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Improving performances of the AltaRica 3.0 stochastic simulator
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J-M. Roussel
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ABSTRACT: This article presents the performance improvements we obtained on the AltaRica 3.0 stochastic
simulator by using profiling techniques and testing it on a benchmark of models. This analysis showed that
evaluating guards is one of the most time-consuming part of the execution. A selective update of the guards
made it possible to improve significantly the performance.
This work is a part of the OpenAltaRica project, which aims at developing a complete set of tools for the high
level modeling language AltaRica 3.0.

1 INTRODUCTION

1.1 AltaRica in safety and reliability analyses

The Model-Based approach for safety and reliability
analysis is gradually winning the trust of engineers
and is still an active domain of research. Safety en-
gineers master “traditional” risk modeling formalism,
such as Failure Mode, Effects and Criticality Anal-
ysis (FMECA), Fault Trees (FT), Event Trees (ET),
Markov Processes. Efficient algorithms and tools are
available. However, despite of their qualities, these
formalisms share a major drawback: obtaining mod-
els from the specifications of the systems under study
is time-consuming. As a consequence, models are
hard to design and to maintain throughout the life
cycle of systems. A small change in the specifica-
tions may require revisiting completely safety mod-
els, which is both resource consuming and error
prone.

The high-level modeling language AltaRica has
been created to tackle this problem (Prosvirnova et al.
2013). AltaRica models are made of hierarchies of
reusable components. Graphical representations are
associated with models, making them visually very
close to Process and Instrumentation Diagrams.

∗This research work has been carried out in the framework
of the Technological Research Institute SystemX, and therefore
granted with public funds within the scope of the French Pro-
gram ”Investissements d’Avenir”

An entirely new version of the language, named
AltaRica 3.0, has been designed and a complete set of
authoring and assessment tools is under development
by the OpenAltaRica project (Batteux et al. 2014).
These tools will be distributed as freeware, so to make
them available to a wide audience.

1.2 Stochastic simulation in safety and reliability
analyses

Stochastic simulation is an important tool to evaluate
performances of systems (Cancela and Khadiri 1998,
Baca 1993). In discrete event modeling formalisms,
it is assumed that the system changes of state when
and only when an event occurs. Stochastic delays are
associated with events. It is therefore possible to per-
form Monte-Carlo simulations. The idea is to draw at
pseudo-random a number of histories of the system
and to make statistics on them. In this way, it is pos-
sible to evaluate the average number of times a given
event has been fired, the number of times failure state
has been reached, the mean time before failure state is
reached, ... (see Zio 2013 for a complete monograph
on Monte-Carlo simulations in the safety and reliabil-
ity engineering framework).

The more histories are generated, the more accurate
the statistics. It is therefore of primary importance to
have a very efficient implementation of the basic sim-
ulation mechanisms.



1.3 Stochastic simulation with AltaRica 3.0

The AltaRica 3.0 stochastic simulator has been pre-
viously presented in Batteux and Rauzy 2013, which
presents the performance improvements obtained by
compiling a model specific simulator, and the possi-
bility to define specific cumulative probability func-
tion when the classic ones (constant, dirac, exponen-
tial, Weibull, ...) are not sufficient to model a behavior.

The remainder of the article is organized as follows.
Section 2 presents briefly the AltaRica 3.0 language
and the OpenAltaRica project. Section 3 presents
Guarded Transition Systems which are the underlying
mathematical model of AltaRica 3.0. Section 4 de-
scribes the main features of the AltaRica 3.0 stochas-
tic simulator and the simulation algorithm. Section 5
presents the results of preliminary performance analy-
sis. Section 6 presents the improvements we obtained
by enhancing this algorithm.

2 ALTARICA 3.0

2.1 The OpenAltaRica project

The OpenAltaRica project is carried out by the French
Technological Research Institute SystemX with sev-
eral academic and industrial partnerships.

Objectives of the OpenAltaRica project are on two
ways. First, to federate a community around the Alta-
Rica language, and more generally around Model-
Based Safety Assessment (MBSA). The second ob-
jective is to make available an integrated platform
based under AltaRica 3.0 and dedicated to safety and
reliability analysis of complex systems. It will focus
on the development of a coherent and complete set of
reference tools for editing, animating and assessing
AltaRica 3.0 models, on modeling methodology and
on integration of safety analysis with other system en-
gineering disciplines.

Technically the platform will contain four work-
shops: the AltaRica 3.0 workshop to design and assess
AltaRica 3.0 models; the RAMS Open-PSA work-
shop to perform traditional low level safety and re-
liability analysis (Fault trees, Markov chains, ...); the
GraphXica workshop to graphically animate and vi-
sualize AltaRica 3.0 models; and a workshop to com-
pare models coming from different system engineer-
ing formalisms like SysML or Modelica. This future
integrated platform will be made publicly available.

2.2 AltaRica 3.0 Modeling Language

The previous version of AltaRica modeling language,
AltaRica Data-flow (Boiteau, Dutuit, Rauzy, & Sig-
noret 2006), is a generalization of both Petri nets
and block diagrams. From the former, it has imported
the notions of states, events and guarded transitions
whereas the latter inspired the notions of events syn-
chronization, hierarchical description and flows. This

last notion makes it possible to represent remote inter-
actions in a simple way. It allows to easily model clas-
sic reliability mechanism, such as common cause fail-
ure or maintenance (preventive or corrective). How-
ever, located synchronizations cannot be captured and
bidirectional flows circulating through a network can-
not be modeled in a natural way. Moreover, it remains
difficult to model looped systems. For these reasons
AltaRica Data-Flow is not powerful enough to model
such complex systems.

Thus, a new version of the language, so-called
AltaRica 3.0, has been specified. It improves the pre-
vious version AltaRica Data-Flow into two direc-
tions. It provides new constructs to structure models
(Prosvirnova & Rauzy 2014). Its semantic is based
on the new underlying mathematical model: Guarded
Transitions Systems. The new underlying formalism
makes it possible to handle systems with instant loops
and to define acausal components (components for
which the input and output flows are decided at run
time). It is much easier to model systems with bidi-
rectional flows (e.g. electrical systems).

An AltaRica 3.0 model is structured in several com-
ponents. Each component is a Guarded Transition
System (described in next section) and exchange in-
formation with each other. To be assessed, the whole
model is flattened into a unique Guarded Transition
System.

3 GUARDED TRANSITION SYSTEMS

First introduced in Rauzy (2008), Guarded Transition
Systems is a pivot formalism for Safety modeling and
analyses. It generalizes classical formalisms, such as
Reliability Block Diagrams, Markov chains and Petri
Nets. The new semantics of instructions, presented in
Prosvirnova & Rauzy (2012), makes it possible to rep-
resent components with bidirectional flows.

3.1 Definition

A Guarded Transition System, noted GTS, is a quin-
tuple 〈V,E,T,A, ι〉, where:

• V = S ]F is a set of variables, divided into two
disjoint sets S of state variables describing the
state of the system, and F of flow variables al-
lowing to exchange information between com-
ponents (typically input-output links);
• E is a set of symbols, called events;
• T is a set of transitions denoted e : G→ P ;
• A is an assertion, i.e. an instruction built over V ;
• ι is an assignment of variables of V , so-called an

initial or default assignment.

A transition e : G→ P is a triple 〈e,G,P 〉 where
e ∈E is an event,G is a guard (i.e.: a boolean formula
built over V ) and P is an instruction built over V ,
called an action or a post-condition. A transition e :



G → P is said fireable in a given state σ (i.e. for a
given variable assignment σ) if its guardG is satisfied
in this state.

3.2 Instructions

Both assertion and action of transitions are described
by means of instructions. An instruction can be:

• The empty instruction named skip;
• An assignment denoted v :=E, where v is a vari-

able and E is an expression built over variables
from V ;
• a conditional assignment denoted if C then I ,

where C is a Boolean expression and I is an in-
struction;
• a block of instructions denoted {I1, . . . , In} of

instructions.

State variables can occur as the left member of an
assignment only in the action of a transition; whereas
flow variables can only in the assertion. Instructions
are interpreted in a slightly different way depending
they are used in the actions or in the assertion. Let
σ be the variable assignment before the firing of the
transition e : G→ P . Applying the instruction P to
the variable assignment σ consists in calculating a
new variable assignment τ as follows. We start with
τ = σ. Then,

• if P is an empty instruction, then τ is left un-
changed;
• if P is an assignment v := E, then τ(v) is set to
σ(E). If the value of v has been already modified
and is different from the calculated one, then an
error is raised;
• if P is a conditional assignment if C then I and
σ(C) is true, then the instruction I is applied to
τ ;
• if P is a block of instructions {I1, . . . , In} then

instructions I1, . . . , In are successively applied
to τ .

It is important to note that in the above mecha-
nism, right hand side of assignments and conditional
expressions are evaluated in the context of σ. Thus,
the result does not depend on the order in which in-
structions of a block are applied. In other words, in-
structions of a block are applied in parallel. Let denote
by Update(P,σ) the variable assignment τ resulting
from the application of the instruction P to σ.

Let A be the assertion and let τ be the variable as-
signment obtained after the application of the action
of a transition. Applying A consists in calculating a
new variable assignment (of flow variables) π as fol-
lows. We start by setting all state variables in π to
their values in τ : ∀v ∈ Sπ(v) = τ(v). Let D be a set
of unevaluated flow variables, we start with D = F .
Then,

• if A is an empty instruction, then π is left un-
changed;
• ifA is an assignment v :=E, then if π(E) can be

evaluated in π, i.e. all variables ofE have a value
in π, then π(v) is set to π(E) and v is removed
from D. If the value of v has been already modi-
fied and is different from the calculated one, then
an error is raised;
• if A is a conditional assignment if C then I and
π(C) can be evaluated in π and π(C) is true, then
the instruction I is applied to π. Otherwise, π is
left unchanged;
• if A is a block of instructions {I1, . . . , In} then

instructions I1, . . . , In are repeatedly applied to
π until there is no more possibility to assign a
flow variable.

If after applying A to π there are unevaluated vari-
ables in D, then all these variables are set to their de-
fault values ∀v ∈D,π(v) = reset(v) andA is applied
to π in order to verify that all assignments are satis-
fied. If that is not true an error is raised. Let denote
by Propagate(A,σ) the variable assignment result-
ing from the application of the instruction A to σ.

3.3 Observers

Observers are named expressions which depends on
the variables of V and are evaluated at each new state
of the system. They cannot be used in transitions and
assertion, i.e. they cannot be used to describe the be-
havior of a system. Rather, as their name indicates,
they are quantities to be observed. Therefore, they are
used to define what is useful to know in the model.

3.4 Reachability graph

Assume that σ is the variable assignment just before
the firing of a transition. Then, the firing of the tran-
sition transforms σ into the assignment Fire(e : G→
P,A,σ) defined as follows:

Fire(e :G→ P,A,σ) = Propagate(A,Update(P,σ))

GTS are implicit representations of Kripke struc-
tures, i.e. of graphs whose nodes are labeled by vari-
able assignments and whose edges are labeled by
events. More exactly, the semantics of a GTS 〈V =
S ] F,E,T,A, ι〉 is a Kripke structure, i.e. a graph
Γ = (Σ,Θ), where Σ is a set of variable assign-
ments (also called states and representing nodes of
the graph) and Θ is a set of triples 〈s, e, q〉, s, q ∈ Σ,
e ∈ E (representing transitions of the graph). Γ is the
smallest Kripke structure, such that the following is
verified:

1. σ0 is the initial state of the Kripke structure: i.e.
σ0 = Propagate(A, ι, ι) ∈ Σ;



2. if σ ∈ Σ and ∃t = 〈e,G,P 〉 ∈ T , such
that σ(G) = TRUE, then the state τ =
Fire(P,A, ι, σ) is in Σ and the transition
(σ, e, τ) is in Θ,

The calculation of Γ = (Σ,Θ) may raise errors. A
well designed GTS avoids this problem. The Kripke
structure Γ is also called a reachability graph.

3.5 Timed/Stochastic Guarded Transition Systems

A probabilistic time structure can be put on top of a
GTS so to get timed/stochastic models. The idea is to
associate to each event the following information:

• A delay that can be deterministic or stochastic
and may depend on the state. When a transition
labeled with the event becomes fireable at time t,
a delay d is calculated and the transition is actu-
ally fired at time t+ d if it stays fireable from t
to t+ d;
• A weight, so called expectation, which is used

to determine the probability that the transition is
fired in case several transitions are fireable at the
same date.

3.5.1 Timed Guarded Transition Systems
Formally, a Timed GTS is a tuple
〈V,E,T,A, ι, delay〉, where 〈V = S ] F,E,T,A, ι〉
is a GTS and delay : E → R+ is a function, that
associates to each event a non-negative real number.

The semantics of Timed GTS can be defined in
terms of executions. An execution is a sequence
(σ0, d0, t0)

e0→ (σ1, d1, t1) . . . (σn−1, dn−1, tn−1)
en−1→

(σn, dn, tn), where ti ∈ R+ represents the date when
the event ei occurs and the transition labeled by this
event is fired. The step (σi, di, ti)

ei→ (σi+1, di+1, ti+1)
corresponds to the advancement of time and to the
firing of the transition labeled by the event e.

3.5.2 Stochastic Guarded Transition Systems
The timed interpretation of GTS does not specify how
delays are calculated. Therefore, it encompasses the
case where delays are stochastic. It remains however
to define what stochastic means. To do so, we shall
introduce the notion of oracle. The idea is to delegate
all the “randomness” of a run to an oracle. In this way,
the GTS stays purely deterministic but its behavior
depends on the outcomes of the oracle. Oracles con-
centrate therefore the non-determinism of executions.

More formally, an oracle o is an infinite sequence
of real numbers comprised between 0 and 1 (in-
cluded): i.e. o : N → [0; 1] ⊂ R. The only operation
available on an oracle is to consume its first element.
This operation returns the first element and the re-
maining of the sequence, which is itself an oracle.

Finally, a Stochastic GTS is a tuple 〈V = S ∪
F,E,T,A, ι, delay, expectation〉, where:

• 〈V = S ] F,E,T,A, ι〉 is a GTS;
• delay is a function from events and oracles to

non-negative real numbers.
• expectation is a function from events to non-

negative real numbers.

When several transitions are scheduled to be fired at
the same date, one is picked at random by using the
oracle and according to their expectations. The proba-
bility p(ek : Gk→ Pk) to fire the transition ek : Gk→
Pk, is defined as follows:

p(ek : Gk → Pk) =
expectation(ek)∑

ei:dn(ei)=0

expectation(ei)
(1)

4 THE ALTARICA 3.0 STOCHASTIC
SIMULATOR

4.1 Software architecture

The stochastic simulator is model specific to an Alta-
Rica 3.0 model. It is obtained using compilation tech-
niques via C++ classes. These techniques are used in
order to improve the performances of simulation and
were studied in Khuu 2008 and presented for this tool
in Batteux and Rauzy 2013.

AltaRica 3.0 Model

Guarded Transitions System Model

C++ Classes

Executable Stochastic Simulator

Statistics

AR3Compiler

GTSStoSimCompiler

C++ compiler

Execution

Figure 1: AltaRica 3.0 Stochastic Simulator architecture

Thus, the model specific stochastic simulator (to an
AltaRica 3.0 model) is obtained through a tool chain
graphically represented in figure 4.1. The different
steps are:

1. The AltaRica 3.0 model is flattened in a GTS
model with the AltaRica 3.0 Compiler;

2. The GTS model is then compiled with the GTS
Stochastic Simulator Compiler into C++ classes,
describing the model directly in the C++ lan-
guage;

3. These C++ classes are then compiled, along with
specific libraries, with a classic C++ compiler
(e.g. gcc, visual c++, etc.), into an executable:
the model specific stochastic simulator;



4. This model specific stochastic simulator can then
be executed to obtain statistics on the generated
histories.

4.2 Statistics

Statistics obtained from the generated histories are
on events associated to transitions and observers. For
transitions, the statistics are :

• The average number of times it has been fired
and has been fireable per history;
• The time spent in a fireable state;
• The first date (on average) it has been fired in

each history;
• The list of dates it has been fired;
• The list of dates it has been first fired for each

history;
• The length of each fireable time interval.

For observers, the statistics are on the values taken
during simulations:

• The average number of times this value was
taken;
• The average time spend at this value;
• The first date (on average) this value was taken

on each history;
• The length of each time interval this value was

taken;
• The list of dates it has been first taken on each

history.

4.3 Simulation algorithm

The implemented simulation algorithm takes as in-
put the GTS model (as defined in section 3) and the
implemented simulation part is summarized in Algo-
rithm 1. A step, which correspond to the firing of
a transition, is the execution of the three following
parts:

1. Scheduler management (line 2 to 11)
The scheduler retains the list of transitions and
dates which are going to be fired. It must ensure
that all transitions whose guard is true, and only
those, are going to be fired.

2. Choice of a transition to fire (line 12)
The choice of the next transition to fire depends
on the nearest date in the scheduler: if there are
several transitions scheduled at the same date,
the expectation mechanism is used (see 3.5.2).

3. Firing of the transition (line 13 to 18)
The chosen transition is removed from the sched-
uler. Its action is applied, updating state vari-
ables, which allow to obtain the new state of the
model. Flow variables are evaluated using the as-
sertion. The new value of each observer is then
computed, using their expression and the new
values of the variables.

Algorithm 1 Simulation of a GTS model
1: repeat
2: for all t ∈ T do
3: Update the guard value of t
4: if t fireable & t /∈ Scheduler then
5: Obtain a delay for the event of t from

the oracle
6: Insert t in the Scheduler at this delay
7: end if
8: if t not fireable & t ∈ Scheduler then
9: Remove t from the Scheduler

10: end if
11: end for
12: t← (Next t ∈ Scheduler)
13: Remove t from the Scheduler
14: (e : G→ P )← t
15: τ ← Update(P,σ)
16: π← Propagate(A,τ )
17: σ← π
18: Compute the observers values
19: until a limit is reached

5 PERFORMANCE ANALYSIS

A set of test models was created. Table 1 indicates for
each test model the different sizes: number of transi-
tions, variables and observers. The models are of dif-
ferent configurations (serial, parallel, loop). The inde-
pendence between the components varies (two com-
ponents are dependent when a variable of one of the
component is linked to the guard of a transition of the
other component).

This set was then used to produce stochastic sim-
ulators specific to each model. Their executions were
profiled using a profiling tool1 to measure the time
taken by each parts of the algorithm 1 during simula-
tion. The average results in percentage of the execu-
tion time are shown table 2.

Table 1: Subset of the models used in benchmark
Name Trans. State Flow Obs.
Component 1 1 1 1
SmallSystem 4 2 2 1
LandingSystem 32 17 47 2
EmergPowerSupply 66 30 53 1
Loop 10 22 11 22 1
Busbar 10 10 24 1
MiniPlant 8 4 8 1
Network 12 12 39 1
NetworkSystem 12 12 34 1
SmallPumpingSys 2 4 6 1
PumpingSystem 12 8 14 1
SparePump 10 3 6 1
Serial 3 3 28 14 28 1
Serial 10 10 224 112 224 1
Plant n 6n+ 2 2n+ 1 3n+ 1 1

The results vary depending on the characteristics of
the models.

1GNU gprof: https://sourceware.org/binutils/docs/gprof/



Table 2: Percentage range of execution time in each step
Step Percentage range
Scheduler management 35-80%

including evaluation of the guards 28-64%
Next transition selection 4-5%
Execution of the instruction 0.5-2%
Resolution of assertion 15-35%
Update of the observers values 1-5%

The most important part in term of execution time
is the management of the scheduler; more specifically
the update of the values of guards. At each step of
the simulation, the guard of each transition has to be
evaluated. The number of transitions to check can be
very high, depending on the model of the components,
and the number of components in the model.

The resolution of the assertion is time consuming
too: it consists of a set of conditional affectations (one
for each flow variable), executed as many times as
needed to obtain the value of each flow variable.

For this article, we focus on the update of the value
of guards, which will be presented in the next section.

6 ENHANCEMENT OF THE PERFORMANCES

In order to understand how the update of the value
of guards can be optimized, a model example is stud-
ied. The implementation of the optimization is then
described, and its performances are measured.

6.1 Model example

In the set of models for the benchmark, Plant n is a
class of models of a plant consisting of n components
connected in a serial way. Figure 2 is the AltaRica 3.0
model of the class Component. Each component is a
repairable component (state variable vsCondition of
type ComponentCondition can have 3 different val-
ues: working, failed or under repair) with an on/off
switch (state variable vsMode of type PlantMode can
have 2 different values: on or off). 6 transitions de-
scribe the behavior of the component: the state space
with the transitions is represented figure 3. A compo-
nent can fail only if it is producing, or at start (fail-
ure on demand), and it can start only if it is working.
Assertion defines the condition for the component to
produce : it is producing only if it is working, it is on
ON and there is something to produce (i.e. there is an
input).

One instance of this class (with n = 4) is defined
in AltaRica 3.0 figure 5 and is represented figure 4. It
is the model of a plant with 4 working stations: each
station is modeled by a component of the class ”Com-
ponent”. The production has to pass in each working
station, from the first to the last, and there is no inter-
mediate stock. The entry stock is infinite (the input of
the first working station is always true) and the quan-
tity to observe is the output of the plant, which is the
output of the last working station (observer oOutput).

domain ComponentCondi t ion {WORKING, FAILED , REPAIR}
domain PlantMode {ON, OFF}

c l a s s Component
parameter Real lambda = 0 . 0 0 0 1 ;
parameter Real mu = 0 . 1 ;
parameter Real nu = 5 ;
parameter Real gamma = 0 . 0 1 ;
ComponentCondi t ion v s C o n d i t i o n ( i n i t = WORKING) ;
PlantMode vsMode ( i n i t = OFF) ;
Boolean v f I n ( r e s e t = f a l s e ) ;
Boolean vfOut ( r e s e t = f a l s e ) ;
PlantMode vfCommand ( r e s e t = OFF ) ;
event e F a i l u r e ( de lay = e x p o n e n t i a l ( lambda ) ) ;
event e S t a r t R e p a i r ( de lay = e x p o n e n t i a l (mu) ) ;
event eEndRepa i r ( de lay = nu ) ;
event eFai lureOnDemand ( de lay = 0 ,

e x p e c t a t i o n = gamma ) ;
event e S t a r t ( de lay = 0) ;
event eS top ( de lay = 0) ;
t r a n s i t i o n

e F a i l u r e : v s C o n d i t i o n == WORKING
and vsMode == ON
and v f I n == t rue
−> v s C o n d i t i o n := FAILED ;

e S t a r t R e p a i r : v s C o n d i t i o n == FAILED
−> v s C o n d i t i o n := REPAIR ;

eEndRepa i r : v s C o n d i t i o n == REPAIR
−> v s C o n d i t i o n := WORKING;

eFai lureOnDemand : vsMode == OFF
and vfCommand == ON
and v s C o n d i t i o n == WORKING
−> v s C o n d i t i o n := FAILED ;

e S t a r t : vsMode == OFF
and vfCommand == ON
and v s C o n d i t i o n == WORKING
−> vsMode := ON;

eS top : vsMode == ON
and vfCommand == OFF
−> vsMode := OFF ;

a s s e r t i o n
vfOut := i f v s C o n d i t i o n == WORKING

and vsMode == ON
then v f I n e l s e f a l s e ;

end

Figure 2: AltaRica 3.0 definition of a component of a plant

WORKING ON

FAILED ONFAILED OFF

WORKING OFF

REPAIR ONREPAIR OFF

eStop

eFailure

eStart

eFailureOnDemand
eStop

eStop

eStartRepair

eEndRepair

eStartRepair

eEndRepair

Figure 3: Component state-space with transitions

The on/off switch of each component is controlled
by the plant, and correspond to the working hours of
the plant (16 hours working per day).

6.2 Matrix of dependencies

At each step of the simulation (at each firing of a tran-
sition), the guard of each transition has to be evalu-
ated.

A matrix of dependencies between guards of transi-
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Figure 4: Representation of the model of Plant 4

block P l a n t 4
PlantMode vsMode ( i n i t = ON) ;
PlantMode vfCommand ( r e s e t = OFF) ;
event e S t a r t ( de lay = 57600) ;
event eS top ( de lay = 28800) ;
observer Boolean oOutpu t = C3 . vfOut ;
Component C0 ( lambda = 0 . 0 0 0 1 , mu = 0 . 1 ) ;
Component C1 ( lambda = 0 . 0 0 0 1 , mu = 0 . 1 ) ;
Component C2 ( lambda = 0 . 0 0 0 1 , mu = 0 . 1 ) ;
Component C3 ( lambda = 0 . 0 0 0 1 , mu = 0 . 1 ) ;
t r a n s i t i o n

e S t a r t : vsMode == OFF −> vsMode := ON;
eS top : vsMode == ON −> vsMode := OFF ;

a s s e r t i o n
vfCommand := vsMode ;
C0 . vfCommand := vfCommand ;
C1 . vfCommand := vfCommand ;
C2 . vfCommand := vfCommand ;
C3 . vfCommand := vfCommand ;
C0 . v f I n := t rue ;
C1 . v f I n := C0 . vfOut ;
C2 . v f I n := C1 . vfOut ;
C3 . v f I n := C2 . vfOut ;

end

Figure 5: AltaRica 3.0 model of the system

tions and variables can be written for this model (fig-
ure 6). It indicates when a variable is in the guard for-
mulae. This matrix is obviously sparse. The matrix of
impact of transitions on variables (indicating when a
variable is in an action of a transition) presents the
same property. This remark is often true for models
with dysfunctional behaviors: typically, transitions in
a model for safety assessment are guarded only by
variables of the corresponding component, and is af-
fecting only this component variables and sometime
some variables of close components.

The consequence is: a transition affects only a few
variables that affect only a few guards. Therefore, it is
not useful to update every guards at each step.

6.3 Implementation

The algorithm has been optimized to update guards
only when it is useful. The simulation part of it, which
takes as input the GTS model, is described in algo-
rithm 2.

The chosen solution is to store the previous value of
each variable, to compare it at the beginning of each
step with the new value (line 3), and if the value has
changed to mark the transition whose guard must be
updated (line 4-5). The list of transitions whose guard
depends of a variable is determined when the GTS
model is compiled into C++ class.
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C0.eF 0 1 1 1 0 0 0 0 0 0 0 0 0
C0.eFOD 1 1 1 0 0 0 0 0 0 0 0 0 0

C0.eSR 0 1 0 0 0 0 0 0 0 0 0 0 0
C0.eER 0 1 0 0 0 0 0 0 0 0 0 0 0
C0.Sta 1 1 1 0 0 0 0 0 0 0 0 0 0
C0.Sto 1 0 1 0 0 0 0 0 0 0 0 0 0
C1.eF 0 0 0 0 1 1 1 0 0 0 0 0 0

C1.eFOD 1 0 0 0 1 1 0 0 0 0 0 0 0
C1.eSR 0 0 0 0 1 0 0 0 0 0 0 0 0
C1.eER 0 0 0 0 1 0 0 0 0 0 0 0 0
C1.Sta 1 0 0 0 1 1 0 0 0 0 0 0 0
C1.Sto 1 0 0 0 0 1 0 0 0 0 0 0 0
C2.eF 0 0 0 0 0 0 0 1 1 1 0 0 0

C2.eFOD 1 0 0 0 0 0 0 1 1 0 0 0 0
C2.eSR 0 0 0 0 0 0 0 1 0 0 0 0 0
C2.eER 0 0 0 0 0 0 0 1 0 0 0 0 0
C2.Sta 1 0 0 0 0 0 0 1 1 0 0 0 0
C2.Sto 1 0 0 0 0 0 0 0 1 0 0 0 0
C3.eF 0 0 0 0 0 0 0 0 0 0 1 1 1

C3.eFOD 1 0 0 0 0 0 0 0 0 0 1 1 0
C3.eSR 0 0 0 0 0 0 0 0 0 0 1 0 0
C3.eER 0 0 0 0 0 0 0 0 0 0 1 0 0
C3.Sta 1 0 0 0 0 0 0 0 0 0 1 1 0
C3.Sto 1 0 0 0 0 0 0 0 0 0 0 1 0

Figure 6: Matrix of dependencies between guards and variables

When needed, the guard value is updated if the
transition is marked (and the mark is removed), or the
previous value is used (line 11). If the guard has not
been updated and its value is false, there is no need to
check if it is in the scheduler, therefore this part of the
algorithm is skipped (line 16-20).

6.4 Performances
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Figure 7: Performances improvement

A set of tests has been done with models of the
Plant n class, with n varying between 4 and 100 com-
ponents. The computing time for the same amount of
steps and generated histories has been measured, with
the original algorithm and the improved one. The re-
sults are shown figure 7. The improvement is of about
85 percent. The performances improvement is highly
dependent on the model:



Algorithm 2 Simulation of a GTS model with opti-
mized guard management

1: repeat
2: for all v ∈ V do
3: if value of v != previous value of v then
4: for all t ∈ affected guard of v do
5: Mark the guard of t to be updated
6: end for
7: previous value of v = value of v
8: end if
9: end for

10: for all t ∈ T do
11: Get the guard value of t (computed if

marked)
12: if t fireable & t /∈ Scheduler then
13: Obtain a delay for the event of t from

the oracle
14: Insert t in the Scheduler at this delay
15: end if
16: if t updated & t not fireable then
17: if t ∈ Scheduler then
18: Remove t from the Scheduler
19: end if
20: end if
21: end for
22: t← (Next t ∈ Scheduler)
23: Remove t from the Scheduler
24: (e : G→ P )← t
25: τ ← Update(P,σ)
26: π← Propagate(A,τ )
27: σ← π
28: Compute the observers values
29: until a limit is reached

• For a model whose matrix of dependencies is
highly sparse (a lot of components who are in-
dependent), the computing time is highly im-
proved;
• In contrast, for a model whose matrix of de-

pendencies is dense (almost every transitions de-
pends on almost every variables), this modifica-
tion has almost no impact on the computing time.
It is easily explained by the fact that at each step,
almost every guard has to be updated, as previ-
ously;
• For a model whose transitions are mostly

guarded by just one boolean variable, improve-
ment is null: after guards to update are marked,
instead of computing the new value of the guard
(which is just a boolean variable), the algorithm
check if the flag is present (i.e. if a boolean value
is at true), which takes the same amount of time;
• For average models, with a mix of independent

behavior (failure and repair) and dependent be-
havior (functional and common cause failure),
the computing time has been improved of 30 to
60 percent, which roughly correspond to the pre-
vious step of evaluation of the guards.

7 CONCLUSION

Stochastic simulation is a very important tool in the
safety and reliability framework. One of the key issue
in stochastic simulation is to make the implementa-
tion of basic simulations as efficient as possible. The
more these mechanisms are efficient, the more histo-
ries can be generated within the same computing time,
and therefore the more accurate the results.

In this article, we showed how we improved the
performance of the AltaRica 3.0 stochastic simulator
by profiling the previous implementation. This analy-
sis showed that the most time-consuming part of the
simulation algorithm is when updating guard values.
To reduce this cost, we modified the algorithm so to
update only guards that are potentially impacted after
each transition firing. This improvement saved from
30 to 85 percent of the computation time.

Future works include other improvements of this
stochastic simulator, and the extension of this tool in
order to perform stochastic model-checking.
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