism which is such that f * (h) = h • f, ∀h ∈ hom A (N, A).
PROPOSITION 2.33: When A is a commutative integral domain and M is a finitely presented module over A, then rk A (M ) = rk A (M * ).

Proof: Applying hom A (•, A) to the short exact sequence in the proof of the preceding lemma while taking into account T * = 0, we get a monomorphism 0 → M * → F * and obtain therefore rk A (M * ) ≤ rk A (F * ). However, as F ≃ A r with r < ∞ because M is finitely generated, we get

F * ≃ A r too because A * ≃ A. It follows that rk A (M * ) ≤ rk A (F * ) = rk A (F ) = rk A (M ) and thus rk A (M * ) ≤ rk A (M ). Now, if F 1 d1 → F 0 → M → 0 is
a finite presentation of M , applying hom A (•, A) to this presentation, we get the ker/coker exact sequence: A) to this sequence while taking into account the isomorphisms F * * 0 ≃ F 0 , F * * 1 ≃ F 1 , we get the ker/coker exact sequence:

0 ← N ← F * 1 d * 1 ← F * 0 ← M * ← 0 Applying hom A (•,
0 → N * → F 1 d1 → F 0 → M → 0
Counting the ranks, we obtain:

rk A (N ) -rk A (M * ) = rk A (F * 1 ) -rk A (F * 0 ) = rk A (F 1 ) -rk A (F 0 ) = rk A (N * ) -rk A (M ) and thus: (rk A (M ) -rk A (M * )) + (rk A (N ) -rk A (N * )) = 0
As both two numbers in this sum are non-negative, they must be zero and we finally get rk

A (M ) = rk A (M * ), rk A (N ) = rk A (N * ). Q.E.D.
COROLLARY 2.34: Under the condition of the proposition, we have rk A (f ) = rk A (f * ).

Proof: Introducing the ker/coker exact sequence:

0 → K → M f → N → Q → 0 we have: rk A (f ) + rk A (Q) = rk A (N ). Applying hom A (•, A
) and taking into account Theorem 3.1.14, we have the exact sequence:

0 → Q * → N * f * → M *
and thus : rk

A (f * ) + rk A (Q * ) = rk A (N * ).
Using the preceding proposition, we get rk

A (Q) = rk A (Q * ) and rk A (N ) = rk A (N * ), that is to say rk A (f ) = rk A (f * ). Q.E.D.

3) HOMOLOGICAL ALGEBRA

We now need a few definitions and results from homological algebra ( [START_REF] Pommaret | Partial Differential Control Theory[END_REF], [START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF], [START_REF] Rotman | An Introduction to Homological Algebra[END_REF]). In all that follows, A, B, C, L, M, N, R, S, T, ... are modules over a ring A or vector spaces over a field k and the linear maps are making the diagrams commutative. We start recalling the well known Cramer's rule for linear systems through the exactness of the ker/coker sequence for modules. When f : M → N is a linear map (homomorphism), we introduce the so-called ker/coker long exact sequence:

0 -→ ker(f ) -→ M f -→ N -→ coker(f ) -→ 0
In the case of vector spaces over a field k, we successively have rk(f

) = dim(im(f )), dim(ker(f )) = dim(M ) -rk(f ), dim(coker(f )) = dim(N ) -rk(f ) = nb of
compatibility conditions, and obtain by substraction:

dim(ker(f )) -dim(M ) + dim(N ) -dim(coker(f )) = 0
In the case of modules, we may replace the dimension by the rank and obtain the same relations because of the additive property of the rank. The following theorem is essential: SNAKE THEOREM 3.1: When one has the following commutative diagram resulting from the two central vertical short exact sequences by exhibiting the three corresponding horizontal ker/coker exact sequences:

0 0 0 ↓ ↓ ↓ 0 -→ K -→ A -→ A ′ -→ Q -→ 0 ↓ ↓ f ↓ f ′ ↓ 0 -→ L -→ B -→ B ′ -→ R -→ 0 ↓ ↓ g ↓ g ′ ↓ 0 -→ M -→ C -→ C ′ -→ S -→ 0 ↓ ↓ ↓ 0 0 0
then there exists a connecting map M -→ Q both with a long exact sequence:

0 -→ K -→ L -→ M -→ Q -→ R -→ S -→ 0.
Proof: We start constructing the connecting map by using the following succession of elements:

a • • • a ′ -→ q . . . ↓ b -→ b ′ ↓ . . . m -→ c • • • 0
Indeed, starting with m ∈ M , we may identify it with c ∈ C in the kernel of the next horizontal map. As g is an epimorphism, we may find b ∈ B such that c = g(b) and apply the next horizontal map to get b ′ ∈ B ′ in the kernel of g ′ by the commutativity of the lower square. Accordingly, there is a unique a ′ ∈ A ′ such that b ′ = f ′ (a ′ ) and we may finally project a ′ to q ∈ Q. The map is well defined because, if we take another lift for c in B, it will differ from b by the image under f of a certain a ∈ A having zero image in Q by composition. The remaining of the proof is similar. The above explicit procedure called " chase " will not be repeated. Q.E.D.

We may now introduce cohomology theory through the following definition: 

DEFINITION 3.2: If one has a sequence L f -→ M g -→ N , that is if g • f = 0,
0 0 0 ↓ ↓ ↓ 0 -→ K -→ A -→ A ′ -→ Q -→ 0 ↓ ↓ f ↓ f ′ ↓ 0 -→ L -→ B -→ B ′ -→ R -→ 0 • • • • • • ↓ • • • ↓ g • • • ↓ g ′ • • • ↓ • • • • • • • • • cut 0 -→ M -→ C -→ C ′ -→ S -→ 0 ↓ ↓ h ↓ h ′ ↓ 0 -→ N -→ D -→ D ′ -→ T -→ 0 ↓ ↓ ↓ 0 0 0
induces an isomorphism between the cohomology at M in the left vertical column and the kernel of the morphism Q → R in the right vertical column.

Proof: Let us "cut" the preceding diagram along the dotted line. We obtain the following two commutative and exact diagrams with im(g) = ker(h), im(g ′ ) = ker(h ′ ):

0 0 0 ↓ ↓ ↓ 0 -→ K -→ A -→ A ′ -→ Q -→ 0 ↓ ↓ f ↓ f ′ ↓ 0 -→ L -→ B -→ B ′ -→ R -→ 0 ↓ ↓ g ↓ g ′ 0 -→ cocycle -→ im(g) -→ im(g ′ ) ↓ ↓ 0 0 0 0 0 ↓ ↓ ↓ 0 -→ cocycle -→ ker(h) -→ ker(h ′ ) ↓ ↓ ↓ 0 -→ M -→ C -→ C ′ ↓ ↓ h ↓ h ′ 0 -→ N -→ D -→ D ′ ↓ ↓ 0 0
Using the snake theorem, we successively obtain the following long exact sequences:

=⇒ ∃ 0 -→ K -→ L g -→ cocycle -→ Q -→ R =⇒ ∃ 0 -→ coboundary -→ cocycle -→ ker (Q -→ R) -→ 0 =⇒ cohomology at M ≃ ker (Q -→ R) Q.E.D.
We now introduce the extension modules in an elementary manner, using the standard notation hom A (M, A) = M * . For this, we shall use a free resolution of an A-module M , that is to say a long exact sequence:

...

d2 -→ F 1 d1 -→ F 0 -→ M -→ 0
where F 0 , F 1 , ...are free modules, namely modules isomorphic to powers of A and M = coker(d 1 ) = F 0 /im(d 1 ). We may take out M and obtain the deleted sequence:

...

d2 -→ F 1 d1 -→ F 0 -→ 0
which is of course no longer exact. We may apply the functor hom A (•, A) and obtain the sequence:

...

d * 2 ←-F * 1 d * 1 ←-F * 0 ←-0
in order to state: DEFINITION 3.4: We set:

ext 0 (M ) = ext 0 A (M, A) = ker(d * 1 ) = M * , ext i (M ) = ext i A (M, A) = ker(d * i+1 )/im(d * i ), ∀i ≥ 1
The extension modules have the following three main properties, the first and second only being classical ( [START_REF] Bourbaki | Eléments de Mathématiques, Algèbre, Ch. 10[END_REF], [START_REF] Pommaret | Partial Differential Control Theory[END_REF], [START_REF] Rotman | An Introduction to Homological Algebra[END_REF]): PROPOSITION 3.5: The extension modules do not depend on the resolution of M chosen. PROPOSITION 3.6: If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of A-modules, then we have the following connecting long exact sequence:

0 → M " * → M * → M ′ * → ext 1 (M ′′ ) → ext 1 (M ) → ext 1 (M ′ ) → ext 2 (M ") → ext 2 (M ) → ...

of extension modules.

We provide two different proofs of the following proposition: PROPOSITION 3.7: ext i (M ) is a torsion module, ∀i ≥ 1.

Proof 1: Let F be a maximal free submodule of M . From the short exact sequence:

0 -→ F -→ M -→ M/F -→ 0
where M/F is a torsion module, we obtain the long exact sequence:

... → ext i-1 (F ) → ext i (M/F ) → ext i (M ) → ext i (F ) → ...
As F is free, we obtain ext i (F ) = 0, ∀i ≥ 1 and thus ext i (M ) ≃ ext i (M/F ), ∀i ≥ 2. Now, we have seen that the tensor product by K of any exact sequence is again an exact sequence. Accordingly, as K⊗ A (M/F ) = 0, we have from the definitions:

K⊗ A ext i A (M/F, A) ≃ ext i A (M/F, K) ≃ ext i K (K⊗ A M/F, K) = 0, ∀i ≥ 1
and we finally obtain from the above sequence

K⊗ A ext i (M ) = 0 ⇒ ext i (M ) torsion, ∀i ≥ 1.
Proof 2: Having in mind that

B i = im(d * i ) and Z i = ker(d * i+1 ), we obtain rk(B i ) = rk(d * i ) = rk(d i ) and rk(Z i ) = rk(F * i ) -rk(d * i+1 ) = rk(F i ) -rk(d i+1
). However, we started from a resolution, that is an exact sequence in which rk

(d i ) + rk(d i+1 ) = rk(F i ). It follows that rk(B i ) = rk(Z i ) and thus rk(H i ) = rk(Z i ) -rk(B i ) = 0, that is to say ext i (M ) is a torsion module for i ≥ 1, ∀M ∈ mod(A). Q.E.D.
The next theorem and its corollary constitute the main results that will be used for applications through a classification of modules ( [START_REF] Bjork | Analytic D-Modules and Applications[END_REF], [START_REF] Kashiwara | Algebraic Study of Systems of Partial Differential Equations[END_REF], [START_REF] Pommaret | Partial Differential Control Theory[END_REF], [START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF], [START_REF] Pommaret | Relative Parametrization of Linear Multidimensional Systems[END_REF], [START_REF] Pommaret | QUADRAT: Localization and parametrization of linear multidimensional control systems[END_REF], [START_REF] Pommaret | QUADRAT: Algebraic Analysis of Linear Multidimensional Control Systems[END_REF]): THEOREM 3.8: The following long exact sequence:

0 -→ ext 1 (N ) -→ M ǫ -→ M * * -→ ext 2 (N ) -→ 0
is isomorphic to the ker/coker long exact sequence for the central morphism ǫ which is defined by ǫ

(x)(f ) = f (x), ∀x ∈ M, ∀f ∈ M * . Proof: Introducing K = im(d *
1 ), we may obtain two short exact sequences, a left one starting with K and a right one finishing with K as follows:

0 ← N ←-F * 1 d * 1 ←- F * 0 ←-M * ← 0 տ ւ K ւ տ 0 0
Using the two corresponding long exact connecting sequences, we get ext 1 (K) ≃ ext 2 (N ) from the one starting with N * which is also providing the left exact column of the next diagram and the exact central row of this diagram from the one starting with K * . The Theorem is finally obtained by a chase proving that the full diagram is commutative and exact:

F 1 = F 1 ↓ ↓ d 1 0 → K * d1 -→ F 0 -→ M * * -→ ext 2 (N ) → 0 ↓ ↓ ր 0 → ext 1 (N ) -→ M ↓ ↓ 0 0 Q.E.D.
COROLLARY 3.9: t(M ) = ext 1 (N ) = ker(ǫ).

Proof: As ext 1 (N ) ⊆ M is a torsion module, we have therefore ext 1 (N ) ⊆ t(M ). Now, if x ∈ t(M ), we may find 0 = a ∈ A such that ax = 0 and ǫ(x

)(f ) = f (x) ⇒ f (ax) = af (x) = 0 ⇒ f (x) = 0 be- cause A is an integral domain, that is t(M ) ⊆ ker(ǫ) = ext 1 (N ) and thus t(M ) = ext 1 (N ) = ker(ǫ). Q.E.D.
DEFINITION 3.10: A module M will be called torsion-free if ext 1 (N ) = t(M ) = 0 and reflexive if ext 1 (N ) = 0, ext 2 (N ) = 0. Going further on in specifying the properties of M can be done but is out of the scope of this paper (See [START_REF] Bjork | Analytic D-Modules and Applications[END_REF], [START_REF] Pommaret | Partial Differential Control Theory[END_REF] for more details and the Poincaré sequence below for an example) (Hint: Using the connecting long exact sequence, we get ext 2+r (N ) = ext r (M * ), ∀r ≥ 1).

Despite all these results, a major difficulty still remains. Indeed, we have M = coker(d 1 ) = A M as a left module over A but, using the bimodule structure of A = A A A Lemma 2.13, it follows that M * = ker(d * 1 ) = M * A is a right module over A and thus N = coker(d * 1 ) = N A is also a right module over A. However, as we shall see, all the differential modules used through applications will be left modules over the ring of differential operators and it will therefore not be possible to use dual sequences as we did without being able to " pass from left to right and vice-versa ". For this purpose we now need many delicate results from differential geometry, in particular a way to deal with the formal adjoint of an operator as we did many times in the Introduction.

4) SYSTEM THEORY

If E is a vector bundle over the base manifold X with projection π and local coordinates (x, y) = (x i , y k ) projecting onto x = (x i ) for i = 1, ..., n and k = 1, ..., m, identifying a map with its graph, a (local) section f : U ⊂ X → E is such that π • f = id on U and we write y k = f k (x) or simply y = f (x). For any change of local coordinates (x, y) → (x = ϕ(x), ȳ = A(x)y) on E, the change of section is y

= f (x) → ȳ = f (x) such that f l (ϕ(x) ≡ A l k (x)f k (x)
. The new vector bundle E * obtained by changing the transition matrix A to its inverse A -1 is called the dual vector bundle of E. Differentiating with respect to x i and using new coordinates y k i in place of ∂ i f k (x), we obtain ȳl

r ∂ i ϕ r (x) = A l k (x)y k i + ∂ i A l k (x)y k .
Introducing a multi-index µ = (µ 1 , ..., µ n ) with length | µ |= µ 1 + ... + µ n and prolonging the procedure up to order q, we may construct in this way, by patching coordinates, a vector bundle J q (E) over X, called the jet bundle of order q with local coordinates (x, y q ) = (x i , y k µ ) with 0 ≤| µ |≤ q and y k 0 = y k . We have therefore epimorphisms π q+r q : J q+r (E) → J q (E), ∀q, r ≥ 0. For a later use, we shall set µ + 1 i = (µ 1 , ..., µ i-1 , µ i + 1, µ i+1 , ..., µ n ) and define the operator j q : E → J q (E) : f → j q (f ) on sections by the local formula j q (f ) : (x) → (∂ µ f k (x) | 0 ≤| µ |≤ q, k = 1, ..., m). Finally, a jet coordinate y k µ is said to be of class i if µ 1 = ... = µ i-1 = 0, µ i = 0.

DEFINITION 4.1: A system of PD equations of order q on E is a vector subbundle R q ⊂ J q (E) locally defined by a constant rank system of linear equations for the jets of order q of the form a τ µ k (x)y k µ = 0. Its first prolongation R q+1 ⊂ J q+1 (E) will be defined by the equations a τ µ k (x)y k µ = 0, a τ µ k (x)y k µ+1i + ∂ i a τ µ k (x)y k µ = 0 which may not provide a system of constant rank as can easily be seen for xy xy = 0 ⇒ xy xx = 0 where the rank drops at x = 0.

The next definition of formal integrability (FI) will be crucial for our purpose. DEFINITION 4.2: A system R q is said to be formally integrable if the R q+r are vector bundles ∀r ≥ 0 (regularity condition) and no new equation of order q + r can be obtained by prolonging the given PD equations more than r times, ∀r ≥ 0 or, equivalently, we have induced epimorphisms π q+r+1 q+r : R q+r+1 → R q+r , ∀r ≥ 0 allowing to compute " step by step " formal power series solutions.

A formal test has been first sketched by C. Riquier in 1910 ( [START_REF] Riquier | Les Systèmes d'Equations aux Dérivées Partielles[END_REF]), then improved by M. Janet in 1920 ( [START_REF] Eisenhart | Riemannian Geometry[END_REF], [START_REF] Pommaret | Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach[END_REF]) and by E. Cartan in 1945 ([6]), finally rediscovered in 1965, totally independently, by B. Buchberger who introduced Gröbner bases, using the name of his thesis advisor. However all these tentatives have been largely superseded and achieved in an intrinsic way, again totally independently of the previous approaches, by D.C. Spencer in 1965 ([29], [START_REF] Pommaret | Partial Differential Equations and Group Theory,New Perspectives for Applications[END_REF], [START_REF] Spencer | Overdetermined Systems of Partial Differential Equations[END_REF]).

DEFINITION 4.3:

The family g q+r of vector spaces over X defined by the purely linear equations a τ µ k (x)v k µ+ν = 0 for | µ |= q, | ν |= r is called the symbol at order q +r and only depends on g q .

The following procedure, where one may have to change linearly the independent variables if necessary, is the key towards the next definition which is intrinsic even though it must be checked in a particular coordinate system called δ-regular (See [START_REF] Pommaret | Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach[END_REF] and [START_REF] Pommaret | Partial Differential Control Theory[END_REF] for more details):

• Equations of class n: Solve the maximum number β n q of equations with respect to the jets of order q and class n. Then call (x 1 , ..., x n ) multiplicative variables.

- ---------------• Equations of class i: Solve the maximum number of remaining equations with respect to the jets of order q and class i. Then call (x 1 , ..., x i ) multiplicative variables and (x i+1 , ..., x n ) nonmultiplicative variables.

- ----------------• Remaining equations equations of order ≤ q -1: Call (x 1 , ..., x n ) non-multiplicative variables.

DEFINITION 4.4:

The above multiplicative and non-multiplicative variables can be visualized respectively by integers and dots in the corresponding Janet board. A system of PD equations is said to be involutive if its first prolongation can be achieved by prolonging its equations only with respect to the corresponding multiplicative variables. The following numbers are called characters:

α i q = m(q + n -i -1)!/((q -1)!(n -i)!) -β i q , ∀1 ≤ i ≤ n ⇒ α 1 q ≥ ... ≥ α n q
For an involutive system, (y β n q +1 , ..., y m ) can be given arbitrarily.

For an involutive system of order q in the above solved form, we shall use to denote by y pri the principal jet coordinates, namely the leading terms of the solved equations in the sense of involution. Accordingly, any formal derivative of a principal jet coordinate is again a principal jet coordinate. The remaining jet coordinates will be called parametric jet coordinates and denoted by y par . We shall use a "trick" in order to study the parametric jet coordinates. Indeed, the symbol of j q is the zero symbol and is thus trivially involutive at any order q. Accordingly, if we introduce the multiplicative variables x 1 , ..., x i for the parametric jets of order q and class i, the formal derivative or a parametric jet of strict order q and class i by one of its multiplicative variables is uniquely obtained and cannot be a principal jet of order q + 1 which is coming from a uniquely defined principal jet of order q and class i. We have thus obtained the following technical Proposition which is very useful in actual practice: PROPOSITION 4.5: The principal and parametric jets of strict order q of an involutive system of order q have the same Janet board if we extend it to all the classes that may exist for both sets, in particular the respective empty classes.

The following technical lemmas are straightforward consequences of the definition of an involutive system and allow to construct all the possible sets of principal or parametric jet coordinates when m, n and q are given (See [START_REF] Pommaret | Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach[END_REF] p 123-125 for more details). µ is a principal jet coordinate of strict order q, that is | µ |= q with µ 1 = 0, ..., µ i-1 = 0, µ i > 0, then ∀j > i, y k µ-1i+1j is a principal jet coordinate and this nota-tion has a meaning because µ i > 0.

LEMMA 4.8: If there exists an equation of class i, there exists also an equation of class i + 1. Accordingly, the classes of the solved equations of an involutive symbol are an increasing chain of consecutive integers ending at n.

LEMMA 4.9: The indices µ i of the principal jet coordinates of strict order q and class i are an increasing chain of consecutive integers starting from 1.

PROPOSITION 4.10: Using the Janet board and the definition of involutivity, we get:

dim(g q+r ) = n i=1 (r + i -1)! r!(i -1)! α i q ⇒ dim(R q+r ) = dim(R q-1 ) + n i=1 (r + i)! r!i! α i q
Let T be the tangent vector bundle of vector fields on X, T * be the cotangent vector bundle of 1forms on X and ∧ s T * be the vector bundle of s-forms on X with usual bases {dx I = dx i1 ∧...∧dx is } where we have set I = (i 1 < ... < i s ). Also, let S q T * be the vector bundle of symmetric qcovariant tensors. Moreover, if ξ, η ∈ T are two vector fields on X, we may define their bracket

[ξ, η] ∈ T by the local formula ([ξ, η]) i (x) = ξ r (x)∂ r η i (x) -η s (x)∂ s ξ i (x) leading to the Jacobi identity [ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0, ∀ξ, η, ζ ∈ T . We may finally introduce the exterior derivative d : ∧ r T * → ∧ r+1 T * : ω = ω I dx I → dω = ∂ i ω I dx i ∧ dx I with d 2 = d • d ≡ 0 in the Poincaré sequence: ∧ 0 T * d -→ ∧ 1 T * d -→ ∧ 2 T * d -→ ... d -→ ∧ n T * -→ 0
In a purely algebraic setting, one has ([29], [START_REF] Spencer | Overdetermined Systems of Partial Differential Equations[END_REF]):

PROPOSITION 4.11: There exists a map δ :

∧ s T * ⊗ S q+1 T * ⊗ E → ∧ s+1 T * ⊗ S q T * ⊗ E which restricts to δ : ∧ s T * ⊗ g q+1 → ∧ s+1 T * ⊗ g q and δ 2 = δ • δ = 0.
Proof: Let us introduce the family of s-forms ω = {ω k µ = v k µ,I dx I } and set (δω

) k µ = dx i ∧ ω k µ+1i . We obtain at once (δ 2 ω) k µ = dx i ∧ dx j ∧ ω k µ+1i+1j = 0. Q.E.D.
The kernel of each δ in the first case is equal to the image of the preceding δ but this may no longer be true in the restricted case and we set (See [START_REF] Pommaret | Partial Differential Equations and Group Theory,New Perspectives for Applications[END_REF], p 85-88 for more details): DEFINITION 4.12: We denote by B s q+r (g q ) ⊆ Z s q+r (g q ) and H s q+r (g q ) = Z s q+r (g q )/B s q+r (g q ) respectively the coboundary space, cocycle space and cohomology space at ∧ s T * ⊗ g q+r of the restricted δ-sequence which only depend on g q and may not be vector bundles. The symbol g q is said to be s-acyclic if H 1 q+r = ... = H s q+r = 0, ∀r ≥ 0, involutive if it is n-acyclic and finite type if g q+r = 0 becomes trivially involutive for r large enough. For a later use, we notice that a symbol g q is involutive and of finite type if and only if g q = 0. Finally,

S q T * ⊗ E is involutive ∀q ≥ 0 if we set S 0 T * ⊗ E = E.
FI CRITERION 4.13: If π q+1 q : R q+1 → R q is an epimorphism of vector bundles and g q is 2-acyclic (involutive), then R q is formally integrable (involutive). is homogeneous and thus automatically formally integrable but g 2 is not involutive though finite type because g 4 = 0. Elementary computations of ranks of matrices shows that the δ-map:

0 → ∧ 2 T * ⊗ g 3 δ -→ ∧ 3 T * ⊗ g 2 → 0
is a 3 × 3 isomorphism and thus g 3 is 2-acyclic with dim(g 3 ) = 1, a crucial intrinsic property totally absent from any "old" work and quite more easy to handle than its Koszul dual.

The main use of involution is to construct differential sequences that are made up by successive compatibility conditions (CC) of order one. In particular, when R q is involutive, the differential operator D : E jq → J q (E) Φ → J q (E)/R q = F 0 of order q with space of solutions Θ ⊂ E is said to be involutive and one has the canonical linear Janet sequence ( [START_REF] Pommaret | Partial Differential Equations and Group Theory,New Perspectives for Applications[END_REF], p 144):

0 -→ Θ -→ E D -→ F 0 D1 -→ F 1 D2 -→ ... Dn -→ F n -→ 0
where each other operator is first order involutive and generates the CC of the preceding one with the Janet bundles F r = ∧ r T * ⊗J q (E)/(∧ r T * ⊗R q +δ(∧ r-1 T * ⊗S q+1 T * ⊗E)). As the Janet sequence can be "cut at any place", that is can also be constructed anew from any intermediate operator, the numbering of the Janet bundles has nothing to do with that of the Poincaré sequence for the exterior derivative, contrary to what many physicists still believe (n = 3 with D = div provides the simplest example). Moreover, the fiber dimension of the Janet bundles can be computed at once inductively from the board of multiplicative and non-multiplicative variables that can be exhibited for D by working out the board for D 1 and so on. For this, the number of rows of this new board is the number of dots appearing in the initial board while the number nb(i) of dots in the column i just indicates the number of CC of class i for i = 1, ..., n with nb(i) < nb(j), ∀i < j. When R q is not involutive but formally integrable and the r-prolongation of its symbol g q becomes 2-acyclic, it is known that the generating CC are of order r+1 (See [START_REF] Pommaret | Partial Differential Equations and Group Theory,New Perspectives for Applications[END_REF], Example 6, p 120 and previous Example). EXAMPLE 4.15: ([21], §38, p 40 is providing the first intuition of formal integrability) The second order system y 11 = 0, y 13y 2 = 0 is neither formally integrable nor involutive. Indeed, we get d 3 y 11d 1 (y 13y 2 ) = y 12 and d 3 y 12d 2 (y 13y 2 ) = y 22 , that is to say each first and second prolongation does bring a new second order PD equation. Considering the new system y 22 = 0, y 12 = 0, y 13y 2 = 0, y 11 = 0, the question is to decide whether this system is involutive or not. In such a simple situation, as there is no PD equation of class 3, the evident permutation of coordinates (1, 2, 3) → (3, 2, 1) provides the following involutive second order system with one equation of class 3, 2 equations of class 2 and 1 equation of clas 1:

       Φ 4 ≡ y 33 = 0 Φ 3 ≡ y 23 = 0 Φ 2 ≡ y 22 = 0 Φ 1 ≡ y 13 -y 2 = 0 1 2 3 1 2 • 1 2 • 1 • •
We have α 3 2 = 0, α 2 2 = 0, α 1 2 = 2 and the corresponding CC system is easily seen to be the following involutive first order system:

       Ψ 4 ≡ d 3 Φ 3 -d 2 Φ 4 = 0 Ψ 3 ≡ d 3 Φ 2 -d 2 Φ 3 = 0 Ψ 2 ≡ d 3 Φ 1 -d 1 Φ 4 + Φ 3 = 0 Ψ 1 ≡ d 2 Φ 1 -d 1 Φ 3 + Φ 2 = 0 1 2 3 1 2 3 1 2 3 1 2 •
The final CC system is the involutive first order system:

Ω ≡ d 3 Ψ 1 -d 2 Ψ 2 + d 1 Ψ 4 -Ψ 3 = 0 1 2 3
We get therefore the Janet sequence:

0 -→ Θ -→ 1 -→ 4 -→ 4 -→ 1 -→ 0
We finally check that each Φ 1 , Φ 2 , Φ 3 is separately differentially dependent on Φ 4 because we have successively

d 3 Φ 3 -d 2 Φ 4 = 0, d 33 Φ 2 -d 22 Φ 4 = 0, d 33 Φ 1 -d 13 Φ 4 + d 2 Φ 4 = 0, that is Φ 1 , Φ 2 , Φ 3
become torsion elements when Φ 4 = 0. Similarly, Ψ 1 is differentially dependent on Ψ 2 , Ψ 3 , Ψ 4 , that is Ψ 1 becomes a torsion element when Ψ 2 = Ψ 3 = Ψ 4 = 0.

5) DIFFERENTIAL MODULES

Let K be a differential field, that is a field containing Q with n commuting derivations {∂

1 , ..., ∂ n } with ∂ i ∂ j = ∂ j ∂ i = ∂ ij , ∀i, j = 1, ..., n such that ∂ i (a + b) = ∂ i a + ∂ i b, ∂ i (ab) = (∂ i a)b + a∂ i b, ∀a, b ∈ K and ∂ i (1/a) = -(1/a 2 )∂ i a, ∀a ∈ K.
Using an implicit summation on multi-indices, we may introduce the (noncommutative) ring of differential operators

D = K[d 1 , ..., d n ] = K[d] with elements P = a µ d µ such that | µ |< ∞ and d i a = ad i + ∂ i a.
The highest value of |µ| with a µ = 0 is called the order of the operator P and the ring D with multiplication (P, Q) -→ P • Q = P Q is filtred by the order q of the operators. We have the filtration If we introduce differential indeterminates y = (y 1 , ..., y m ), we may extend µ by ȳk µ when there can be a confusion. Introducing the two free differential modules F 0 ≃ D m0 , F 1 ≃ D m1 , we obtain equivalently the free presentation F 1 d1 -→ F 0 → M → 0 of order q when m 0 = m, m 1 = p and d 1 = D = Φ • j q . We shall moreover assume that D provides a strict morphism, namely that the corresponding system R q is formally integrable. It follows that M can be endowed with a quotient filtration obtained from that of D m which is defined by the order of the jet coordinates y q in D q y. We have therefore the inductive limit

0 ⊂ K = D 0 ⊂ D 1 ⊂ ... ⊂ D q ⊂ ... ⊂ D ∞ = D.
d i y k µ = y k µ+1i to Φ τ ≡ a τ µ k y k µ di -→ d i Φ τ ≡ a τ µ k y k µ+1i + ∂ i a τ µ k y k µ for τ =
0 = M -1 ⊆ M 0 ⊆ M 1 ⊆ ... ⊆ M q ⊆ ... ⊆ M ∞ = M with d i M q ⊆ M q+1 but it is important to notice that D r D q = D q+r ⇒ D r M q = M q+r , ∀q, r ≥ 0 ⇒ M = DM q , ∀q
≥ 0 in this particular case. It also follows from noetherian arguments and involution that D r I q = I q+r , ∀r ≥ 0 though we have in general only D r I s ⊆ I r+s , ∀r ≥ 0, ∀s < q. As K ⊂ D, we may introduce the forgetful functor f or :

mod(D) → mod(K) : D M → K M .
More generally, introducing the successive CC as in the preceding section while changing slightly the numbering of the respective operators, we may finally obtain the free resolution of M , namely the exact sequence ...

d3 -→ F 2 d2 -→ F 1 d1 -→ F 0 -→ M -→ 0.
In actual practice, one must never forget that D = Φ • j q acts on the left on column vectors in the operator case and on the right on row vectors in the module case. Also, with a slight abuse of language, when D = Φ • j q is involutive as in section 2 and thus R q = ker(Φ) is involutive, one should say that M has an involutive presentation of order q or that M q is involutive. DEFINITION 5.1: Setting P = a µ d µ ∈ D ad ←→ ad(P ) = (-1) |µ| d µ a µ ∈ D, we have ad(ad(P )) = P and ad(P Q) = ad(Q)ad(P ), ∀P, Q ∈ D. Such a definition can be extended to any matrix of operators by using the transposed matrix of adjoint operators and we get:

< λ, Dξ >=< ad(D)λ, ξ > + div (...)
from integration by part, where λ is a row vector of test functions and <> the usual contraction. We quote the useful formulas [ad(ξ), ad(η)] = ad(ξ)ad(η)ad(η)ad(ξ) = -ad([ξ, η]), ∀ξ, η ∈ T (care about the minus sign) and rk D (D) = rk D (ad(D)) as in ( [START_REF] Pommaret | Partial Differential Control Theory[END_REF], p 610-612). REMARK 5.2: As can be seen from the examples of the Introduction, when D is involutive, then ad(D) may not be involutive. Also, in the differential framework, we may set dif f rk(D) = mα n q = β n q . Comparing to similar concepts used in differential algebra, this number is just the maximum number of differentially independent equations to be found in the differential module I of equations. Indeed, pointing out that differential indeterminates in differential algebra are nothing else than jet coordinates in differential geometry and using standard notations, we have K{y} = lim q→∞ K[y q ]. In that case, the differential ideal I automatically generates a prime differential ideal p ⊂ K{y} providing a differential extension L/K with L = Q(K{y}/p) and differential transcendence degree dif f trd(L/K) = α n q , a result explaining the notations ( [START_REF] Pommaret | Partial Differential Equations and Group Theory,New Perspectives for Applications[END_REF]). Now, from the dimension formulas of R q+r , we obtain at once rk D (M ) = α n q and thus rk D (D) = m-rk D (M ) = β n q too in any free presentation of M starting with D. However, as we already said, D acts on the left in differential geometry but on the right in the theory of differential modules. In the case of an operator of order zero, we just recognize the fact that the rank of a matrix is eqal to the rank of the transposed matrix.

PROPOSITION 5.3: If f ∈ aut(X) is a local diffeomorphisms on X, we may set x = f -1 (y) = g(y) and we have the identity:

∂ ∂y k ( 1 ∆(g(y)) ∂ i f k (g(y)) ≡ 0.
If we have an operator E D -→ F , we obtain therefore an operator

∧ n T * ⊗ E * ad(D) ←-∧ n T * ⊗ F * .
Now, with operational notations, let us consider the two differential sequences: Having in mind that D is a K-algebra, that K is a left D-module with the standard action (D, K) -→ K : (P, a) -→ P (a) : (d i , a) -→ ∂ i a and that D is a bimodule over itself, we have only two possible constructions leading to the following two definitions: DEFINITION 5.4: We may define the inverse system R = hom K (M, K) of M and set R q = hom K (M q , K) as the inverse system of order q. The first definition is leading to the inverse systems introduced by Macaulay in ( [START_REF] Macaulay | The Algebraic Theory of Modular Systems[END_REF]) (See [START_REF] Pommaret | Macaulay Inverse Systems Revisited[END_REF], [START_REF] Pommaret | Macaulay Inverse Systems and Cartan-Kahler Theorem[END_REF] for more details). As for the second, we have (See [4, p 21] and [32, p 483-495] and [START_REF] Schneiders | An Introduction to D-Modules[END_REF] for more details): THEOREM 5.6: When M and N are left D-modules, then hom K (M, N ) and M ⊗ K N are left D-modules. In particular R = hom K (M, K) is also a left D-module for the Spencer operator. Moreover, the structures of left D-modules existing therefore on M ⊗ A N and hom A (N, L) are now coherent with the adjoint isomorphism for mod(D):

ϕ : hom D (M ⊗ A N, L) ≃ -→ hom D (M, hom A (N, L)) , ∀L, M, N ∈ mod(D) Proof: For any f ∈ hom K (M, N ), let us define: (af )(m) = af (m) = f (am) ∀a ∈ K, ∀m ∈ M (ξf )(m) = ξf (m) -f (ξm) ∀ξ = ξ i d i ∈ T, ∀m ∈ M
It is easy to check that ξa = aξ + ξ(a) in the operator sense and that ξηηξ = [ξ, η] is the standard bracket of vector fields. We have in particular with d in place of any d i :

((da)f )(m) = (d(af ))(m) = d(af (m)) -af (dm) = (∂a)f (m) + ad(f (m)) -af (dm) = (a(df ))(m) + (∂a)f (m) = ((ad + ∂a)f )(m)
For any m ⊗ n ∈ M ⊗ K N with arbitrary m ∈ M and n ∈ N , we may then define:

a(m ⊗ n) = am ⊗ n = m ⊗ an ∈ M ⊗ A N ξ(m ⊗ n) = ξm ⊗ n + m ⊗ ξn ∈ M ⊗ A N
and conclude similarly with:

(da)(m ⊗ n) = d(a(m ⊗ n)) = d(am ⊗ n) = d(am) ⊗ n + am ⊗ dn = (∂a)m ⊗ n + a(dm) ⊗ n + am ⊗ dn = (ad + ∂a)(m ⊗ n) Using K in place of N , we finally get (d i f ) k µ = (d i f )(y k µ ) = ∂ i f k µ -f k µ+1i
that is we recognize exactly the Spencer operator and thus:

(d i (d j f )) k µ = ∂ ij f k µ -(∂ i f k µ+1j + ∂ j f k µ+1i ) + f k µ+1i+1j ⇒ d i (d j f ) = d j (d i f ) = d ij f
In fact, R is the projective limit of π q+r q : R q+r → R q in a coherent way with jet theory ( [START_REF] Lanczos | Lagrange Multiplier and Riemannian Spaces[END_REF], [START_REF] Lanczos | The Splitting of the Riemann Tensor[END_REF]). The next result is entrelacing the two left structures that we have just provided through the formula (g(m)

)(n) = f (m ⊗ n) ∈ N defining the map ϕ whenever f ∈ hom D (M ⊗ A N, L
) is given and ϕ(f ) = g. Using any ξ ∈ T , we get successively in L: 

(ξ(g(m)))(n) = ξ((g(m))(n)) -(g(m))(ξn) = ξ(f (m ⊗ n)) -f (m ⊗ ξn) = f (ξ(m ⊗ n)) -f (m ⊗ ξn) = f (ξm ⊗ n + m ⊗ ξn) -f (m ⊗ ξn) = f (ξm ⊗ n) = (g(ξm))(n) and thus ξ(g(m)) = g(ξm), ∀m ∈ M or simply ξ • g = g • ξ. Q.E.D.
←-N ←-F * 1 D * ←-F * 0 ←-M * ←-0 is thus a right module N D .
COROLLARY 5.9: We have the side changing procedure

N D → N = D N = hom K (∧ n T * , N D ) with inverse M = M → M D = ∧ n T * ⊗ K M whenever M, N ∈ mod(D).
Proof: According to the above Theorem, we just need to prove that ∧ n T * has a natural right module structure over D. For this, if α = adx 1 ∧ ... ∧ dx n ∈ T * is a volume form with coefficient a ∈ K, we may set α.P = ad(P )(a)dx 1 ∧ ... ∧ dx n when P ∈ D. As D is generated by K and T , we just need to check that the above formula has an intrinsic meaning for any ξ = ξ i d i ∈ T . In that case, we check at once: (Janet, Spencer) is necessary for solving the inverse problem. However, though the direct problem always has a solution, the inverse problem may not have a solution at all and the case of the Einstein operator is one of the best non-trivial PD counterexamples (Compare [START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF] to [START_REF] Zerz | Topics in Multidimensional Linear Systems Theory[END_REF]). It is rather striking to discover that, in the case of OD operators, it took almost 50 years to understand that the possibility to solve the inverse problem was equivalent to the controllability of the corresponding control system (Compare [START_REF] Kalman | Controllability of Linear Dynamical Systems[END_REF] to [START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF]).

α.ξ = -∂ i (aξ i )dx 1 ∧ ... ∧ dx n = -L(ξ)α
As ad(ad(P )) = P, ∀P ∈ D, any operator is the adjoint of a certain operator and we get: FORMAL TEST 5.12: The double duality test needed in order to check whether t(M ) = 0 or not and to find out a parametrization if t(M ) = 0 has 5 steps which are drawn in the following diagram where ad(D) generates the CC of ad(D 1 ) and D ′ 1 generates the CC of D:

ζ ′ 5 D ′ 1 ր 4 ξ D -→ η D1 -→ ζ 1 3 ν ad(D) ←-µ ad(D1) ←- λ 2 THEOREM 5.13: D 1 parametrized by D ⇔ D 1 = D ′ 1 ⇔ t(M ) = 0 ⇔ ext 1 (N ) = 0.
REMARK 5.14: When an operator D 1 can be parametrized by an operator D, we may ask whether or not D can be again parametrized by an operator D -1 and so on. A good comparison can be made with hunting rifles as a few among them, called double rifles, are equipped with a double trigger mechanism, allowing to shoot again once one has already shot. In a mathematical manner, the question is to know whether the differential module defined by D 1 is torsion-free, reflexive and so on. The main difficulty is that these intrinsic properties highly depend on the choice of the parametrizing operator. The simplest example is provided by the Poincaré sequence for n = 3 made by the successive grad, curl, div operators. Indeed, any student knows that curl is parametrizing div and that grad is parametrizing curl. However, we may parametrize

∂ 1 η 1 + ∂ 2 η 2 + ∂ 3 η 3 = 0 by choosing ∂ 3 ξ 1 = η 1 , ∂ 3 ξ 2 = η 2 , -∂ 1 ξ 1 -∂ 2 ξ 2 = η 3 with 2 potentials (ξ 1 , ξ 2
) only instead of the usual 3 potentials (ξ 1 , ξ 2 , ξ 3 ) and cannot proceed ahead as before.

Other important examples will be provided in the next section dealing with applications, in particular the one involving Einstein equations when n = 4.

It remains to study a delicate question on which all the examples of the Introduction were focussing. Indeed, if a parametrization of a given system of OD or PD equations is possible, that is, equivalently, if the corresponding differential module is torsion-free, it appears that different parametrizations may exist with quite different numbers of potentials needed. Accordingly, it should be useful to know about the possibility to have upper and lower bounds for these numbers when n > 1, particularly in elasticity theory, because when n = 1, an OD module M with t(M ) = 0 being automatically isomorphic to a free module E and the number of potentials needed is equal to rk D (M ) = rk D (E). We shall use the language of differential modules in order to revisit and improve a few results already presented in ( [START_REF] Pommaret | QUADRAT: Localization and parametrization of linear multidimensional control systems[END_REF], Theorem 7+ Appendix). Proof: We first explain the reason for using the word " minimal ". Indeed, we have rk

D (M ) = rk D (F 0 ) -rk D (im(D 1 )) = rk D (D) ≤ rk D (E) but also rk D (M ) = rk D (D ′ ) = rk D (E ′ ) and thus rk D (E ′ ) = rk D (M ) ≤ rk D (E)
as a way to get a lower bound for the number of potentials but not to get a differential geometric framework. While applying the formal test, in the operator language ad(D) is describing the (generating) CC of ad(D 1 ) and we shall denote by ad(D -1 ) the (generating) CC of ad(D) we did in Example 1.3. In the module framework, going on with left differential modules, when F is a free left module, we shall denote by F the corresponding converted left differential module of the right differential module F * . The reader not familiar with duality may look at the situations met in electromagnetism and elasticity in ( [START_REF] Pommaret | Partial Differential Control Theory[END_REF], p 492-495). If L = coker(ad(D -1 )) ≃ im(ad(D)) ⊂ F0 and Ẽ′ is the largest free differential submodule of L, then T = L/ Ẽ′ is a torsion module and we have the following commutative and exact diagram:

0 0 ↓ ↓ 0 -→ Ẽ′ = Ẽ′ → 0 ↓ ↓ ւ ↓ Ẽ-1 ad(D-1) -→ Ẽ → L → 0 ↓ ↓ Ẽ-1 -→ Ẽ" → T → 0 ↓ ↓ ↓ 0 0 0
where the central vertical monomorphism Ẽ′ → Ẽ is obtained by pulling a basis of Ẽ′ back to Ẽ as we did in the diagram of Proposition 2.31. As an illustration provided at the end of Example 4.15 where each Φ 1 , Φ 2 , Φ 3 is separately differentially dependent on Φ 4 in the first CC system, we have the commutative and exact diagram:

0 0 ↓ ↓ 0 -→ D = D → 0 ↓ ↓ ւ ↓ D 4 -→ D 4 → L → 0 ↓ ↓ D 4 -→ D 3 → T → 0 ↓ ↓ ↓ 0 0 0
Coming back to the operators ad(D) and ad(D 1 ), we get the following commutative and exact diagram allowing to define ad(D ′ ) by composition:

F1 ad(D1) ←- F0 ad(D) ←- Ẽ տ ւ L ↑ ւ տ F0 ad(D ′ ) ←- Ẽ′ ← 0 ↑ տ 0 0
We have:

ad(D 1 ) • ad(D ′ ) ≡ 0 ⇒ D ′ • D 1 ≡ 0 ⇒ ker(D) = im(D 1 ) ⊆ ker(D ′ ) ⊂ F 0
and obtain by duality the following commutative and exact diagram:

0 ր 0 M ↓ ր ↓ ց 0 → ker(D) → F 0 D -→ E ↓ 0 ↓ ր ↓ M ′ ↓ ր ↓ ց 0 → ker(D ′ ) → F 0 D ′ -→ E ′ ↓ 0
However, though the upper sequence F 1

D1

-→ F 0 -→ M → 0 is exact by definition, the lower induced sequence F 1

D1

-→ F 0 -→ M ′ → 0 may not be exact. With rk D = rk for simplicity, t(M ) = 0 and the induced epimorphism M → M ′ → we obtain:

rk(D) = rk(ad(D)) = rk( F0 ) -rk(ad(D 1 )) = rk(F 0 ) -rk(D 1 ) = rk(M ) rk(D ′ ) = rk(ad(D ′ )) = rk( Ẽ′ ) = rk(L) = rk( F0 ) -rk(ad(D 1 )) = rk(F 0 ) -rk(D 1 ) = rk(M ′ ) ⇒ rk(M ) = rk(M ′ ) ⇒ rk(ker(M → M ′ )) = 0 ⇒ ker(M → M ′ ) ⊆ t(M ) ⊆ (M ) ⇒ ker(M → M ′ ) = 0 ⇒ M ≃ M ′
Accordingly, D ′ is a minimal parametrization of D 1 contrary to D in general.

Q.E.D.

6) APPLICATIONS EXAMPLE 6.1: OD Control theory Revisited

The following result is well known and can be found in any textbook of algebra ( [START_REF] Kunz | Introduction to Commutative Algebra and Algebraic Geometry[END_REF], [START_REF] Rotman | An Introduction to Homological Algebra[END_REF], [START_REF] Pommaret | Partial Differential Control Theory[END_REF]): PROPOSITION 6.2: If A is a principal ideal domain, that is if any ideal in A is generated by a single element, then any torsion-free module over A is free.

As this is just the case of the ring D = K[d x ] when n = 1, we obtain the following corollary of the preceding parametrizing Theorem, allowing to extend the Kalman test of controllability to systems with variable coefficients as we did in the Introduction (See [START_REF] Kalman | Controllability of Linear Dynamical Systems[END_REF], [START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF], [START_REF] Pommaret | QUADRAT: Localization and parametrization of linear multidimensional control systems[END_REF], [START_REF] Pommaret | QUADRAT: Algebraic Analysis of Linear Multidimensional Control Systems[END_REF] for more details). COROLLARY 6.3: If n = 1 and D 1 is surjective, then t(M ) = 0 if and only if ad(D 1 ) is injective.

Proof: If t(M ) = 0, then M ≃ E is a free module according to the last Proposition. Also, as D 1 is surjective, we have the following short exact sequence:

0 → F 1 D1 -→ F 0 -→ E → 0
Using a basis (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1), we may construct by linearity a morphism E → F 0 in such a way that this short exact sequence splits according to Proposition 2.6. Applying duality and Corollary 2.15, we get the short exact sequence:

0 ← F * 1 D * 1 ←-F * 0 ←-E * ← 0 It follows that D *
1 is surjective and the adjoint operator ad(D 1 ) is injective because N = 0. Conversely, if D 1 is injective, then N = 0 ⇒ ext 1 (N ) = 0 ⇒ t(M ) = 0 according to Theorem 5.13. Meanwhile, we have proved that, if n = 1 and t(M ) = 0, it is always possible to find an injective parametrization M ≃ E.

Q.E.D.

EXAMPLE 6.4: Classical Elasticity Revisited

The Killing operator

D : T -→ S 2 T * is a defined by ξ ∈ T → Dξ = L(ξ)ω = Ω = 2ǫ ∈ S 2 T * wih ω rj ∂ i ξ r + ω ir ∂ j ξ r + ξ r ∂ r ω ij = Ω ij = 2ǫ ij
where ξ is the displacement vector, L(ξ)ω is the Lie derivative of ω with respect to ξ and ǫ is the infinitesimal deformation tensor of textbooks. It is a Lie operator because its solutions Θ ⊂ T satisfy [Θ, Θ] ⊂ Θ. The corresponding first order Killing system R 1 ⊂ J 1 (T ) is not involutive because its symbol g 1 ⊂ T * ⊗ T is finite type with first prolongation g 2 = 0 and thus rk(D) = n. Accordingly, as ω is a flat constant metric, the second order CC are described by an operator D 1 coming from the linearization of the Riemann tensor obtained in a standard way by setting ω → ω + tΩ with a small parameter t ≪ 1, dividing by t and taking the limit when t → 0.

• Airy parametrization of the stress equations when n = 2 gives rk(E ′ ) = rk(E) = 1 and we have thus 1 potential only. By duality, working out the corresponding adjoint operators, we obtain the two exact sequences:

2 Killing -→ 3 Riemann -→ 1 → 0 0 ← 2 Cauchy ←- 3 Airy ←- 1 
Accordingly, the canonical and the minimal parametrizations coincide when n = 2. We discover that the Airy parametrization is nothing else than the formal adjoint of the Riemann CC for the deformation tensor:

∂ i ξ j + ∂ j ξ i = Ω ij ⇒ ∂ 22 Ω 11 + ∂ 11 Ω 22 -2∂ 12 Ω 12 = 0
where the indices of the displacement vector (ξ 1 , ξ 2 ) are lowered by means of the euclidean metric of R 2 . We do not believe this result is known in such a general framework.

• Beltrami parametrization of the stress equations when n = 3 gives rk(E) = 6 and we have thus 6 potentials. However, Maxwell/Morera parametrizations of the stress equations when n = 3 both give rk(E ′ ) = 3 and we have thus 3 potentials only.

3

Killing -→ 6 Riemann -→ 6 Bianchi -→ 3 → 0 0 ← 3 Cauchy ←- 6 Beltrami ←- 6 ←- 3 Maxwell ←- 3 
Accordingly, the canonical parametrization has 6 potentials while any minimal parametrization has 3 potentials. We finally notice that the Cauchy operator is parametrized by the Beltrami operator which is again parametrized by the adjoint of the Bianchi operator obtained by linearizing the Bianchi identities existing for the Riemann tensor, a property not held by any minimal parametrization.

• For n = 4, we shall prove below that the Einstein parametrization of the stress equations is neither canonical nor minimal in the following diagram:

4 Killing -→ 10 Riemann -→ 20 Bianchi -→ 20 -→ 6 → 0 0 ← 4 Cauchy ←- 10 ←- 20 ←- 20 
Einstein ←-10 obtained by using the fact that the Einstein operator, linearization of the Einstein tensor at the Minkowski metric, is self-adjoint, the 6 terms being exchanged between themselves. It follows that the Einstein equations in vacuum cannot be parametrized as we have the following diagram of operators (See [START_REF] Pommaret | Partial Differential Control Theory[END_REF] and [START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF] for more details or [START_REF] Zerz | Topics in Multidimensional Linear Systems Theory[END_REF] for a computer algebra exhibition of this result):

Riemann 20 ր 4 Killing -→ 10 
Einstein -→ 10 4

Cauchy

←-10

Einstein ←-10

• It remains therefore to compute all these numbers for an arbitrary dimension n ≥ 2. For this, we notice that, as we have already described the morphism Φ with kernel R q and ρ 1 (Φ) with kernel R q+1 , then ρ r (Φ) with kernel R q+r may be obtained similarly " step by step ". Accordingly, the link between the FI of R q and the CC of D is expressed by the following diagram that may be used inductively:

0 0 0 CC ↓ ↓ ↓ 0 → g q+r → S q+r T * ⊗ E σr (Φ) -→ S r T * ⊗ F 0 → coker(σ r (Φ)) → 0 ↓ ↓ ↓ ↓ 0 → R q+r → J q+r (E) ρr (Φ) -→ J r (F 0 ) → coker(ρ r (Φ)) → 0 ↓ ↓ π q+r q+r-1 ↓ π r r-1 ↓ 0 → R q+r-1 → J q+r-1 (E) ρr-1(Φ) -→ J r-1 (F 0 ) → coker(ρ r-1 (Φ) → 0 ↓ ↓ ↓ F I 0 0 0 
The " snake theorem " ( [START_REF] Pommaret | Partial Differential Control Theory[END_REF], [START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF], [START_REF] Rotman | An Introduction to Homological Algebra[END_REF]) then provides the long exact connecting sequence:

0 → g q+r → R q+r → R q+r-1 → coker(σ r (Φ)) → coker(ρ r (Φ)) → coker(ρ r-1 (Φ)) → 0
If we use such a diagram for the first order Killing system with no zero or first order CC, we have q = 1, E = T, F 0 = J 1 (T )/R 1 = S 2 T * and R 1 is formally integrable (R 2 involutive) if and only if ω has constant Riemannian curvature:

ρ k l,ij = c(δ k i ω lj -δ k j ω li
) with c = 0 when ω is the flat Minkowski metric [START_REF] Eisenhart | Riemannian Geometry[END_REF], [START_REF] Pommaret | Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach[END_REF], [START_REF] Pommaret | Partial Differential Equations and Group Theory,New Perspectives for Applications[END_REF]). In this case, we may apply the Spencer δ-map to the top row obtained with r = 2 in order to get the commutative diagram:

0 0 0 ↓ ↓ ↓ 0 → g 3 → S 3 T * ⊗ T → S 2 T * ⊗ F 0 → F 1 → 0 ↓ δ ↓ δ ↓ δ 0 → T * ⊗ g 2 → T * ⊗ S 2 T * ⊗ T → T * ⊗ T * ⊗ F 0 → 0 ↓ δ ↓ δ ↓ δ 0 → ∧ 2 T * ⊗ g 1 → ∧ 2 T * ⊗ T * ⊗ T → ∧ 2 T * ⊗ F 0 → 0 ↓ δ ↓ δ ↓ 0 → ∧ 3 T * ⊗ T = ∧ 3 T * ⊗ T → 0 ↓ ↓ 0 0
with exact rows and exact columns but the first that may not be exact at ∧ 2 T * ⊗ g 1 . We shall denote by B 2 (g 1 ) the coboundary as the image of the central δ, by Z 2 (g 1 ) the cocycle as the kernel of the lower δ and by H 2 (g 1 ) = Z 2 (g 1 )/B 2 (g 1 ) the Spencer δ-cohomology at ∧ 2 T * ⊗g 1 as the quotient.

In the classical Killing system, g 1 ⊂ T * ⊗ T is defined by ω rj (x)ξ r i + ω ir (x)ξ r j = 0 ⇒ ξ r r = 0, g 2 = 0, g 3 = 0. Applying the previous diagram, we discover that the Riemann tensor

(ρ k l,ij ) ⊂ ∧ 2 T * ⊗ T * ⊗ T is a section of the bundle Riemann = F 1 = H 2 (g 1 ) = Z 2 (g 1 ) with dim(Riemann) = (n 2 (n + 1) 2 /4) -(n 2 (n + 1)(n + 2)/6) = (n 2 (n -1) 2 /4) -(n 2 (n -1)(n -2)/6) = n 2 (n 2 - 
1)/12 by using the top row or the left column. We discover at once the two properties of the (linearized) Riemann tensor through the chase involved, namely (R k l,ij ) ∈ ∧ 2 T * ⊗T * ⊗T is killed by both δ and σ 0 (Φ). However, we have no indices for F 1 and cannot therefore exhibit the Ricci tensor or the Einstein tensor of general relativity by means of the usual contraction or trace. We recall briefly their standard definitions by stating

R ij = R ji = R r i,rj ⇒ R = ω ij R ij ⇒ E ij = R ij -1 2 ω ij R.
Similarly, going one step further, we get the (linearized) Bianchi identities with Bianchi

= F 2 = H 3 (g 1 ) = Z 3 (g 1 ) ⇒ dim(Bianchi) = dim(∧ 4 T * ⊗ T ) -dim(∧ 3 T * ⊗ g 1 ) = n 2 (n 2 -1)(n -2)/24.
This approach is relating for the first time the concept of Riemann tensor candidate, introduced by Lanczos and others, to the Spencer δ-cohomology of the Killing symbols.

Counting the differential ranks is now easy because R 1 is formally integrable with finite type symbol and thus R 2 is involutive with symbol g 2 = 0. We get:

rk(Killing) = rk(Cauchy) = n ⇒ rk(Riemann) = dim(S 2 T * )-n = (n(n+1)/2)-n = n(n-1)/2 rk(Bianchi) = (n 2 (n 2 -1)/2) -(n(n -1)/2) = n(n -1)(n -2)(n + 3)/12
that is rk(Bianchi) = 3 when n = 3 and rk(Bianchi) = 14 = 20 -6 when n = 4. Collecting all the results, we obtain that the canonical parametrization needs n 2 (n 2 -1)/12 potentials while the minimal parametrization only needs n(n -1)/2 potentials. The Einstein parametrization is thus " in between " because n(n -1)/2 < n(n + 1)/2 < n 2 (n 2 -1)/12, ∀n ≥ 4. The conformal Killing system R1 ⊂ J 1 (T ) is defined by eliminating the function A(x) in the system L(ξ)ω = A(x)ω. It is also a Lie operator D with solutions Θ ⊂ T satisfying [ Θ, Θ] ⊂ Θ. Its symbol ĝ1 is defined by the linear equations ω rj ξ r i + ω ir ξ r j -2 n ω ij ξ r r = 0 which do not depend on any conformal factor and is finite type when n ≥ 3 because g 3 = 0 but ĝ2 is now 2-acyclic only when n ≥ 4 and 3-acyclic only when n ≥ 5 ([29], [START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF], [START_REF] Pommaret | From Thermodynamics to Gauge Theory: the Virial Theorem Revisited[END_REF]). It is known that R2 and thus R1 too (by a chase) are formally integrable if and only if ω has zero Weyl tensor:

τ k l,ij ≡ ρ k l,ij - 1 (n -2) (δ k i ρ lj -δ k j ρ li + ω lj ω ks ρ si -ω li ω ks ρ sj ) + 1 (n -1)(n -2) (δ k i ω lj -δ k j ω li )ρ = 0 if we use the formula id M -f • u = v • g of Proposition 2
.6 in the split short exact sequence ( [START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF], [START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF], [START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF]): 0 -→ Ricci -→ Riemann -→ W eyl -→ 0 according to the Vessiot structure equations, in particular if ω has constant Riemannian curvature and thus

ρ ij = ρ r i,rj = c(n -1)ω ij ⇒ ρ = ω ij ρ ij = cn(n -1) ([ 29 
], [START_REF] Pommaret | Partial Differential Equations and Group Theory,New Perspectives for Applications[END_REF], [START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF], [START_REF] Pommaret | The Mathematical Foundations of Gauge Theory Revisited[END_REF]). Using the same diagrams as before, we get W eyl = F1 = H 2 (ĝ 1 ) = Z 2 (ĝ 1 ) for defining any Weyl tensor candidate. As a byproduct, the linearized Weyl operator is of order 2 with a symbol ĥ2 ⊂ S 2 T * ⊗ F0 which is not 2-acyclic by applying the δ-map to the short exact sequence:

0 → ĝ3+r -→ S 3+r T * ⊗ T σ2+r (Φ)
-→ ĥ2+r → 0 and chasing through the commutative diagram thus obtained with r = 0, 1, 2. As ĥ3 becomes 2-acyclic after one prolongation of ĥ2 only, it follows that the generating CC for the Weyl operator are of order 2, a result showing that the so-called Bianchi identities for the Weyl tensor are not CC in the strict sense of the definition as they do not involve only the Weyl tensor. Of course, these results could not have been discovered by Lanczos and followers because the formal theory of Lie pseudogroups and the Vessiot structure equations are still not acknowledged today.

For this reason, we provide a few hints in order to explain why the Vessiot structure equations sometimes contain a few constants, sometimes none at all as we just saw (See [START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF], [START_REF] Pommaret | Partial Differential Equations and Group Theory,New Perspectives for Applications[END_REF] and [START_REF] Pommaret | Deformation Cohomology of Algebraic and Geometric Structures[END_REF] for more details). Isometries preserve the metric ω = (ω ij = ω ji ) ∈ S 2 T * while conformal isometries preserve the symmetric tensor density ω = (ω ij = ω ij /(| det(ω) | 1 n )). The respective variations are related by the similitude formula Ωij ∼ Ω ij -1 n ω ij ω rs Ω rs which only depends on ω and not on a conformal factor. It follows that F 0 = S 2 T * and that F0 may be identified with the sub-bundle { Ω ∈ S 2 T * | ω ij Ωij = 0} with the above well defined epimorphism F 0 → F0 induced by the inclusion R 1 ⊂ R1 . We set ( [START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF], [START_REF] Pommaret | Partial Differential Equations and Group Theory,New Perspectives for Applications[END_REF], [START_REF] Pommaret | Deformation Cohomology of Algebraic and Geometric Structures[END_REF]): Proof: Two (nondegenerate) metrics ω, ω ∈ S 2 T * give the same Killing system R 1 if and only if ω = aω with the multiplicative group parameter a = cst. Therefore, if R 1 is FI, then the two metrics have respective constant curvatures c and c = c/a. Setting a = 1+tA+... ⇒ c = c+tC +... while linearizing these finite transformations with t ≪ 1 gives C = -cA when t → 0.

Q.E.D.

However, we have yet not proved the most difficult result that could not be obtained without homological algebra and the next example will explain this additional difficulty. ←-D

where the lower sequence is not exact at D 2 .

Therefore, we have to prove that the extension modules vanish, that is ad(D) generates the CC of ad(D 1 ) and, conversely, that D 1 generates the CC of D. We also remind the reader that it has not been easy to exhibit the CC of the Maxwell or Morera parametrizations when n = 3 and that a direct checking for n = 4 should be strictly impossible. It has been proved by L. P. Eisenhart in 1926 ([12]) that the solution space Θ of the Killing system has n(n + 1)/2 infinitesimal generators {θ τ } linearly independent over the constants if and only if ω had constant Riemannian curvature, namely zero in our case. As we have a Lie group of transformations preserving the metric, the three theorems of Sophus Lie assert than [θ ρ , θ σ ] = c τ ρσ θ τ where the structure constants c define a Lie algebra G. We have therefore ξ ∈ Θ ⇔ ξ = λ τ θ τ with λ τ = cst. Hence, we may replace the Killing system by the system ∂ i λ τ = 0, getting therefore the differential sequence:

0 → Θ → ∧ 0 T * ⊗ G d -→ ∧ 1 T * ⊗ G d -→ ... d -→ ∧ n T * ⊗ G → 0
which is the tensor product of the Poincaré sequence by G. Finally, it follows from Proposition 3.5 that the extension modules do not depend on the resolution used and thus vanish because the Poincaré sequence is self adjoint (up to sign), that is ad(d) generates the CC of ad(d) at any position, exactly like d generates the CC of d at any position. This (difficult) result explains why the differential modules we have met were torsion-free, reflexive, ... and so on. We invite the reader to compare with the situation of the Maxwell equations in electromagnetisme. However, we have proved in ( [START_REF] Pommaret | Partial Differential Control Theory[END_REF], [START_REF] Pommaret | Parametrization of Cosserat Equations[END_REF], [START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF], [START_REF] Pommaret | The Mathematical Foundations of Gauge Theory Revisited[END_REF], [START_REF] Pommaret | From Thermodynamics to Gauge Theory: the Virial Theorem Revisited[END_REF]) why neither the Janet sequence nor the Poincaré sequence can be used in physics and must be replaced by another resolution of Θ called Spencer sequence ( [START_REF] Kumpera | Lie Equations[END_REF]). EXAMPLE 6.8: PD Control Theory Revisited Comparing with the Theorem allowing to construct a minimal parametrization, we started with D 1 η = ζ and computed ad(D 1 )λ = µ with generating CC ad(D)µ = ν, obtaining therefore finally the generating CC ad(D -1 )ν = 0, that is ∂ 2 ν 2 + ∂ 1 ν 1 + x 2 ν 1 = 0. In that case, the key diagram providing the minimal parametrization is:

0 0 ↓ ↓ 0 -→ D = D → 0 ↓ ↓ ւ ↓ D ad(D-1) -→ D 2 → L → 0 ↓ ↓ D -→ D → T → 0 ↓ ↓ ↓ 0 0 0
This result explains why we had the potentials (ξ 1 , ξ 2 ) in the canonical parametrization and (ξ 1 = ξ, 0) or (0, ξ 2 = ξ ′ ) in the two minimal parametrizations exhibited. We do not believe it is possible to imagine the underlying procedure, even on such a simple example. EXAMPLE 6.9: OD/PD Optimal Control Revisited Using the notations of the Formal Test 5.12, let us assume that the two differential sequences: As a byproduct, if the field equations D 1 η = 0 can be parametrized by a potential ξ through the formula Dξ = η, then the induction equations ad(D)µ = ν can be obtained by duality in a coherent way with the double duality test, on the condition to know what sequence must be used. However, we have already proved in ( [START_REF] Pommaret | Parametrization of Cosserat Equations[END_REF], [START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF], [START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF], [START_REF] Pommaret | The Mathematical Foundations of Gauge Theory Revisited[END_REF], [START_REF] Pommaret | From Thermodynamics to Gauge Theory: the Virial Theorem Revisited[END_REF]) that the Cauchy stress equations must be replaced by the Cosserat couple-stress equations and that the Janet sequence (only used in this paper) must be thus replaced by the Spencer sequence. Accordingly, it becomes clear that the work of Lanczos and followers has been based on a double confusion between fields and inductions on one side, but also between the Janet sequence and the Spencer sequence on the other side. FUNDAMENTAL RESULT 6.10: The Janet and Spencer sequences for any Lie operator of finite type are formally exact by construction, both with their corresponding adjoint sequences. Lanczos has been trying to parametrize ad(D 1 ) by ad(D 2 ) when D 1 parametrizes D 2 . On the contrary, we have proved that one must parametrize ad(D) by ad(D 1 ) when D parametrizes D 1 as in the famous infinitesimal equivalence problem ( [START_REF] Pommaret | Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach[END_REF], p 332-336), with a shift by one step.

CONCLUSION

The effective usefulness of the double duality test seems absolutely magical in actual practice but the reader may not forget about the amount of mathematics needed from different domains. Unhappily, in our opinion based on a long experience in dealing with applications, the most difficult part is concerned with formal integrability and involution needed in order to compute the various differential ranks involved. However, the above methods, which are superseding the pioneering approaches of Janet and Cartan, are still not known in mathematical physics and mechanics or even in control theory despite many tentatives done twenty years ago. We hope that this paper will help improving this situation in a near future, in particular when dealing with partial differential optimal control, that is with variational calculus with OD or PD constraints along the way that has been initiated by Lanczos for eliminating the corresponding Lagrange multipliers or using them as potentials.

  + d) = d 2d and ad(d 2a) = d 2a in the inhomogeneous system: (d 2a)y ≡ y xxay = u (d 2d)y ≡ y xxy x = vSubstracting, we get (da)y ≡ y xay = uv and thus y xxay x -∂ x ay = u xv x , a result leading to:(∂ x a + a 2a)y = v xu x + av + (1a)u

Proposition 2 . 23 :

 223 If there exists a left localization of A with respect to S, then we must have Sa ∩ As = ∅, ∀a ∈ A, ∀s ∈ S.

  then one may introduce the submodules coboundary = B = im(f ) ⊆ ker(g) = cocycle = Z ⊆ M and define the cohomology at M to be the quotient H = Z/B. THEOREM 3.3: The following commutative diagram where the two central vertical sequences are long exact sequences and the horizontal lines are ker/coker exact sequences:

LEMMA 4 . 6 :

 46 If y k µ ∈ y pri and y l ν ∈ y par appear in the same equation of class i in solved form, then ν is of class ≤ i and l > k when ν is also of class i. LEMMA 4.7: If y k

EXAMPLE 4 . 14 :

 414 The system R 2 defined by the three PD equations y 33 = 0, y 23y 11 = 0, y 22 = 0

  Moreover, it is clear that D, as an algebra, is generated by K = D 0 and T = D 1 /D 0 with D 1 = K ⊕ T if we identify an element ξ = ξ i d i ∈ T with the vector field ξ = ξ i (x)∂ i of differential geometry, but with ξ i ∈ K now. It follows that D = D D D is a bimodule over itself, being at the same time a left D-module D D by the composition P -→ QP and a right D-module D D by the composition P -→ P Q with D r D s = D r+s , ∀r, s ≥ 0.

1 ,

 1 ..., p. Therefore, setting Dy 1 + ... + Dy m = Dy ≃ D m and calling I = DΦ ⊂ Dy the differential module of equations, we obtain by residue the differential module or D-module M = Dy/DΦ, denoting the residue of y k

  where D 1 generates all the CC of D. Then D 1 • D ≡ 0 ⇐⇒ ad(D) • ad(D 1 ) ≡ 0 but ad(D) may not generate all the CC of ad(D 1 ). Passing to the module framework, we just recognize the definition of ext 1 D (M ). Now, exactly like we defined the differential module M from D, let us define the differential module N from ad(D). Then ext 1 D (N ) = t(M ) does not depend on the presentation of M .

DEFINITION 5 . 5 :

 55 We may define the right differential module M * = hom D (M, D).

COROLLARY 5 . 7 :REMARK 5 . 8 :

 5758 If M and N are right D-modules, then hom K (M, N ) is a left D-module. Moreover, if M is a left D-module and N is a right D-module, then M ⊗ K N is a right D-module. Proof: If M and N are right D-modules, we just need to set (ξf )(m) = f (mξ)f (m)ξ, ∀ξ ∈ T, ∀m ∈ M and conclude as before. Similarly, if M is a left D-module and N is a right D-module, we just need to set (m ⊗ n)ξ = m ⊗ nξξm ⊗ n. Q.E.D. When M = D M ∈ mod(D) and N = N D , , then hom K (N, M ) cannot be endowed with any left or right differential structure. Similarly, when M = M D and N = N D , then M ⊗ K N cannot be endowed with any left or right differential structure (See [4], p 24 for more details). As D = D D D is a bimodule, then M * = hom D (M, D) is a right D-module according to Lemma 2.13 and the module N defined by the ker/coker sequence 0

  by introducing the Lie derivative of α with respect to ξ, along the intrinsic formula L(ξ) = i(ξ)d + di(ξ) where i() is the interior multiplication and d is exterior derivative of exterior forms.According to well known properties of the Lie derivative, we get :α.(aξ) = (α.ξ).aα.ξ(a), α.(ξηηξ) = -[L(ξ), L(η)]α = -L([ξ, η])α = α.[ξ, η]. Q.E.D.Collecting all the results so far obtained, if a differential operator D is given in the framework of differential geometry, we may keep the same notation D in the framework of differential modules which are left modules over the ring D of linear differential operators and apply duality, provided we use the notation D * and deal with right differential modules or use the notation ad(D) and deal again with left differential modules by using the lef t ↔ right conversion procedure. DEFINITION 5.10: If a differential operator ξ D -→ η is given, a direct problem is to find (generating) compatibility conditions (CC) as an operator η D1 -→ ζ such that Dξ = η ⇒ D 1 η = 0. Conversely, given η D1 -→ ζ, the inverse problem will be to look for ξ D -→ η such that D 1 generates the CC of D and shall say that D 1 is parametrized by D if such an operator D is existing. REMARK 5.11: Of course, solving the direct problem

THEOREM 5 . 15 : 1 D1-→ F 0 D 1 D1-

 515101 Let F 1D1-→ F 0 -→ M → 0 be a finite free presentation of the differential module M = coker(D 1 ) and assume we already know that t(M ) = 0 by using the formal test. Accordingly, we have obtained the exact sequence F -→ E of free differential modules where D is the parametrizing operator. Then, there exists other parametrizations F ′ called minimal parametrizations and such that coker(D ′ ) is a torsion module.

DEFINITION 6 . 5 :

 65 We say that a vector bundle F is associated with a Lie operator D if, for any solution ξ ∈ Θ ⊂ T of D, there exists a first order operator L(ξ) : F → F called Lie derivative with respect to ξ and such that:1) L(ξ + η) = L(ξ) + L(η) ∀ξ, η ∈ Θ 2) [L(ξ), L(η)] = L([ξ, η]) ∀ξ, η ∈ Θ 3) L(ξ)(f η) = f L(ξ)η + (ξ.f )η ∀ξ ∈ Θ, ∀f ∈ C ∞ (X), ∀η ∈ F 4)If E and F are two such associated vector bundles, then:L(ξ)(η ⊗ ζ) = L(ξ)η ⊗ ζ + η ⊗ L(ξ)ζ, ∀ξ ∈ Θ, ∀η ∈ E, ∀ζ ∈ F In such a case, we may introduce Υ = Υ(F ) = {η ∈ F | L(ξ)η = 0, ∀ξ ∈ Θ ⊂ T }.PROPOSITION 6.6: Using capital letters for linearized objects, we have:1) Υ(T ) = C(Θ) = {η ∈ T | [ξ, η] = 0, ∀ξ ∈ Θ} = centralizer of Θ in T . 2) Υ 0 = Υ(F 0 ) = Υ(S 2 T * ) = {Ω = Aω ∈ S 2 T * | A = cst}. 3) Υ 1 = Υ(F 1 ) = {R k l,ij = C(δ k i ω ljδ k j ω li ) ∈ F 1 | C = cst}. 4) Υ1 = Υ( F1 ) = 0 ⇒ Υ(Ricci) ≃ Υ(Riemann).5) The Lie derivative commutes with the Janet operators D, D 1 , ..., D n . We have in particular D 1 : Υ 0 → Υ 1 : A → C = -cA (care to sign).

EXAMPLE 6 . 7 :D1-→ D 2 D

 672 With ∂ 22 ξ = η 2 , ∂ 12 ξ = η 1 for D, we get ∂ 1 η 2 -∂ 2 η 1 = ζ for D 1 . Then ad(D 1 ) is defined by µ 2 = -∂ 1 λ, µ 1 = ∂ 2 λ while ad(D) is defined by ν = ∂ 12 µ 1 + ∂ 22 µ 2 but the CC of ad(D 1 ) are generated by ν ′ = ∂ 1 µ 1 + ∂ 2 µ 2 .In the operator framework, we have the differential sequences:where the upper sequence is formally exact at η but the lower sequence is not formally exact at µ. Passing to the module framework, we obtain the sequences:D -→ D -→ M -→ 0 D ad(D1) ←-D 2 ad(D)

  are formally exact, that is D 1 generates the CC of D and ad(D) generates the CC of ad(D 1 ), namely ξ is a potential for D 1 and λ is a potential for ad(D). We may consider a variational problem for a cost function ϕ(η) under the linear OD or PD constraint described by D 1 η = 0.• Introducing convenient Lagrange multipliers λ while setting dx = dx 1 ∧ ... ∧ dx n for simplicity, we must vary the integral:Φ = [ϕ(η) + λD 1 η]dx ⇒ δΦ = [(∂ϕ(η)/∂η)δη + λD 1 δη]dxIntegrating by parts, we obtain the EL equations: ∂ϕ(η)/∂η + ad(D 1 )λ = 0 to which we have to add the constraint D 1 η = 0 obtained by varying λ. If ad(D 1 ) is an injective operator, in particular if D 1 is formally surjective (no CC) and parametrized by D, then one can obtain λ explicitly and eliminate it by substitution. Otherwise, using the CC ad(D) of ad(D 1 ), we have to study the formal integrability of the combined system: ad(D)∂ϕ(η)/∂η = 0, D 1 η = 0 which may be a difficult task as we already saw through the examples of the Introduction.• We may also transform the given variational problem with constraint into a variational problem without any constraint if and only if the differential constraint can be parametrized. Using the parametrization of D 1 by D, we may vary the integral: Φ = ϕ(Dξ)dx ⇒ δΦ = (∂ϕ(η)/∂η)Dδξdx whenever η = Dξ and integrate by parts for arbitrary δξ in order to obtain the EL equations: ad(D)∂ϕ(η)/∂η = 0, η = Dξ in a coherent way with the previous approach and Poincaré duality geometry ↔ physics.