
HAL Id: hal-01239158
https://hal.science/hal-01239158

Submitted on 8 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Context-sensitive Parametric WCET Analysis
Clément Ballabriga, Julien Forget, Giuseppe Lipari

To cite this version:
Clément Ballabriga, Julien Forget, Giuseppe Lipari. Context-sensitive Parametric WCET Analy-
sis. 15th International Workshop on Worst-Case Execution Time Analysis, Dec 2015, Lund Sweden.
�10.4230/OASIcs.WCET.2015.55�. �hal-01239158�

https://hal.science/hal-01239158
https://hal.archives-ouvertes.fr

Context-sensitive Parametric WCET Analysis
Clément Ballabriga, Julien Forget, and Giuseppe Lipari

Université Lille, CRIStAL, UMR 9189, 59650 Villeneuve d’Ascq, France
{Clement.Ballabriga,Julien.Forget,Giuseppe.Lipari}@univ-lille1.fr

Abstract
In this paper, we propose a WCET analysis that focuses on two aspects. First, it supports context-
sensitive hardware and software timing effects, meaning that it is sensitive to the execution
history of the program and thus can account for effects like cache persistence, triangular loop, etc.
Second, it supports the introduction of parameters in both the software model (e.g. parametric
loop bounds) and the hardware model (e.g. number of cache misses). WCET computation by
static analysis is traditionally handled by the Implicit Path Enumeration Technique (IPET),
using an Integer Linear Program (ILP) that is difficult to resolve parametrically. We suggest
an alternative tree-based approach. We define a context-sensitive CFG format to express these
effects, and we provide an efficient method to process it, giving a parametric WCET formula.
Experimental results show that this new method is significantly faster and more accurate than
existing parametric approaches.

1998 ACM Subject Classification C.3 Real-time and embedded systems

Keywords and phrases Parametric, WCET, Real-time, Static analysis

Digital Object Identifier 10.4230/OASIcs.WCET.2015.55

1 Introduction

In static WCET analysis methods, an upper bound to the WCET of a task is traditionally
computed in three steps. First, the task code is statically analyzed to model the set of possible
execution paths. Then, the hardware is taken into account by modeling the architectural
effects: local effects (timings of basic blocks) and global effects (interactions between basic
blocks). Finally, the WCET computation takes as input a program and its environment
(hardware and software), and produces the WCET. A popular technique for doing this last
step is IPET [14], in which the WCET computation is represented as an ILP problem solving.

With traditional WCET computation, if the program, input values, software environment
or hardware platform changes, it is necessary to re-run the entire analysis. On the opposite,
parametric WCET analysis takes a parametrized input, and produces a formula that depends
on those parameters. If the parametric values change, it is possible to compute a new WCET
simply by evaluating the formula on the new values. This offers several benefits, which we
detail below.

First, parametric WCET avoids re-running the entire WCET computation each time there
is a minor change to the program or hardware configuration. This is an important aspect, due
to the increasing size of real-time systems and to the non-linear complexity of WCET analyses.
Similarly, parametric WCET simplifies the analysis process when third-party software is
involved, since the developer can provide a parametric WCET that can be adapted to the
target system (software and hardware).

Second, many system parameters are only known at run-time: loop bounds that depend
on input values, software and hardware state changes, operating system interference, etc.
Using a parametric WCET, it is possible to evaluate the WCET formula at run-time and

© Clément Ballabriga, Julien Forget, and Giuseppe Lipari;
licensed under Creative Commons License CC-BY

15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015).
Editor: Francisco J. Cazorla; pp. 55–64

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2015.55
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

56 Context-sensitive Parametric WCET Analysis

take better decisions accordingly. For instance, tighter WCET evaluation at run-time could
benefit energy-aware scheduling techniques based on Dynamic Voltage and Frequency Scaling
(DVFS) [12].

Finally, large execution time values may happen only very rarely, for instance for unlikely
combinations of input data. By using parametric WCET, it is possible to design the system
according to an upper bound that is safe for the vast majority of executions of the system,
and then evaluate a parametric WCET formula at run-time to trigger an alternate less
time-consuming computation when the formula returns a value exceeding the safe bound
(and thus remain under the safe bound).

In this work we present a novel approach to parametric WCET analysis. Unlike the
majority of existing approaches, our methodology is not based on ILP. To the best of our
knowledge, it is the first to benefit from (1) a reasonable computing time, since it runs in
polynomial time, and (2) a good precision thanks to the support of context-sensitive effects
(persistent cache blocks, non-rectangular loops, branch prediction, etc.). Furthermore, in our
approach the trade-off between computation time and precision is configurable: it is possible
to increase (or decrease) the context sensitivity to improve the precision (or speed up the
computation time).

2 Related works

In [1], a technique is presented to perform a partial, composable WCET analysis. This
work addresses mostly the software and hardware modeling that occurs before the WCET
computation proper. Results are presented for the instruction cache and branch prediction
analysis, and loop bounds estimation. However, no solution is provided to perform the ILP
computation parametrically.

Feautrier [8] presented a method for parametric ILP computation. A traditional ILP
solver takes an ILP system as input, and provides a numerical solution corresponding to the
maximization (or minimization) of an objective function. The ILP solver presented in [8]
(called PIPLib), takes a parametrized ILP system as input, and produces a quast (quasi-
affine selection tree). Once computed, this tree can be evaluated for any valid parameter
values, without having to re-run the solver. However, this approach is computationally very
expensive. In contrast, our approach has polynomial complexity, and it is therefore scalable,
whereas the introduced pessimism is very small, as it will be shown in Section 6.

In theory, PIPLib could be applied for solving parametrically the ILP systems produced
in the context of the IPET method [14]. However, experimentations [4] have shown that
it does not scale well: the parametric ILP solving may become intractable for medium to
large size programs. The MPA (Minimum Propagation Algorithm) [5, 4] attempts to address
the shortcomings of PIPLib in the context of the IPET method. MPA takes as input the
results of the software and hardware modeling analysis, and produces directly a parametric
WCET formula. Compared with MPA, our method is significantly tighter because it takes
into account various context-sensitive software and hardware timing effects.

In the past, many tree-based WCET computation methods have been presented [11].
In [7] the authors suggest a method to compute the WCET parametrically using a tree-based
approach. Our parametric approach is also tree-based, but unlike the one presented in [7], it
can work directly on the binary target (no source code needed). Furthermore, our method can
model timing effects in a more generic and accurate way than existing tree-based approaches,
and the trade-off between accuracy and computation time can be configured.

ParaScale [12] is an approach to exploit variability in execution time to save energy. By
statically analyzing the tasks, a parametric WCET formula is given for loops in terms of the

C. Ballabriga, J. Forget, and G. Lipari 57

loop iteration count. At run-time, before entering a loop, the formula is evaluated and the
system dynamically scales the voltage and frequency of the processor. In comparison, our
parametrization is not limited to loop bounds, but can be used for anything influencing the
WCET (such as cache misses, branch predictor states, etc.). Furthermore our approach uses
a more refined model for loops.

Finally, note that our method provides an alternative to the time-consuming ILP solving,
thus our method is competitive even compared to non-parametric WCET analysis based on
ILP.

3 Context-sensitive model

Our algorithm takes as input a context-sensitive Control Flow Graph (CFG) and produces as
output a parametric formula. Let us motivate the need for the context-sensitive CFG as our
algorithm input by using two examples.

First we consider the instruction cache analysis by categorization. In this approach,
blocks can be categorized as persistent with respect to a loop (for the sake of simplicity, we
assume that each basic block matches exactly a cache block), meaning that the block will
stay in the cache during the whole execution of the loop (only the first execution results in a
cache miss). In the CFG shown in Figure 1(a), if we assume that Block 3 is persistent, its
execution time depends on whether it has already been executed or not. With IPET-based
approaches, this information would be stored as an ILP constraint, but since we do not use
IPET, we need to store it in the CFG itself.

As a second example, let us consider a triangular loop: a for loop i = 1..10, containing an
inner for loop j = i..10. The maximum iteration count for each loop is 10, but the inner loop
body can be executed at most

∑10
i=1 i times. Once again, this cannot be expressed with the

traditional CFG. In both examples, there is a block of code whose execution time depends
on the number of times this block was executed after entering some loop containing it: this
is what we call the execution context.

3.1 Context-sensitive CFG
In IPET-based WCET analyses, the various preliminary analyses (such as cache block
categorization) produce ILP constraints. In our approach, instead we transform the program
CFG into a context-sensitive CFG (and possibly make other graph transformations such as
block duplication).

The context-sensitive CFG extends the standard CFG by allowing an (optional) context
annotation associated with each node. For any CFG G, let LG denote the set of its loops. A
loop is defined as the set of cycles in the CFG sharing the same loop header. A loop header
is defined as a node n having a predecessor p such that n dominates p. For any header h,
we will note Lh the loop having the header h, and for any node n, we will note Ln the loop
immediately containing n (i.e. Ln is the loop containing n such that there is no other loop
containing n, and whose header is inside Ln). Furthermore, let us define a partial order on
loops: ∀(L1, L2) ∈ LG × LG, L2 < L1 if (and only if) L2 is contained in L1 (i.e. if there
exists a path from the header of L1 to itself, going through the header of L2).

A context-sensitive CFG G is defined by G =< BG, EG,AG >, where BG is the set of
nodes (basic blocks), EG is the set of edges, and AG = LG × BG × N is the set of context
annotations. We will note Tb the execution time of basic block b.

A context annotation a = (al, ab, an) represents a restriction on the set of feasible paths
in the CFG: the basic block ab (inside al) may be executed at most an times each time the
loop al is entered.

WCET’15

58 Context-sensitive Parametric WCET Analysis

(a) Standard CFG. (b) Context-sensitive CFG. (c) Expression tree.

Figure 1 Program representations.

To model our first example (cache persistence), we split Block 3 from Figure 1(a) as
two (virtual) blocks 3h and 3m, representing respectively the hit and miss. Then we add a
context annotation to Block 3m, as shown in Figure 1(b). This represents the fact that 3m
can be executed only once per execution of the loop. To model the triangular loop example,
we can add Annotation (Louter, body,

∑10
j=1 j), where Louter represents the outer loop, and

body is the block inside the inner loop.
These annotations are intended to be a generic tool to model many WCET-related effects

(hardware, and software), therefore the exact way to generate those annotations will depend
on the effect we want to model (and on the underlying analysis). However, the algorithm
evaluating the context-sensitive CFG is generic and does not need to know which types of
effects are represented by the annotations.

If a CFG node contains no annotation, its execution time is context insensitive (i.e. it
is the same for all contexts). In this trivial case, its WCET is an integer. Otherwise, its
execution time depends on the context. We define the context of a node n as the history of
context events happening before the execution of n. The set of context events is defined as
V = {exec(n)|n ∈ BG} ∪ {loop(l)|l ∈ LG}, where exec(n) represents the execution of node n,
and loop(l) represents the entrance in loop l containing (not necessarily directly) n. Then, a
context is defined as a list of context events. We denote an empty context as ε. We also use
the classical list notation head · tail to denote a context whose first element is head, followed
by list tail. For any context c and any integer k we note ck the repetition k times of sequence
c. We note range[L1, Ln] the sequence loop(L1) · ... · loop(Ln) where ∀i, L1 < Li < Ln.
Similarly, the notation range[L1, Ln[corresponds to loop(L1) · ... · loop(Ln−1). Finally, the
set of contexts is noted C. For instance, the context of the third execution of the block 3m
(in loop body) in Figure 1(a) would be loop(L2) · exec(3m) · exec(3m) (the loop represented
in the figure is noted L2, as its header is the basic block 2).

3.2 Expression tree
The execution time of a node depends on the node itself and on the context. Therefore, it
is possible to compute an unique execution time for any (context, node) pair. To provide a
practical and easily computable approach, we will first convert the context-sensitive CFG into
an expression tree, then evaluate this tree to produce the WCET. To perform this conversion,
an algorithm similar to the one presented in [6] can be used. An expression contains a
set T of tree nodes which can be of type alt, seq, loop and leaf. A leaf node n represents
a single basic block, and has an attribute storing the basic block execution time (noted
ntime). A seq node represents a sequence of child nodes, and an alt node represents a choice

C. Ballabriga, J. Forget, and G. Lipari 59

(alternative) between child nodes. A loop node represents a loop in the program, has exactly
one child node (representing the loop body), and has an attribute (noted nb) representing
the maximum iteration count. In addition, each context annotation in the original CFG is
copied to the corresponding leaf node in the tree1. Figure 1(c) shows the tree that would be
generated from the context-sensitive CFG represented in Figure 1(b).

3.3 Abstract WCET values
An abstract WCET represents a set of possible execution times for a tree node, along with
conditions required for that execution time to occur. In our cache example, the abstract
WCET value computed for the alt node would contain two execution times (miss case, and
hit case) and indicate that the miss case can occur only the first time Block 3 is accessed.

First, we introduce the concept of context mapping. A context mappingm = (mloop,mtime)
is a pair whose first element (mloop) represents a loop, and second element (mtime) represents
an execution time. The set of context mappings is noted M = LG × N. We define a total
non-strict order on M such that ∀(m,n) ∈M ×M,m ≥ n ⇐⇒ mtime ≥ ntime. An abstract
WCET α = (αmap, αother) is a pair, in which the first element (αmap) is a multiset over M ,
and the second element (αother) is an execution time. The set of abstract WCETs is noted
A = M# × N, where M# is the sets of multisets over M . For any multiset m over M , we
note 1m : M → N its multiplicity function. Furthermore, we define the maxk : M# →M#

function, returning the k greatest elements of M# (context mappings with same time but
different loop are considered equivalent by this function).

An abstract WCET α is computed for each node in the tree. Informally, the presence of
a context mapping m in αmap means that the node may have an execution time of mtime,
but only once each time mloop is entered. The αother value represents the default execution
time of the node (used whenever no other time can be used due to context). We lift the
concept of context over CFG nodes to tree nodes. The new set of contexts is defined as
V ′ = {exec(n)|n ∈ T } ∪ {loop(l)|l ∈ LG}.

The abstract WCET of a tree node n provides a mapping from contexts to execution
times. We define two functions, eval : C × A × T → N, and next : C × A × T → N. Let
n be a tree node, α its associated abstract WCET, and c a context for the tree node n.
The expression eval(c, α, n) gives the WCET corresponding to the execution of the event
sequence (loop entrances, and executions of n) represented by c, while next(c, α, n) gives the
WCET increase caused by a subsequent execution of n after the event sequence represented
by c (which is not necessarily equal to the WCET of this last execution of n). The function
next is defined such that ∀α, next(c, α, n) = eval(c · exec(n), α, n)− eval(c, α, n), and eval
is defined as follows:

eval(c, α, n) = αother ×max(0, i− |Θ|) +
∑

t
t∈maxn(Θ)

where i is the number of exec(n) present in c, and Θ is such that ∀m ∈ M, 1Θ(m) =
1αmap

(m)× |{k|ck = loop(mloop)}|. The general idea behind the eval function is to account
for the execution time of n for each exec(n) present in the context, while ensuring that
each context mapping is not used more times than the number of times its corresponding
loop is entered, and using αother to provide a time for n when no context mapping can be

1 It is possible to extend the CFG annotations to sub-graphs representing if or loop structures (as opposed
to single blocks), this is not described here for the sake of brevity.

WCET’15

60 Context-sensitive Parametric WCET Analysis

used. The eval function may compute an over-approximation for some contexts, however
this representation is quite compact, with many contexts (leading to the same execution
time) described by a single context mapping value.

4 WCET computation

Let us define some notations that we will use in this section. The binary operator] is
defined such that for any multiset pair (m,n), ∀x, 1m]n(x) = 1m(x) + 1n(x). Similarly to the
set-builder notation, we define the multiset-builder notation [n|n ∈ m∧pred(n)], representing
the multiset containing all the elements in m satisfying pred(n). For any element e in a
multiset, and any n ∈ N, we will note e⊗ n the multiset containing only the element e, with
a multiplicity of n.

4.1 Node evaluation
We note ω the evaluation function, taking as input a tree node and producing an abstract
WCET. Once the tree evaluation is finished, and we have the abstract WCET corresponding
to the root node root, the concrete WCET is ω(root)other. We detail below a simple way to
compute function ω.

For a leaf node n, if the node has no context annotation then ω(n) = (∅, ntime), otherwise,
ω(n) = ({(al, ntime)} ⊗ an, 0), where (al, ab, an) ∈ A is the context annotation associated
with the leaf node (ab is the basic block represented by leaf node n).

For a seq node n with two children n1, n2 (this can be extended to an arbitrary number
of children, since the operation is associative), we have ω(n) = (map, other) such that:

other = ω(n1)other + ω(n2)other map =
⊎
l≥Ln

S(ω(n1), ω(n2), range[l;Ln])

with S(α, α′, c) =
m−1⊎
i=0

(l, next(c · exec(n1)i, α, n1) + next(c · exec(n2)i, α′, n2))

and m = max(|αmap|, |α′map|) .

The general idea is to match context mappings from both children, and add their times.
For example, if ω(n1) = ([(L1, 10), (L1, 8)], 5) and ω(n2) = ([(L2, 4)], 3), and L2 < L1, then
ω(n) = ([(L1, 10 + 4), (L1, 8 + 3), (L2, 5 + 4)], 5 + 3).

For a alt node n with two children n1, n2 (this can be generalized in the same way as the
seq node), ω(n) = (map, other), such that:

other = max(ω(n1)other, ω(n2)other)
map = [m|m ∈ (ω(n1)map] ω(n2)map) ∧mtime > other]

For any loop node n representing loop l, with body n1, ω(n) = (map, other) such that:

other = eval(σ(l, n1, nb), ω(n1), n1) map =
⊎
l′>l

j⊎
i=1

(l′, τ(i, n1, nb, range[l′; l[))

with τ(i, n, b, c) = eval(c · σ(l, n, b)i, ω(n), n)− eval(c · σ(l, n, b)n−1, ω(n), n)
and σ(l, n, k) = loop(l) · exec(n)k, j = min({i|τ(i, α, n1, b, c) ≤ other}) .

For example, if we consider a loop l having a body with abstract WCET ω(n1) = ([(L1, 8),
(L1, 7)], 6) and loop bound 5, inside an outer loop L1, then ω(n) = ([(L1, 8+ 7+6×3)], 6×5).

C. Ballabriga, J. Forget, and G. Lipari 61

The abstract WCET value corresponding to the seq node of Figure 1(c) is ([(L2, T2 +
T3m + T4)], T2 + T3h + T4): the first time the seq node is executed after entering loop 2, its
WCET value is T2 + T3m + T4, however for subsequent executions it is T2 + T3h + T4. The
abstract WCET value corresponding to the loop node is (∅, 10× (T2 + T4) + 9× T3h + T3m):
each time we enter the loop, a miss will occur at most once (Block 3m) and other iterations
will be hits (Block 3h). Note that, since there is no context mapping in the abstract WCET
(the multiset is empty), it is equivalent to a static WCET.

4.2 Approximations
In the presence of many context annotations, tree nodes can have many possible execution
times, thus the evaluation can produce very large context mappings. Using measurement
results from various experiments, we have observed that most of the time, the function that
maps iteration counts to execution times can be tightly over-approximated by a much simpler
piecewise linear function. The presence of a straight-line section in this piecewise linear
function means that there is a group of context mappings in the corresponding abstract
WCET value, with a time approximately equal to the slope of the straight-line section. Such
a group of i context mappings can be merged into one context mapping with a multiplicity
of i, and a time equal to the maximum time of the former group.

Using such an approximation, we lose some precision but we reduce the amount of data
we will have to process. We can only merge context mappings referring to the same loop.
Therefore, in order to increase the merging possibilities, for any context mapping (L1, t) ∈M ,
it is possible to replace it safely by (L2, t), with L2 < L1. Of course this would cause a loss
of precision, but it allows more merging and reduce the complexity of the evaluation.

The greater the number of context mappings we use, the greater the precision and the
analysis time. Therefore, when evaluating the tree, at each node we may need to use heuristics
to decide when and how to perform an approximation. For the experiments performed in this
paper, we use a simple (yet quite effective) strategy: we perform an approximation whenever
the number of distinct context mappings exceeds a certain (user-configurable) threshold.

5 Parametric WCET computation

Our tree-based computation is the first step for parametric computation. It can be made
parametric in a much easier way than an ILP computation (while it is true that ILP solving
can be done parametrically, it is way more costly than our method), as we will show in this
section. For instance, considering the example of Figure 2 and assuming that the loop bound
is not known statically, we will show how to create a parametric WCET in terms of the loop
bound value and how to obtain the concrete WCET once the loop bound value is known.

We extend our expression tree model, to enable the introduction of parameters that
represent information unknown at static analysis time:

We introduce a new node type: a param node n has an attribute nparam representing
a parameter identifier. Such a node can represent any type of (statically unknown)
expression sub-tree. It can be used to perform modular analysis (to represent the abstract
WCET for a separately-analyzed library call for which we do not have the code).
In loop nodes, the maximum iteration count, which was previously stored as an integer,
can now be a parameter identifier, to represent a statically unknown loop bound.
In any context annotation (al, ab, an) associated to a node, the values al and an can now
be parameter identifiers. This could be used to support parametric cache categories.

WCET’15

62 Context-sensitive Parametric WCET Analysis

Figure 2 Partial evaluation.

5.1 Partial evaluation
The parametric WCET computation starts with a partial evaluation phase, which precomputes
as much as possible from the parametric tree, and produces a simplified parametric tree.

We introduce two separated kinds of leaf nodes: a leaf node n can either be concrete
(associated with a basic block), or abstract (with an attribute nprecomp of type A, abstract
WCET). The abstract leaf node holds the result of a precomputed sub-tree. The evaluation
function ω for an abstract leaf node is defined such that ω(n) = nprecomp.

A node is parametric if it (or any of its descendants) contains a parameter. To partially
evaluate the parametric tree, we select any non-parametric non-abstract node n, remove it
(and its descendants), and replace it by an abstract leaf node n′ such that n′precomp = ω(n).
This is repeated until the tree contains only parametric nodes, and abstract leaf nodes. Some
optimizations can also be applied (not detailed here) to remove unneeded nodes.

In our example, the result of the partial evaluation is shown in the right side of Figure 2,
containing only one parametric loop node, and an abstract leaf node holding the abstract
WCET corresponding to the loop body: the first time the loop body is executed, its time is
T3m + T2 + T4, subsequently its time is T3h + T2 + T4.

5.2 Parameter instantiation
The next step is the parameter instantiation, which takes as input a simplified parametric
tree and parameter values. To do the parametric instantiation, we replace, in the parametric
tree, each param node n by the value of nparam, and each parameter p present in a loop bound
or in a context annotation by their value. Once the resulting tree contains no parametric
node, it can be evaluated using the method from Section 4, producing the WCET.

In our example, if we want to instantiate the simplified tree with a loop bound of 10 for
L2, we replace < param > with 10. Let us call r this partial result after replacement. We
can evaluate it, giving the abstract WCET ω(r), from which we can get the concrete WCET:
ω(r)other = T3m + T3h × 9 + 10× (T2 + T4).

6 Experiments

To evaluate the performance of our approach, we compared it to existing IPET-based WCET
analysis. The target hardware is an ARM processor with a set-associative LRU instruction
cache (the data cache is not taken into account). The processor pipeline is analyzed with the
exegraph method [13] and the instruction cache is modeled using cache categorization [9].
We perform our analysis on a subset of the Mälardalen benchmarks [10], used as standalone

C. Ballabriga, J. Forget, and G. Lipari 63

(a) Analysis time comparison. (b) Pessimism measurement.

Figure 3 Experimental results.

tasks, without any modeling of the operating system. To perform the preliminary steps of
the WCET analysis (program path analysis, CFG building, loop bounds estimation, pipeline
and cache modeling), we used OTAWA, an open source WCET computation tool [2]. Then,
we compare our approach with an ILP approach (using the GNU lp_solve ILP solver [3]), by
running both on the result produced by OTAWA.

We first compare the ILP solving time and the time taken by our tree evaluation
(Figure 3(a)). The times are normalized so that the ILP time is always 100. The measurements
do not include the preliminary WCET analyses (performed by OTAWA) as they are common
to both approaches. On average, our approach reduces the analysis time by a factor of 15.7.
The running time of our approach is polynomial in the tree size as long as we merge context
mapping groups once their size exceeds a fixed threshold.

Our approach uses simplifications that discard information, which introduces pessimism.
To quantify it, we choose a large loop in each benchmark, and create a parameter representing
its iteration count. We run our parametric analysis on each benchmark, instantiate the result
for each possible parameter value, and we evaluate the pessimism by comparing the result
to the value obtained by IPET. Figure 3(b) shows the average WCET increase for each
benchmark. We can see that the pessimism increase is very reasonable (on average 0.25%).

The pessimism can be attributed to two main causes: (1) the reduced expressiveness
of our annotated CFG format (as opposed to an ILP system), and (2) the approximations
performed during our computation (such as the simplification by merging context mappings
presented in Section 4.2). We cannot express all types of infeasible paths, such as mutually
exclusive paths, although we plan to support this in the future.

7 Conclusion

In this paper, we have presented a new approach to perform the final step of WCET
computation, which replaces the ILP solving phase of the IPET method. Instead of computing
a single, fixed WCET value, our method computes a WCET formula that may depend on
parameters, such as, for instance, loop bounds, architectural entry states (cache or branch
predictor state), or system environment (for example, preemption count). The WCET
formula can be evaluated once the parameter values are known. Additionally, it has a
significantly faster computation time, even compared to non-parametric WCET computation

WCET’15

64 Context-sensitive Parametric WCET Analysis

methods, while retaining good precision, and supports various WCET features such as branch
prediction, cache analysis, and non-rectangular loops.

The main limitation of our method is the diminished expressiveness (compared to ILP
approaches), for instance in presence of certain types of infeasible paths. In future works,
we plan to work on this issue, and enable our context-sensitive CFG format to represent all
characteristics found in modern WCET analyses.

References
1 Clément Ballabriga, Hugues Cassé, and Marianne De Michiel. A Generic Framework for

Blackbox Components in WCET Computation. In 9th International Workshop on Worst-
Case Execution Time Analysis (WCET), 2009.

2 Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. Otawa: An
open toolbox for adaptive wcet analysis. In Software Technologies for Embedded and Ubi-
quitous Systems, volume 6399 of Lecture Notes in Computer Science. Springer, 2010.

3 Michel Berkelaar, Kjell Eikland, and Peter Notebaert. lp_solve 5.5, open source (mixed-
integer) linear programming system. http://lpsolve.sourceforge.net/5.5/.

4 S. Bygde, A. Ermedahl, and B. Lisper. An efficient algorithm for parametric wcet calcula-
tion. In Embedded and Real-Time Computing Systems and Applications (RTCSA), 2009.

5 Stefan Bygde. Parametric WCET Analysis. PhD thesis, Mälardalen University Press, 2013.
6 Cristina Cifuentes. A structuring algorithm for decompilation. In XIX Conferencia Lat-

inoamericana de Informática, 1993.
7 Antoine Colin and Guillem Bernat. Scope-tree: A program representation for symbolic

worst-case execution time analysis. In 14th Euromicro Conference on Real-Time Systems
(ECRTS), Washington, DC, USA, 2002. IEEE Computer Society.

8 Paul Feautrier. Parametric integer programming. RAIRO Operations Research, 22, 1988.
9 Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin Alt. Cache behavior

prediction by abstract interpretation. Sci. Comput. Program., 35(2):163–189, 1999.
10 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The mälardalen wcet

benchmarks – past, present and future. In 10th International Workshop on Worst-Case
Execution Time Analysis (WCET), 2010.

11 Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee, Sang Lyul Min,
Chang Yun Park, Heonshik Shin, Kunsoo Park, Soo-Mook Moon, and Chong Sang Kim.
An Accurate Worst Case Timing Analysis for RISC Processors. In Real-Time Systems
Symposium (RTSS), pages 97–108, 1995.

12 S. Mohan, F. Mueller, W. Hawkins, M. Root, C. Healy, and D. Whalley. Parascale: ex-
ploiting parametric timing analysis for real-time schedulers and dynamic voltage scaling.
In Real-Time Systems Symposium (RTSS), 2005.

13 Christine Rochange and Pascal Sainrat. A context-parameterized model for static analysis
of execution times. In Transactions on High-Performance Embedded Architectures and Com-
pilers II, volume 5470 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2009.

14 Yau tsun Steven Li, Sharad Malik, and Andrew Wolfe. Efficient microarchitecture modeling
and path analysis for real-time software. In Real-Time Systems Symposium (RTSS), 1995.

http://lpsolve.sourceforge.net/5.5/

	Introduction
	Related works
	Context-sensitive model
	Context-sensitive CFG
	Expression tree
	Abstract WCET values

	WCET computation
	Node evaluation
	Approximations

	Parametric WCET computation
	Partial evaluation
	Parameter instantiation

	Experiments
	Conclusion

