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Abstract We introduce in this paper a new approach based on an integral formu-

lation in order to get a relevant approximation of the mean flow patterns in one-

dimensional ducts with variable cross-sections. Numerical results are compared

with those obtained by using the standard one-dimensional formulation associated

with a well-balanced scheme, and also with numerical results provided by a multi-

dimensional code. The comparison includes ducts with smooth or discontinuous

cross sections. This new formulation is shown to be robust wrt to sudden and high
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cross-section variations, even when a total obstruction occurs, and to be accurate

when compared with the reference solution.
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1 Introduction

The approach that is classically retained in order to compute flows of a compressible

fluid in variable cross-section ducts basically relies on the computation of approxi-

mate solutions of the following system of partial differential equations:

∂ρS(x)
∂ t

+
∂ρuS(x)

∂x
= 0

∂ρuS(x)
∂ t

+
∂ρu2S(x)

∂x
+S(x)

∂P
∂x

= D(W )S(x)
∂ES(x)

∂ t
+

∂u(E +P)S(x)
∂x

= 0

(1)

where ρ,u,Q,P,E respectively denote the density, the velocity, the momentum (Q=

ρu), the pressure and the total energy of the fluid, when focusing on a single-phase

model ; in this formulation, S(x) stands for the cross-section area, and the total

energy is:

E = ρ(ε(ρ,P)+U2/2),

for a given equation of state where the internal energy ε(ρ,P) is prescribed by the

user. The contribution D(W ) enables to take regular head losses into account if nec-

essary ; these may be due to viscous effects on the lower and upper wall boundaries

of the duct. A classical closure law is in that case :

D(W ) =−K(W )|u|u

where K(W ) is a positive scalar function. This one-dimensional approach is of

course very useful in many practical and industrial situations, where there is no

specific need to get a detailed evaluation of transverse components. This is true for

many medical applications, for flows of oil-gas mixtures in pipelines in the oil in-

dustry, or water flows in complex networks for agriculture purposes or for electric

companies. However, many practical situations often involve sudden contractions

and/or enlargements of the duct cross-section. This in turn introduces two new diffi-

culties. Firstly, one usually needs to introduce additional terms in the former system
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in order to account for so-called singular head losses. Then one has to handle these

generally stiff contributions when developing a numerical method.

Whenever additional source terms D(W ) are neglected or not, a generic numer-

ical approach has been proposed some time ago, which is grounded on the well-

balanced ideas introduced in [15]. Actually several useful and efficient algorithms

have been proposed during the last twenty years in that direction. We may refer for

instance to [15, 14, 13, 23, 20, 17, 19, 4, 16, 6], where the main ingredient consists

in introducing a new fictitious variable S(x, t), writing a new simple PDE:

∂S
∂ t

= 0.

At the discrete level, the cross section is assumed to be uniform within each Finite

Volume cell. A straightforward consequence in that case is that the non-conservative

term S
∂P
∂x

in the momentum equation now clearly contributes to the convective bud-

get. However, a first difficult point immediately arises, since one obviously needs

to define appropriate and unique jump conditions around the sudden cross-section

variations; a widespread approach consists in using a connection of states around

the cross-section discontinuity, by enforcing the preservation of Riemann invariants

of the standing wave. This makes sense for subsonic flows since the -single- field

associated with the standing wave is linearly degenerated. A remaining difficulty for

sonic and supersonic flows is about the non-uniqueness of solutions of the associ-

ated one-dimensional Riemann problem; for this specific problem of the -local in

time- occurence of the resonance phenomenum, we refer for instance to [12]. As a

matter of fact, it has been checked in [10] that the well-balanced Rusanov scheme

introduced in [20] guarantees the convergence towards the unique subsonic solution,

whereas standard schemes that do not satisfy the well-balanced property converge

(when the mesh size tends to 0) towards a wrong solution. Another similar veri-

fication has been achieved in [16] when focusing on a well-balanced VFRoe-ncv

scheme. On the whole, this means that suitable -well-balanced- numerical tools can
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provide meaningful and convergent approximations of solutions of this system.

However, it has also been pointed out in [11] that the true multi-dimensional

solutions do not comply with the modelling of the vicinity of the cross-section dis-

continuity. This indeed is not a very surprising result, and it was expected. Actually,

noting as usual:

H = (E +P)/ρ,

a reasonable guess is that the mean axial momentum QS and the mean total energy

flux QSH, which are two among the three Riemann invariants of the standing wave,

are indeed preserved across any cross-section restriction; nonetheless, the failure in

the modelling is due to the last Riemann invariant.

Thus, at least two possible ways to circumvent this problem may be suggested.

A first one would consist in enforcing a local and singular momentum head loss,

in order to recover the reality of the flow. This might be achieved by using relevant

engineer closure laws (see for instance [18]), or by providing some adaptative and

suitable closure law -to be defined-; in that case, one should also need to derive a new

well-balanced scheme in order to preserve this new connection through the standing

wave (see [8]). The second one, that is considered afterwards, is more straightfor-

ward: it simply consists in a reformulation of the one-dimensional problem, thus

accounting for sudden variations in a very simple ”multi-dimensional” spirit. A

straightforward consequence is that singular sources are automatically computed.

Another consequence is that this approach is valid for any EOS, and may be ex-

tended quite easily, for instance to the framework of multi-phase flow models.

Hence the paper is organised as follows. We first present the modified one-

dimensional approach in section 2. Afterwards, we check that this formulation is

suitable when one aims at computing approximate solutions of ρ,Q,E when the

cross section is smooth. Next, we turn to unsteady approximate solutions obtained
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in a sudden contraction/enlargement, and a comparison is made between:

1. the true multi-dimensional solution obtained on a very fine grid, which will be

refered to as the ”reference” solution;

2. the classical one-dimensional well-balanced approach associated with the simu-

lation of solutions of (1);

3. the new one-dimensional formulation, considering coarse or fine grids.

Several test cases are considered in that section. We will conclude by emphasizing

the main advantages and drawbacks of the different one-dimensional approaches.
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2 A simple one-dimensional Finite Volume scheme

In order to simplify the presentation, we focus in this paper on the inviscid Euler

model for compressible flows of a single-phase fluid. Thus the main unknowns in a

three-dimensional framework are the density ρ , the three components of the velocity

U and of the momentum Q = ρU , the pressure P and the mean total energy E:

E = ρ((u)2/2+ ε(P,ρ)).

The speed of acoustic waves is:

ρc2 =

(
P
ρ
−ρ

∂ε(P,ρ)
∂ρ

)
/(

∂ε(P,ρ)
∂P

)

with ε(P,ρ) the internal energy given by the user. The governing equations read:



∂ρ

∂ t
+∇.(Q) = 0

∂Q
∂ t

+∇.(Q⊗u)+∇P = 0

∂E
∂ t

+∇.
(
QH
)
= 0

(2)

where again the total enthalpy H is:

H = (E +P)/ρ

We consider control volumes as depicted on Figure 1, and we integrate (2) from

time tn to tn+1. Thus, noting:

Ω
ϕ

i = Si×hi

the volume occupied by the fluid within the i-cell, we get at time t = tp:

Ω
ϕ

i Φ
p
i =

∫
Ω

ϕ

i

Φ(x, tp)dv,
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for: Φ = ρ,Q,E.

Using previous definitions, and noting Γi the boundary of the control volume Ωi,

standard calculations enable to derive the following update:



Ω
ϕ

i

(
ρ

n+1
i −ρn

i
)
+
∫
[tn,tn+1]

∫
Γ (i)(Q.n)(xΓ , t)dΓ dt = 0

Ω
ϕ

i

(
Qn+1

i −Qn
i

)
+
∫
[tn,tn+1]

∫
Γ (i)((Q.n)u+Pn)(xΓ , t)dΓ dt = 0

Ω
ϕ

i

(
En+1

i −En
i
)
+
∫
[tn,tn+1]

∫
Γ (i)((Q.n)H)(xΓ , t)dΓ dt = 0

(3)

As shown in figure 1, the boundary Γ (i) = Σ jΓi j consists in three distinct parts

corresponding to:

• (i) the upper and lower wall boundaries, through which the normal mass flux is

null;

• (ii) Γ
ϕ

i+1/2 (respectively Γ
ϕ

i−1/2) where the fluid may flow in the x direction be-

tween cells i and i+1 (respectively between cells i−1 and i);

• (iii) walls boundaries aligned with the y direction between cell Ωi and its neigh-

bouring cells Ωi−1 and Ωi+1, through which the normal mass flux is again equal

to 0, and the surfaces of which are max(0,(Si− Si−1)) and max(0,(Si− Si+1))

respectively,

so that :

Si = mes(Γ ϕ

i−1/2)+max(0,(Si−Si−1)) = mes(Γ ϕ

i+1/2)+max(0,(Si−Si+1)).

These definitions make sense, whatever the triple (Si−1,Si,Si+1) is, even when one

among these is equal to 0.

Thus, setting ∆ tn = tn+1− tn, and denoting V (i) the set of neighbouring cells of

cell i, including the wall ”mirror” cells associated with the wall boundaries of cell i,

the Finite Volume scheme scheme is as follows:
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Ω
ϕ

i

(
ρ

n+1
i −ρn

i
)
+∆ tn

∑ j∈V (i)(Q.n)h
i jΓi j = 0

Ω
ϕ

i

(
Qn+1

i −Qn
i

)
+∆ tn

∑ j∈V (i)((Q.n)u+Pn)h
i jΓi j = 0

Ω
ϕ

i

(
En+1

i −En
i
)
+∆ tn

∑ j∈V (i)((Q.n)H)h
i jΓi j = 0

(4)

In the latter formulation, the fluxes (φ)h
i j denote suitable explicit numerical

fluxes. These may be obtained using either a Godunov scheme, a Rusanov scheme

or an approximate Godunov scheme. In practice, we will concentrate herein on a

hybrid formulation where the numerical fluxes on fluid/fluid interfaces Γ
ϕ

i+1/2 will

be obtained with the approximate Godunov scheme [9], and the numerical fluxes

on fluid/solid interfaces will correspond to the exact Godunov fluxes. An alternative

practical choice might be to replace the approximate Godunov scheme at fluid/fluid

interfaces by a Rusanov (respectively exact Godunov) scheme, but this would of

course decrease the overall accuracy (respectively increase the computational cost)

of computations.

Before going further on, we introduce classical notations below:

ψ.nx = ψx ψ.ny = ψy

for ψ equal to Q or u. We also assume that the initial condition at the beginning of

the computation t0 is such that the transverse velocity in the y−direction is null in

all computational cells: Uy
0
i = 0.

2.1 Mass and energy discrete balance equations

Since discrete normal fluxes are null at wall boundaries, the mass balance discrete

equation is simply the following:

Ω
ϕ

i

(
ρ

n+1
i −ρ

n
i
)
+∆ tn

(
(ρux)

h
i+1/2Γ

ϕ

i+1/2− (ρux)
h
i−1/2Γ

ϕ

i−1/2

)
= 0 (5)
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while noting:

Γ
ϕ

i+1/2 = min(Si,Si+1)

A similar straightforward calculation leads to the discrete energy balance equation:

Ω
ϕ

i

(
En+1

i −En
i
)
+∆ tn

(
(ρHux)

h
i+1/2Γ

ϕ

i+1/2− (ρHux)
h
i−1/2Γ

ϕ

i−1/2

)
= 0 (6)

2.2 Momentum balance discrete equations

We first prove that the flow remains such that the discrete y-momentum (Qy)
n
i re-

mains null. Actually, the dot product of the second equation in 4 with the unit vector

j = (0,1) yields:

Ω
ϕ

i

(
(Qy)

n+1
i − (Qy)

n
i
)
+∆ tn

∑
j∈V (i)

((Q.n)(uy)+Pn. j)h
i jΓ

ϕ

i j = 0

For all wall boundaries, the Godunov scheme computes (Q.n)h
i,wall = 0; moreover,

the exact Godunov scheme (or approximate Godunov scheme [9]) also provides

zero contributions for fluxes ((Q.n)(uy))
h
i±1/2 on the vertical fluid/fluid interfaces

Γ
ϕ

i±1/2, as soon as uy is equal to zero. On the other hand, the scalar product n. j is

null everywhere except on the lower and upper wall boundaries; however, the exact

Godunov value of the wall pressure will be equal to the cell pressure as soon as (uy)
n
i

is equal to zero; hence, the budget will cancel when summing up on both lower and

upper frontiers. On the whole, we can conclude that:

Ω
ϕ

i

(
(Qy)

n+1
i − (Qy)

n
i
)
= 0

and thus :

(Qy)
n+1
i = 0

if (Qy)
n
i = 0. This completes the proof.
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Eventually, the discrete x−momentum balance for Qx = ρux will take the form:

Ω
ϕ

i

(
Qn+1

xi
−Qn

xi

)
+ ∆ tn

(
(ρu2

x +P)h
i+1/2Γ

ϕ

i+1/2− (ρu2
x +P)h

i−1/2Γ
ϕ

i−1/2

)
+ ∆ tnP∗i+ 1

2 ,i

(
Si−Γ

ϕ

i+1/2

)
−∆ tnP∗i− 1

2 ,i

(
Si−Γ

ϕ

i−1/2)
)
= 0 (7)

where P∗
i± 1

2 ,i
stands for an estimation of the pressure on the wall boundary i±1/2.

On the whole, the set of equations (5),(7),(6) enables to update values of the

density ρ , x− moentum Qx and total energy E.

2.3 Estimations of the pressure of the wall boundary

This estimation requires to specify the EOS. We give below formulas associated

with a perfect gas EOS:

P = (γ−1)ρε(P,ρ).

We get for Si > Si+1 :

• if Mi =
un

i
cn

i
< 0, then: P∗

i+ 1
2 ,i

=


Pn

i

(
1+ γ−1

2 Mi

) 2γ

γ−1
if 1+ γ−1

2 Mi ≥ 0

0 otherwise

• if Mi =
un

i
cn

i
> 0, then: P∗

i+ 1
2 ,i

= Pn
i

(
1+ γMi

(
1+ (γ+1)2

16 M2
i

)1/2
+ γ(γ+1)

4 M2
i

)
and a similar result holds when Si < Si+1.

Very similar results can be obtained when using a stiffened gas EOS -which is

useful for almost incompressible flow calculations-, that is:

P+ γP∞ = (γ−1)ρε(P,ρ).

where P∞ is a positive constant.
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For more general EOS, more complex formulas may be obtained ([1]), using

the Riemann invariant parametrization of the fast waves associated with λ = u± c

when u.nwall ≤ 0, and shock connections when the flow locally hits the wall bound-

ary (when u.nwall > 0).

2.4 Remarks

1. A first remark concerns other simpler estimations of the wall pressure. At first,

it may be argued that Mi =
un

i
cn

i
in fact corresponds to the normal Mach num-

ber Mi =
(u.n)n

i
cn

i
; thus it is expected to be rather small, at least for fine enough

meshes, since the mass flux u.n is null at the wall boundary. Hence, it seems ap-

pealing to replace the exact Godunov value of the wall pressure by some rough

approximation, setting Mi to 0, which yields:

P∗i+ 1
2 ,i

= Pn
i

when Si > Si+1 whatever the sign of (u.n)n
i is.

Even more, an obvious candidate for the wall pressure estimate can be pro-

vided by approximate Riemann solvers. For instance, the approximate Godunov

scheme [9] computes a numerical wall pressure which is close to the one detailed

above, since it computes:

PV FRoe−ncv
wall = Pn

i (1+ γMi) .

whenever Mi is positive or negative. As it can be easily noticed, this expression

exactly corresponds to a first-order expansion of the exact Godunov value de-

tailed above, with respect to the mach number Mi.



A simple integral approach to compute flows in ducts with variable cross-section 13

2. Another remark pertains to a suitable definition of the time step. Depending on

the choice of numerical fluxes at the fluid interfaces, CFL-like conditions must

be introduced in order to guarantee positive discrete values of the density ρn
i . For

instance, when focusing of the Rusanov flux scheme:

f n
i+1/2 =

(
F(W n

i )+F(W n
i+1)− rn

i+1/2(W
n
i+1−W n

i )
)
/2

(where rn
i+1/2 = max(r(W n

i ),r(W
n
i+1)), and r(W ) stands for the spectral radius of

the Jacobian matrix
∂F(W )

∂W
), the classical one-dimensional CFLRusanov condi-

tion that guarantees 0≤ ρ
n+1
i if 0≤ ρn

i (for all cells):

∆ tn(rn
i+1/2 + rn

i−1/2)≤ 2hi

should be replaced by the following CFL1D+Rusanov condition on the time step:

∆ tn
(

rn
i+1/2Γ

ϕ

i+1/2 + rn
i−1/2Γ

ϕ

i−1/2 +un
i (Γ

ϕ

i+1/2−Γ
ϕ

i−1/2)
)
≤ 2Ω

ϕ

i

This result can be classically obtained, using equation (5) and rewriting the latter

in the form:

ρ
n+1
i = an

i ρ
n
i +bn

i ρ
n
i−1 + cn

i ρ
n
i+1.

It can then be checked that both bn
i and cn

i are positive without any condition,

whereas 0 ≤ an
i if and only if the condition (CFL1D+Rusanov) holds. Thus the

new CFL condition is a little bit more restrictive than the one associated with the

pure one-dimensional case; however, for smooth variations of the cross-section,

we retrieve almost the same condition on the time step.
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3 Numerical results

In the following next two subsections,we will discuss results that have been obtained

while computing approximations of Euler equations for a compressible fluid.

The first subsection is devoted to the steady flow in a nozzle, restricting to the

case where a shock occurs in the divergent part of the nozzle. This includes a study

of the numerical convergence with respect to the mesh size.

The second subsection is the most important one, since it examines the behaviour

of the present integral approach when computing the flow in a duct with a sudden

contraction/enlargement. The latter subsection also contains a thorough comparison

with:

• the reference solution obtained by computing the two-dimensional set of Euler

equations on a very fine mesh, using the approximate Godunov scheme [9];

• the approximation obtained with the classical one-dimensional system (1), using

the well-balanced scheme [20].

For all test cases, we have used a perfect gas equation of state, setting: γ = 7/5.

In all cases the CFL constant has been set to 1/2.

3.1 Steady flow in Laval nozzle

This flow is subsonic in the convergent part of the nozzle, sonic at the nozzle throat,

supersonic before the shock location, and then subsonic until the exit. The approxi-

mate solution obtained with the integral approach is compared with the exact solu-

tion, which is classical and is not recalled herein. We emphasize that a very accurate

treatment of inlet and outlet boundary conditions is mandatory in order to get a

relevant approximation. For that topic we refer for instance to [1] and references
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therein. Several meshes have been considered for that purpose ; we provide here nu-

merical approximations corresponding to four meshes including 100, 1000, 10000

and 50000 cells respectively.

Inlet boundary conditions are derived using an upstream reservoir condition,

where the fluid is at rest, and the pressure and total enthalpy are:

P0 = 105Pa and H0 = 294615.75.

The outlet boundary condition is:

Poutlet = 75×103Pa.

Initial conditions are chosen as follows:

Ux(x, t = 0) = 0, P(x, t = 0) = 105Pa, T (x, t = 0) = 293.15K

The wall boundary estimate for the pressure in cell i is chosen as :

P∗i+ 1
2 ,i

= P∗i− 1
2 ,i

= Pn
i .

Figures 2, 3, 4, 5 respectively provide the mean pressure, the density, the Mach

number and the velocity of the fluid when the flow is steady, while restricting to

Rusanov scheme. Computational results obtained with 100 and 50000 cells are pro-

vided, together with the exact steady solution. A comparison of convergence rates in

L1 norm for pressure, velocity and density variables obtained with Rusanov scheme

and V FRoencv scheme is given on figure 6. The convergence rate is clearly 1 for both

schemes, which was expected for this steady case with a first-order scheme. Obvi-

ously V FRoencv scheme is a bit more accurate than Rusanov scheme for a given

mesh size. Of course, for this kind of application in smooth cross-section ducts,
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many other schemes behave quite well too (see for instance [7, 23, 20, 4, 1], among

others).

3.2 Unsteady flow of a compressible fluid with abrupt cross-section

variations

We turn now to the computation of unsteady flows of a compressible fluid in duct

including a sudden contraction/enlargement. A comparison of three distinct ap-

proaches is now considered.

• At first, a reference solution is computed, which corresponds to the simulation of

the Euler equations 2 in a two-dimensional framework, using one million cells

and the approximate Godunov scheme [9];

• We compute then approximations of the classical set of one-dimensional equa-

tions (1), using various meshes and the the well-balanced Rusanov scheme intro-

duced in [20], the verification of which can be found in [10];

• The third series of approximations corresponds to the numerical approxima-

tions obtained with our integral approach, thus computing discrete values with

(5),(7),(6) using coarse or fine one-dimensional meshes.

The experimental setup is a one-dimensional pipe with a sudden contraction lo-

cated at xc = 0.8 (see Figure 7). Thus the cross section is:

S(x < xc) = Sl and : S(x > xc) = Sr

When starting the computation, the initial membrane situated at xm = 0.7 separates

two distinct initial states (ρL,uL,PL) and (ρR,uR,PR). Depending on this choice, two

situations may be considered.
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In the first one, where:

(ρL,uL,PL) = (1,0,105)

and:

(ρR,uR,PR) = (0.125,0,104).

and restricting to the beginning of the computation, a right-going shock wave prop-

agates towards the right direction, and is followed by a contact discontinuity; mean-

while, a rarefaction wave travels towards the left boundary. Then the right-going

shock wave hits the sudden contraction, and a reflected wave and a transmitted wave

respectively travel to the left and right side of the contraction x = xc.

Of course, left and right initial states (ρL,uL,PL) and (ρR,uR,PR) can be per-

muted. In that case, the smooth right-going rarefation wave interacts with the sudden

contraction; again two reflected and transmitted waves occur.

We examine these two configurations in the sequel; moreover, two different

cross-section ratios are considered in this subsection:

Sl/Sr = 2

and:

Sl/Sr = 100

The finest (respectively coarsest) one-dimensional mesh that is used for both the

classical approach -with the well-balanced scheme- and the integral approach con-

tains 50000 (respectively 100) regular cells.

The pressure estimate that is used for all computations at the wall-boundary is

either the rough approximation retained in the former subsection:
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P∗i+ 1
2 ,i

= P∗i− 1
2 ,i

= Pn
i .

or the more accurate Riemann wall-boundary expression detailed in section 2.3.

3.2.1 A shock wave hits a section contraction

First test case 1: Sl/Sr = 2 :

This corresponds to a rather classical situation arising in many practical simulations.

We plot on Figure 8 the density profiles at time t = T0 = 1.5×10−3. We note that:

• The red and green curves correspond to the integral approach when using a mesh

with 50000 (respectively 1000) cells ; the blue curve refers to the approximation

obtained with the wall estimate of the pressure provided in section 2.3 with the

finer mesh;

• Approximations associated with the magenta curve have been obtained with the

classical approach and the well-balanced scheme;

• The black curve gives the mean value of the reference solution in the section.

When using the rough approximation of the wall pressure, (thus setting Mi to 0

in formulas of section 2.3), it appears that the integral approach provides a very

nice approximation of the reference solution, which is indeed much better than the

classical approach with the well-balanced scheme. This remains true even when

the mesh is coarse (see figure 8, with one thousand cells). We also plot the ve-

locity/pressure/entropy profiles on figures 9, 10, 11. Similar comments hold when

comparing the three approaches (reference solution, integral approach and classical

approach). Figure 12 gives the behaviour of the wall pressure estimate (rough es-

timate Pwall = Pn
i and Riemann value detailed in section 2.3) wrt time, and it also

provides a comparison with the wall pressure computed by the code that solves two-



A simple integral approach to compute flows in ducts with variable cross-section 19

dimensional Euler equations.

Second test case: Sl/Sr = 100 :

When the cross-section contraction is much higher, the well-balanced scheme fails

at providing approximations as soon as the shock wave hits this contraction. We em-

phasize that the same trouble arises when using the well-balanced approximate Go-

dunov scheme [16]. In practice, when the numerical shock wave hits the contraction,

the non linear solver that computes values of the density solution of f−,+(ρ) = 0 on

both sides of cell interfaces (see [20] and also, [16] section 3.2, [10] appendix C, or

[11] appendix D) no longer finds any positive solution. Tentative cures that enforce

the minimal value ρmin such that f−,+(ρmin) = minx∈R+ f−,+(x) also lead to a failure

of the code.

For this second test case, we thus only compare profiles:

• when using the integral approach and a mesh including 50000 cells: the black

dotted curve displays results corresponding to the rough wall pressure estimate

Pwall = Pn
i in cell i at time tn, and the black dashed curve refers to the approxi-

mation obtained with the wall pressure estimate in section 2.3;

• The black curve gives the mean value of the reference solution in the section.

Actually, computational approximations are close to one another in this second test

case (see figure 13). The comparison with the reference multi-dimensional solution

is really fair. This is also true for the remaining pressure/velocity components. Fig-

ure 14 is the counterpart of the previous one Figure 12 for this second test case; the

three estimates of the wall pressure hardly differ in that case, which was expected

due to the high cross section contraction.
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3.2.2 A rarefaction wave hits a section contraction

The experimental setup is still the same, but initial states on both sides of the mem-

brane are now:

(ρL,uL,PL) = (0.125,0,104)

and:

(ρR,uR,PR) = (1,0,105).

The cross section is the same as in test case 1, which means that:

Sl/Sr = 2

This test is interesting, since the incoming wave that meets the sudden contrac-

tion is smooth now (it is a right-going rarefaction wave). Thus one expects that more

or less, all computations will lead to similar results. We emphasize that the well-

balanced scheme computes this situation, on any mesh, and hence we can again

compare on figure 15:

• Results obtained with the integral approach when using a mesh with 50000 cells,

and considering the exact Riemann estimate for the wall pressure or its rough

approximation Pwall = Pn
i in cell i at time tn ;

• Approximations associated with the classical approach and the well-balanced

scheme;

• The y averaging of the reference two-dimensional solution.

We can observe velocity and pressure numerical approximations on Figures 16 and

17. We also recall the basic Riemann solution (in yellow) at some earlier time

t = 0.131× 10−3 when the position xr of the head of the right-going rarefaction

wave is smaller than xc. Figure 18 also details the wall pressure computed by the

two slightly different integral approaches. Once more, the prediction provided by
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the classical approach and the well-balanced scheme is far less accurate than the

integral approach, whatever the wall pressure estimate is. This remains unchanged

independently of the mesh refinement. In particular, the reflected wave (for x < xc)

has not the correct tendencies, whereas the transmitted wave (for x > xc) is rather

good in all situations.
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4 Conclusion

Focus has been given in this paper on the one-dimensional approximation of single-

phase fluid flows, but obviously, this approach may be extended to two-phase flow

models in a straightforward manner. This is for instance true for standard con-

servative homogeneous models, but also for Baer-Nunziato type models ([3, 5]).

Nonetheless, in the latter case, the occurence of non-conservative terms in the multi-

dimensional model introduces an additional small difficulty that can be managed

rather easily in a meaningful way. The present one-dimensional Finite Volume ap-

proach is very simple and rather efficient, as it has been shown in section 3. This

claim is also confirmed by numerous computations described in [22], where sixteen

different situations have been investigated, considering eight contractions:

Sl/Sr =
1

100
;

1
10

;
1
2

;
9

10
;

and:

Sl/Sr =
10
9

; 2; 10; 100.

Scheme FV 1D+ simply relies on an integral formulation on specific Finite Vol-

umes, and it requires to give a suitable approximate value of the wall pressure in the

multi-dimensional framework. It has been emphasized herein that the local -in cell-

value of the pressure is indeed a fair candidate.

Moreover, it has been pointed out that, in some situations involving high ratios of

the cross-section between two neighbouring cells, the well-balanced schemes may

fail at providing approximations, whatever the mesh size is. This is an important re-

mark, since one expects to get approximations that will converge uniformly towards

the true solution when some sudden closure of the duct occurs. Actually, the present

one-dimensional Finite Volume approach enables to achieve this requirement in a

continuous way, without introducing any difficulty.
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Another consequence of the present work is that some new approach may be con-

sidered in order to define a meaningful and direct approach for the tricky problem of

the homogeneisation of obstacles in industrial components arising in nuclear power

plants ([21]). This work is currently under way ([2]). Eventually, we would like to

emphasize that, as mentionned in the introduction, some counterpart of the classi-

cal well-balanced formulation, which takes advantage of the present results, is also

currently investigated. We expect that this work will help improving the classical

well-balanced strategy.
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Fig. 1 Finite volume Ωi with neighbouring cells, fluid interfaces and inner wall-boundaries.
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Fig. 2 Steady flow in Laval nozzle: pressure profile obtained with Rusanov scheme and 100 or
50000 cells.
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Fig. 3 Steady flow in Laval nozzle: density profile obtained with Rusanov scheme and 100 or
50000 cells.
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Fig. 4 Steady flow in Laval nozzle: Mach number profile obtained with Rusanov scheme and 100
or 50000 cells.
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Fig. 5 Steady flow in Laval nozzle: velocity profile obtained with Rusanov scheme and 100 or
50000 cells.
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schemes. Coarser and finer meshes include 100 or 50000 cells.
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Fig. 7 Experimental setup : 1D pipe with a sudden contraction and position of the initial mem-
brane.
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Fig. 8 Density profiles at t = T0 in test case 1. Dashed blue curve: integral approach with 50000
cells, using the exact Riemann estimate of the wall pressure. Dotted red and dashed green curves:
integral approach with 50000 and 1000 cells respectively, assuming Mi = 0 in wall pressures.
Dotted-dashed magenta curve: well-valanced Rusanov scheme with 50000 cells. Black curve:
y−averaging of 2D results.
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Fig. 9 Velocity profiles at t = T0 in test case 1. Dashed red curve: integral approach with 50000
cells, using the exact Riemann estimate of the wall pressure. Dotted-dashed green curves: integral
approach with 50000 cells , assuming Mi = 0 in the wall pressure estimate. Dotted blue curve:
well-valanced Rusanov scheme with 50000 cells. Black curve: y−averaging of 2D results.
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PRESSURE

Fig. 10 Pressure profiles at t = T0 in test case 1. Dashed red curve: integral approach with 50000
cells, using the exact Riemann estimate of the wall pressure. Dotted-dashed green curves: integral
approach with 50000 cells , assuming Mi = 0 in the wall pressure estimate. Dotted blue curve:
well-valanced Rusanov scheme with 50000 cells. Black curve: y−averaging of 2D results.
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Fig. 11 Entropy profiles at t = T0 in test case 1. Dashed red curve: integral approach with 50000
cells, using the exact Riemann estimate of the wall pressure. Dotted-dashed green curves: integral
approach with 50000 cells , assuming Mi = 0 in the wall pressure estimate. Dotted blue curve:
well-valanced Rusanov scheme with 50000 cells. Black curve: y−averaging of 2D results.
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exact Riemann estimate of the wall pressure. Dotted curve: integral approach setting Mi = 0. Full
black curve: multidimensional computation using 6402 cells.
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Fig. 13 Density profiles at t = T0 in test case 2. Dashed curve: integral approach using the exact
Riemann estimate of the wall pressure. Dotted curve: integral approach assuming Mi = 0 in wall
pressure estimations. Black curve: y−averaging of two-dimensional results.
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Fig. 14 Comparison of wall pressures in test case 2. Dashed curve: integral approach using the
exact Riemann estimate of the wall pressure. Dotted curve: integral approach setting Mi = 0. Full
black curve: multidimensional computation using 8002 cells.
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Fig. 15 Density profiles at t = T0 in test case 3. Dashed curve: integral approach using the exact
Riemann estimate of the wall pressure. Dotted curve: integral approach assuming Mi = 0 in wall
pressure estimations. Black curve: y−averaging of two-dimensional results.
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Fig. 16 Velocity profiles at t = T0 in test case 3. Dashed curve: integral approach using the exact
Riemann estimate of the wall pressure. Dotted curve: integral approach assuming Mi = 0 in wall
pressure estimations. Black curve: y−averaging of two-dimensional results.
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Fig. 17 Pressure profiles at t = T0 in test case 3. Dashed curve: integral approach using the exact
Riemann estimate of the wall pressure. Dotted curve: integral approach assuming Mi = 0 in wall
pressure estimations. Black curve: y−averaging of two-dimensional results.
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Fig. 18 Comparison of wall pressures in test case 3. Dashed curve: integral approach using the
exact Riemann estimate of the wall pressure. Dotted curve: integral approach setting Mi = 0. Full
black curve: multidimensional computation using 8002 cells.


