
HAL Id: hal-01239132
https://hal.science/hal-01239132

Submitted on 7 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Response Time Analysis with Limited Carry-in for
Global Earliest Deadline First Scheduling

Youcheng Sun, Giuseppe Lipari

To cite this version:
Youcheng Sun, Giuseppe Lipari. Response Time Analysis with Limited Carry-in for Global Earliest
Deadline First Scheduling. Real-Time Systems Symposium, IEEE, Dec 2015, Saint Antonio (TX),
United States. �hal-01239132�

https://hal.science/hal-01239132
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Response Time Analysis with Limited Carry-in

for Global Earliest Deadline First Scheduling∗

Youcheng Sun
Scuola Superiore Sant’Anna

y.sun@sssup.it

Giuseppe Lipari
Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL, Lille, France

giuseppe.Lipari@univ-lille1.fr

Abstract

We address the problem of schedulability analysis for a set of sporadic
real-time tasks scheduled by the Global Earliest Deadline First (G-EDF)
policy on a multiprocessor platform. State-of-the-art tests for schedula-
bility analysis of multiprocessor global scheduling are often incomparable.
That is, a task set that is judged not schedulable by a test may be verified
to be schedulable by another test, and vice versa.

In this paper, we first develop a new schedulability test that integrates
the limited carry-in technique and Response Time Analysis (RTA) proce-
dure for Global EDF schedulability analysis. Then, we provide an over-
approximate variant of this test with better run-time efficiency. Later, we
extend these two tests to self-suspending tasks. All schedulability tests
proposed in the paper have provable dominance over their state-of-the-art
counterparts.

Finally, we conduct extensive comparisons among different schedula-
bility tests. Our new tests show significant improvements for schedulabil-
ity analysis of Global EDF.

1 Introduction and State of the Art

One important class of real-time schedulers for multiprocessor systems is the
class of global scheduling policies. According to global scheduling, all ready
tasks are enqueued in a single ready queue, and the m highest-priority tasks are
executed on the m processors. In preemptive global scheduling, a task executing
on one processor may be preempted by a higher-priority task and later resume
execution on a different processor: therefore, we say that this class of scheduling
policies allows migrations of tasks among processors. Experimental comparison

∗Submitted to IEEE Real-time Systems Symposium, Dec. 2015

1

in the Linux operating system shows that global/clustered configurations are a
viable solution for multiprocessor platforms [18].

The two most popular global scheduling algorithms are Global Fixed Prior-
ity (G-FP) and Global Earliest Deadline First (G-EDF). In G-FP scheduling,
a fixed priority is assigned to each task and all jobs of the task share the as-
signed priority; in G-EDF scheduling, a job’s priority is inversely proportional
to its associated deadline, a smaller absolute deadline corresponding to a higher
priority.

Testing the schedulability of a set of sporadic real-time tasks on a multi-
processor platform with global scheduling is a challenging problem. Unlike in
the single processor case, in multiprocessor global scheduling, the worst-case
release pattern is unknown. Therefore, any exact schedulability condition for a
set of sporadic tasks scheduled by global scheduling requires to test a very high
number of release patterns of the tasks.

Baker and Cirinei [3] proposed the first exact analysis by building a finite
state machine that represents all possible combinations of arrival times and
execution interleavings. Bonifaci et al. [10] studied the feasibility problem of
sporadic tasks in multiprocessor by reducing it to a safety game. Geeraerts et
al. [13] improved Baker and Cirinei’s method by using an anti-chain technique.
More specifically, they developed a simulation relation between states of the
underlying finite automaton. Sun and Lipari [21] recently developed a similar
method using continuous time and Linear Hybrid Automata. However, all these
exact solutions suffer from poor scalability due to the exponential number of
release patterns.

For this reason, most researchers focused on deriving approximated analyses,
i.e. sufficient conditions for schedulability. We say that a schedulability test A
dominates another schedulability test B, denoted as A � B, if every task set
that is deemed schedulable by B is also deemed schedulable by A, and there
may exist sets of tasks which are deemed schedulable by A but not by B.

Baker [1] developed a sophisticated analysis technique based on the concept
of problem window. The technique consists in checking the schedulability of
one task at a time: first, the problem window is selected equal to the interval
between the arrival time and the deadline of one instance of the task under
analysis; then, the interference of higher-priority jobs is computed and taken
into account in the schedulability analysis. Interference is divided into carry-in
jobs (i.e. jobs which may start executing before the problem window and whose
computation time only partially contributes to the interference) and non-carry-
in jobs (i.e. jobs whose arrival time and execution time are contained in the
problem window).

Baker’s technique has since been extended by many researchers who tried
to improve the estimation of the interfering workload. Bertogna et al. [9] dis-
covered that for each competing task with very high workload in the problem
window, the part of its workload that has to be executed in parallel with the
analysed task should not be taken into account in the actual interference. Later,
Bertogna and Cirinei [8] applied this technique to iterative Response Time Anal-
ysis (RTA) of global scheduling.

2

Another breakthrough was proposed by Baruah [4]. His technique tries to
limit the number of carry-in tasks. Although such a technique was originally
conceived for G-EDF, Guan et al. [14] combined it with the RTA technique,
obtaining more precise schedulability tests for G-FP scheduling. Sun et al. [22]
recently improved over the result of [14] at the cost of a higher complexity
through explicitly enumerating all possible carry-in tasks. They also restricted
the analysis to a subset of release patterns that could lead to the worst-case
response time for a task. In case of G-FP schedulability analysis, the following
chain of domination holds: [22]�[14]�[8]. In [19], there is another G-FP test
based on limiting carry-in workload, but it is incomparable with the tests just
mentioned. Lee and Shin [16] generalised the limited carry-in idea to any work-
conserving algorithms.

When it comes to G-EDF, besides the tests in [1, 9, 8, 4], many other tests
have been proposed, like [2] and [5], and none of these tests could dominate the
others. However, according to empirical evaluations [7], tests in [4] and [8] are
shown to have better average performance. In the following work, we refer to
the test in [4] by Baruah as Bar and the test in [8] by Bertogna and Cirinei as
BC.

In [17] a compositional theory is proposed to improve the overall schedula-
bility results, which explores the sufficient condition such that to apply existing
over-approximate tests for a subset of total tasks on a subset of processors.
While it is likely that the dominance relation between underlying schedulability
tests can be preserved also for the composition result, a further study is out
of the scope of this paper. Very recently, a “divide-and-conquer” approach was
proposed in [15] and applied to BC, which additionally finds certain schedulable
task sets that BC fails to detect.

In certain applications, tasks are allowed to suspend their execution for some
time (for example when waiting data from external devices). The naive way to
treat suspension time is to consider it as execution time, but it may be pes-
simistic. Liu and Anderson [19] provided the first suspension-aware schedula-
bility tests for G-FP and G-EDF scheduling. In [19] a task can self-suspend at
any phase of its execution. Later, Tong and Liu [23] studied schedulability of
self-suspending tasks with specific suspension patterns.

1.1 Contributions of this paper

The objective of this work is to further improve the performance of schedula-
bility tests for G-EDF scheduling on a multiprocessor platform. We develop
a new schedulability test for G-EDF that dominates both Bar and BC. Also,
we provide an over-approximate version of this test with lower run-time com-
plexity, while preserving the dominance over Bar and BC. Then, we extend the
new tests to the context of self-suspending tasks. We extensively compared the
performance of state-of-the-art tests on a variety of synthetically generated task
sets. The results show that the new tests substantially improve existing works
for G-EDF scheduling.

The paper is organised as follows. Section 2 introduces the system model.

3

In Section 3, we recall previous knowledge for G-EDF schedulability analysis,
mainly on Bar and BC. In Section 4, we develop new tests for schedulability
analysis of G-EDF. In Section 5, these new tests are then adapted for a system
with self-suspending tasks. In Section 6, we present extensive simulations to
evaluate the performance of our tests with respect to existing ones. Finally, we
conclude the work in Section 7.

2 System Model

A sporadic task τi = (Ci, Di, Ti) is characterised by a Worst-Case Execution
Time (WCET) Ci, a relative deadline Di, and a minimum inter-arrival separa-
tion time Ti, which, with an abuse of notation, is sometimes called period. We
require that Ci ≤ Di ≤ Ti. The utilisation of a task is defined as Ui = Ci

Ti
.

Each task τi can release an infinite sequence of jobs (also called instances);
the time interval between two successive job releases is at least Ti. Each job Ji,j
from task τi is characterised by its release time ri,j (with ri,j+1−ri,j ≥ Ti, j ≥ 0)
and its absolute deadline di,j = ri,j+Di. A released job must finish its execution
within its deadline: we denote the finishing time of Ji,j as fi,j . We say that a
job is active if the job has been released, but it has not finished its execution.
Since we assume Di ≤ Ti, this means a task can at most have one active job
at any moment. The Worst-Case Response Time (WCRT) of a task is defined
as Ri = maxj{fi,j − ri,j} and a task is schedulable if every job completes no
later than the corresponding absolute deadline, i.e. if Ri ≤ Di. In this work, we
consider discrete time domain and all values of ri,j , di,j and fi,j are assumed to
be positive integers.

Let T be a set of n independent sporadic tasks: T = {τ1, . . . , τn}. The task
set total utilisation is Utot =

∑
τi∈T Ui. We assume that T is executed on m

(< n) identical processors. To avoid extreme cases, Utot is required to be strictly
less than m in this work.

In Section 5, we discuss schedulability analysis for self-suspending tasks,
that is, a task may suspend itself during execution. A self-suspending task τi is
characterised by (Ci, Di, Ti, Si), where Si denotes that a job of τi can at most
suspend itself for Si time units. Note that a job can suspend multiple times as
long as the cumulative suspension time is no more than Si, and it can begin or
end with a suspension phase. We require that Ci + Si ≤ Di.

A task that never suspends itself is also called a computational task for
explicitly distinguishing it from self-suspending tasks. A computational task
can be regarded as a special self-suspending task with Si = 0. When there are
both self-suspending and computational tasks in T , we use T s to denote the
subset of self-suspending tasks and T c to denote the subset of computational
tasks. That is, T = T s ∪ T c and T s ∩ T c = ∅.

Tasks in T are supposed to be scheduled according to a Global Earliest
Deadline First (G-EDF) preemptive scheduling policy. A job may execute upon
any processor, and a preempted or self-suspended job may later resume execu-
tion upon the same processor as, or upon a different processor from, the one it

4

had been executing.

3 Global EDF Schedulability: Prior Results

In this section, we briefly summarise Bar [4] and BC [8]. To simplify the expres-
sions, we define the following notations: JxKy = max{x, y}, JxKy = min{x, y}
and JxKzy = JJxKyKz.

3.1 Interference

When analysing the schedulability of a task τk under G-EDF scheduling, a
problem window is often assumed. A problem window is a time interval [a, b)
where time point b is coincident with the deadline for some job of τk, which we
call the target job.
(Demand bound function) In EDF scheduling, the concept of demand bound
function plays an important role for schedulability analysis. For any t, the
demand bound function DBFi(t) of a task τi bounds the maximum cumulative
execution requirement by jobs of τi that have both arrival time and deadline
within any interval of length t. It is formally defined as follows.

DBFi(t) =

(⌊
t−Di

Ti

⌋
+ 1

)
Ci (1)

(Interference) In order to check if the target job of τk will miss the deadline,
the interference from an interfering task τi is estimated. The interference Ii,k(t)
denotes the cumulative length of all sub-intervals of an interval [a, b) of length
t such that the target job of τk is active but cannot be executed, while τi is
being executed. Since computing the exact interference is very difficult, we will
compute an upper bound. According to the observation in [9], one trivial upper
bound is:

0 ≤ Ii,k(t) ≤ (t− Ck + 1). (2)

For simplicity of notation, in this paper we abuse the term “interference”
to also denote any upper bound on the interference. Tasks that interfere with
τk’s execution can be differentiated into two classes: carry-in (CI) tasks and
non-carry-in (NC) tasks. Given a problem window [a, b), a task is called a CI
task if it has a job released before the beginning of the problem window and
still active at time point a, otherwise it is a NC task. CI tasks can generate
more interference in the problem window.

For a NC task τi, its interference in a problem window can be bounded by
using the DBF function directly:

INCi (t) = DBFi(t).

If τi is a CI task, its possible interference is estimated as:

ICIi (t) =

⌊
t

Ti

⌋
× Ci + J(t mod Ti)−Di +RiK

Ci
0 .

5

TiDi −Ri

a b

Figure 1: Maximum CI interference under G-EDF

Di −Ri Ti

a b

Figure 2: Maximum workload in a problem window

The worst-case CI interference corresponds to the scenario depicted in Figure 1.
Note that, when estimating the interference of a task τi, it is safe to upper bound
Ri with Di. Among the sequence of jobs from τi that may interfere with the
target job, the first job is called carry-in job, and the last one is called carry-out
job. The CI task’s interference in the problem window is maximised when: 1)
deadline of carry-out job is coincident with b, 2) every job of τi is released as
soon as possible, and 3) the carry-in job exactly finishes the execution with its
worst-case response time. The inequality INCi (t) ≤ ICIi (t) always holds.

3.2 Bertogna and Cirinei’s test

The workload of a task over a time interval represents the amount of computa-
tion that the task requires in the interval. Bertogna and Cirinei [8] formulated a
generic upper bound to the workload of a task τi over an arbitrary time interval
with some length L that does not depend on the specific scheduling algorithm:

Wi(L) = Ni(L)Ci + JL+Ri − Ci −Ni(L)TiKCi0

where Ni(L) =
⌊
L+Ri−Ci

Ti

⌋
.

The situation that brings the worst-case workload is depicted in Figure 2:
the carry-in job starts execution at the beginning of the window and finishes
exactly with its worst-case response time; and every successive instance of τi
arrives as soon as possible.

Finally, BC relies on a classic iterative response time analysis.

Theorem 1 (Theorem 6 in [8]). An upper bound on the response time of a task
τk in a G-EDF scheduled multiprocessor system can be derived by the fixed point
iteration over X of the following expression, starting with X = Ck.

X ← Ck +

 1

m

∑
i6=k

Ii,k(X)

with Ii,k(X) = min(Wi(X), ICIi (Dk), X − Ck + 1).

6

For every task, its response time Ri is needed to compute Wi(X) and
ICIi (Dk). However, Ri is unknown. This can be solved by the following it-
erative procedure.

1. For every task τi, its Ri is initialised to Di.

2. Apply Theorem 1 to every task in the system. If the resulting response
time is > Di for some task, then that task is marked as “potentially
unschedulable”. If there are no potentially unschedulable tasks, the task
set is declared to be schedulable.

3. Repeat step (2) until there is no Ri update.

Please note that in BC all tasks are considered as CI tasks.

3.3 Baruah’s test

Baruah [4] derived a sufficient schedulability test for G-EDF. Given the problem
window [a, b) with length Dk, the idea in Bar is to extend the interval back to
some point s0 at which at least one of the m processors is idle, and from s0 to
a all processors are busily executing jobs with absolute deadlines no larger than
the target one’s. Let us define Ak = a − s0. Such a time interval [s0, s0 + Ak)
is called the busy period. Thanks to this extension, there are at most (m− 1)
CI tasks at time point s0. In order for τk’s target job to meet its deadline, it is
sufficient that all m processors are simultaneously occupied by higher-priority
jobs for no more than Ak + (Dk − Ck) time units over [s0, b).

Different from BC, Bar explicitly differentiates the interference caused by the
NC task (INCi,k) and interference caused by the CI task (ICIi,k) in the extended
problem window.

INCi,k =

{q
INCi (Ak +Dk)

yAk+Dk−Ck+1
if i 6= k

q
INCi (Ak +Dk)− Ck

yAk if i = k

ICIi,k =

{q
ICIi (Ak +Dk)

yAk+Dk−Ck+1
if i 6= k

q
ICIi (Ak +Dk)− Ck

yAk if i = k

Let us define IDIFFi,k = ICIi,k − INCi,k , then the following theorem holds.

Theorem 2 (Theorem 3 in [4]). A task set T is schedulable under G-EDF if,
for any τk ∈ T and all 0 ≤ Ak ≤ Ak,

Ω ≤ m(Ak +Dk − Ck) (3)

where Ω is the total interference:

Ω =

∑
τi∈T

INCi,k +
∑

the (m−1) largest

IDIFFi,k

 (4)

7

and Ak is defined as follows:

Ak =
CΣ +DkUtot −mDk +

∑
τi∈T (Ti −Di)Ui +mCk

m− Utot
(5)

with CΣ denoting sum of the (m− 1) largest WCETs among tasks.

Additionally, the condition in Equation (4) needs only to be tested on the
Ak’s values at which DBFi(Ak + Dk) changes for some task τi. When m = 1,
Bar is equivalent to the exact schedulability test for EDF in [6].

4 An Improved Schedulability Test for G-EDF

The above presented BC and Bar tests use two different techniques: BC shows
us that the classic iterative response time analysis procedure is still effective
in multiprocessor schedulability analysis; Bar contributes the idea that we may
more precisely estimate the interference on multiprocessor global scheduling by
limiting the number of CI tasks. However, all tasks in BC are considered as CI
tasks, whereas Bar directly measures the interference in a time interval instead
of using the iterative analysis. Therefore, in this paper we combine the two
techniques to take advantage of their strong points.

Before proceeding with the presentation of the new algorithm, we quickly
recapitulate the related concepts; we further propose the definition of a sub
problem window, as depicted in Figure 3.

a b

Ak Dk

x

s0 s1

Figure 3: Different problem windows

We are checking the schedulability of a target task τk, so we select a target
job of τk in the window [a, b) with a and b corresponding to its release time and
deadline, respectively. We still use the extended problem window [s0, b), where
s0 is the earliest time point before a such that within [s0, a) all processors are
busily executing jobs with absolute deadlines smaller than or equal to the target
job’s and Ak = a− s0 is the length of this busy period.

In the following, instead of simply computing the interference generated by
a task in the extended problem window [s0, b), we follow the iterative technique
in BC to calculate the interference. We define a new time interval [s0, s1), called
sub problem window of the extended one, such that s0 < s1 ≤ b, and we would
like to compute the interference in the sub problem window [s0, s1). We denote
x = s1 − s0.

8

4.1 Interference in a sub problem window

Before upper bounding the interference in the sub problem window [s0, s1), we
first formulate the workload generated by a task τi in this sub problem window,
denoted as Wi(x,L) with L = Ak + Dk. We use WNC

i (x,L) for NC tasks and
WCI
i (x,L) for CI tasks, and WDIFF

i (x,L) = WCI
i (x,L)−WNC

i (x,L).
Algorithm 1 calculates the maximum workload produced by a NC task inside

[s0, s1). It follows the worst-case release pattern for WNC
i (x,L) such that

• the first job (carry-in job) of τi is released at time s0;

• successive jobs of τi are released as soon as possible.

Algorithm 1: WNC
i (x,L)

1 W ← 0, p← 0
2 while p < x do
3 if p+Di ≤ L then
4 W ←W + Jx− pKCi
5 p← p+ Ti

6 else
7 break

8 return W

DiTiTi −Ri

s0 s1 b

Figure 4: The worst-case arrival pattern for WCI
i (x,L)

As for a CI task τi, its worst-case release pattern for WCI
i (x,L) corresponds

to the scenario in Figure 4:

• the carry-in job finishes its execution with τi’s worst-case response time;

• successive jobs of τi are released as soon as possible;

• the carry-out job arrives as late as possible and finishes its worst-case
execution within the sub window.

It is easy to see that any other scenario produces a workload that is not greater
than this one. Note that all interfering jobs, including the carry-out one, have
their absolute deadlines no later than b.

Algorithm 2 uses this worst-case release pattern to compute WCI
i (x,L). At

first, it computes the latest possible arrival time for the carry-out job, denoted

9

as Jx−CiKL−Di . If the resulting arrival time is less than 0, it means that there
is at most one interfering job of τi in the (sub) window and it must arrive before
the beginning of the busy period; then lines 3-6 in the algorithm deal with such
a situation. In the other case, there will be (N+1) interfering jobs of τi that can
contribute their complete worst-case executions; and the remaining part (lines
7-9) of the algorithm deals with this situation.

Algorithm 2: WCI
i (x,L)

1 W ← 0

2 p← Jx− CiKL−Di
3 if p < 0 then
4 W ← JL − (Di −Ri)KCi
5 W ← JW Kx0
6 return W

7 N ←
⌊
p
Ti

⌋
8 W ← (N + 1) · Ci + Jp mod Ti − (Ti −Ri)KCi0

9 return W

For τk, we only need to consider its job releases before the target one. Then,
its NC and CI workload can be further bounded.

WNC
k (x,L) =

q
WNC
k (x,L)

yINCk (JL−TkK0)

WCI
k (x,L) =

q
WCI
k (x,L)

yICIk (JL−TkK0)

After computing the workload, the interference can be bounded by the prop-
erty in Equation (2). The corresponding NC interference and CI interference by
τi on the target job of τk are denoted as INCi,k (x,Ak) and ICIi,k (x,Ak). For any
x ≥ Ak + Ck, the interference from τi is bounded as follows.

INCi,k (x,Ak) =
q
WNC
i (x,L)

yx−Ck+1

ICIi,k (x,Ak) =
q
WCI
i (x,L)

yx−Ck+1

IDIFFi,k (x,Ak) is defined as (ICIi,k (x,Ak)− INCi,k (x,Ak)).
Given the sub window [s0, s1), we now demonstrate how to upper bound the

total interference on the target job.

• According to the limited carry-in technique in Bar, we can derive an upper
bound to the total interference, denoted as Ω1 such that

Ω1 =
∑
τi∈T

INCi,k (x,Ak) + max
the m−1 largest

IDIFFi,k (x,Ak) (6)

10

• On the other hand, given that [s0, a) is a busy period with length Ak, we
can formulate another upper bound Ω2 such that

Ω2 = m ·Ak +
∑
i6=k

ICIi,k (x−Ak, 0) (7)

where
∑
i6=k I

CI
i,k (x − Ak, 0) upper bounds the maximum interference in

interval [a, s1) by assuming all tasks different from τk as CI tasks.

• Finally, we define the total interference upper bound in the sub window
[s0, s1) as Ω(x,Ak), which is the smaller one between Ω1 and Ω2; that is

Ω(x,Ak) = JΩ1KΩ2 (8)

4.2 The new schedulability test

Now, we are going to formulate a new RTA procedure for G-EDF schedulability
analysis that integrates the limited carry-in technique, and we call the new
test “RTA with Limited Carry-in for multiprocessor global EDF scheduling”
(RTA-LC-EDF)1.

Theorem 3. (RTA-LC-EDF) Given an Ak value, let us say XAk be solution
of the following iteration starting from X = Ak + φ with φ = Ck.

X ← φ+

⌊
Ω(X,Ak)

m

⌋
(9)

Then, the response time upper bound of τk is

Rk = max
∀Ak
{XAk −Ak}.

Proof. The theorem can be proved by showing that, for any Ak such that within
the time interval [s0, a) all processors are fully occupied by higher-priority jobs,
XAk is an upper bound of the target job’s finishing time (let us say s0 = 0)
subject to this specific Ak value.

Suppose Equation (9) converges to XAk . If XAk is not an upper bound of τk’s

finishing time, then there would be bΩ(XAk ,Ak)

m c+ φ > XAk , which contradicts
with Equation (9)’s convergence at XAk .

Then, the same refinement procedure as in BC can be applied to RTA-LC-
EDF.

1. We start by setting Ri = Di for every task and by marking all tasks as
“potentially unschedulable”.

1This naming convention can be traced back to [11].

11

2. We compute Ri for every task by using the iterative procedure in The-
orem 3. For a potentially unschedulable task, if the resulting response
time is ≤ Di, then it is marked as “schedulable” and the value of Ri is
updated; for a schedulable task, if the resulting response time < Ri, then
Ri is updated.

3. If no task has Ri update, the iteration stops; otherwise, go back to step
(2).

In the following, we are going to prove that the new test dominates Bar
and BC: if a task set is decided schedulable by Bar or BC, the same result is
returned by RTA-LC-EDF.

Theorem 4. RTA-LC-EDF � Bar and RTA-LC-EDF � BC.

Proof. Here we give the key points to prove RTA-LC-EDF’s dominance over
Bar.

• For any Ak and for any x ∈ [Ak + Ck, Ak + Dk], there is Ω ≥ Ω(x,Ak).
Remember that Ω (Equation (4)) is the total interference, with respect
to corresponding Ak value, computed by Bar in the extended problem
window; and Ω(x,Ak) is the total interference computed by RTA-LC-EDF
in the sub problem window with a length x.

• For any Ak > Ak (Equation (5)), there is Ω ≤ m(Ak + Dk − Ck) (please
check [4] for more details), and this implies Ω(x,Ak) ≤ m(Ak +Dk−Ck).

In the end, if Equation (3) in Bar holds (i.e. Ω ≤ m(Ak + Dk − Ck) and
τk is schedulable), then there will be Ω(x,Ak) ≤ m(Ak + Dk − Ck) for any
x ∈ [Ak + Ck, Ak + Dk]; and there is no way for RTA-LC-EDF to result in a
response time upper bound larger than Dk.

The dominance of RTA-LC-EDF over BC is rather straightforward. For any
x ≥ Ak+Ck, it is easy to see that Ii,k(x−Ak) ≥ ICIi,k (x−Ak, 0), where Ii,k(x) is
the interference estimation by BC. Thus, Ω(x,Ak) ≤ Ω2 ≤

∑
i 6=k Ii,k(x−Ak) +

mAk. In the end, RTA-LC-EDF will return a WCRT upper bound no larger
than the one returned by BC.

4.3 Upper bound to Ak

The RTA-LC-EDF test in Theorem 3 does not provide a bounded range of Ak
values for the analysis. In order to apply the new test, we must find a finite
set of Ak such that it is enough to estimate the response time upper bound
by simply using these Ak values. This is what we are going to present in this
section. We remind that Ak denotes the length of the busy period (before the
release of target job).

As a first step, we restrict to valid Ak’s values for RTA-LC-EDF, where the
concept of a valid busy period length is defined below.

12

Definition 1. (Valid Ak) Given a busy period, we say it has a valid length Ak
if the solution of following iteration would be larger than Ak.

X ←
⌊
W (X)

m

⌋
(10)

with W (X) = ∑
τi∈T

WNC
i (X,L) + max

the m−1 largest
WDIFF
i (X,L). (11)

The W (X) formulated above represents the total workload in a sub problem
window with length X. A busy period with a valid Ak means that all processors
are always occupied in the interval [s0, s0 + Ak) by higher-priority jobs and
the resulting workload must cause an interference on the execution of target
job. Thus, in the analysis, we exclude those busy period lengths such that the
solution of Equation (10) is no larger than its corresponding Ak. In the special
case that there is no valid Ak, it is safe to conclude that the WCRT of the target
task τk is Ck.

Then, we explore the two following properties to find an upper bound to Ak.

Theorem 5. It is sufficient to bound the busy period length Ak by Ak < Aαk
such that

Aαk =
CΣ +

∑
τi∈T (Ti − Ci)Ui
m− Utot

.

Proof. We first formulate a generic NC workload function for a task τi in a time
interval t without restricting to specific scheduling policy.

wi(t) =

⌊
t

Ti

⌋
Ci + Jt mod TiK

Ci

A linearised upper bound for wi(t) is the following:

lwi(t) = Uit+ (Ti − Ci)Ui

It can be easily seen that WNC
i (Ak, Ak + Dk) ≤ lwi(Ak), and WCI

i (Ak, Ak +
Dk) ≤ lwi(Ak) +Ci. Thus, in order to have a busy period with valid length Ak,
a necessary condition is that

CΣ +
∑
τi∈T

lwi(Ak) > m ·Ak

In the end, we have Ak < Aαk .

Theorem 6. It is sufficient to bound the busy period length Ak by Ak < Aβk
such that

Aβk =
CΣ +

∑
τi∈T (Ti −Di)Ui + (Utot − Uk)Dk

m− Utot
. (12)

13

Proof. This is an extension of the Theorem 3 in [4]. The proof is similar to the
proof of Aαk , in which we use an over-approximation of the DBF function (as in
Equation (1)) instead of the linearisation of the workload function.

As a result, the smaller one between Aαk and Aβk is a safe upper bound on
busy period length. Moreover, starting from Ak = 0, only those Ak values
at which DBFi(Ak + Dk) changes for some τi need to be considered. Finally,
the RTA-LC-EDF test has a pseudo-polynomial time complexity: O(n3L2

maxN)
such that Lmax is the maximum length of the extended problem window and
N denotes the maximum number of Ak points checked.

In the case of m = 1, there is no pessimism in the computation of workload
and interference for RTA-LC-EDF. Given that it takes only valid busy peri-
ods into account, RTA-LC-EDF is compatible with Spuri’s RTA [20] for EDF
scheduling in single processor and returns exact worst-case response time when
m = 1.

Discussion To better understand the differences among the three tests Bar,
BC and RTA-LC-EDF, it is useful to see what happens when they are applied
to the case of m = 1.

As a matter of fact, BC provides only an upper bound to the response time
of a task even for m = 1, because it analyses just the problem window and
not the whole busy period. To the best of our knowledge, RTA-LC-EDF is
the first response-time analysis for G-EDF that reduces to the exact Spuri’s
algorithm [20] for single-processors when m = 1.

The Bar schedulability test is based on the demand bound function, so it
does not provide a response time. In fact, for the case of m = 1, Bar is equivalent
to the classical single processor demand-bound analysis [6], which is a necessary
and sufficient test. Therefore, we can say that the main difference between Bar
and RTA-LC-EDF is that the first provides a yes/no answer for schedulability,
whereas the second additionally provides an upper-bound to the response time
of a task (which becomes exact for m = 1).

On the other hand, we rely on more precise estimation of workload and inter-
ference to preserve the dominance over Bar and BC. The fine-grained workload
computation of Algorithm 1 and 2 is more precise than the one used in Bar
in the extended problem window. The total interference upper bound Ω2 in
Equation (7) is also a key factor and guarantees that RTA-LC-EDF’s estimated
interference on the target job is never more than the one computed by BC.

Furthermore, in Bar and RTA-LC-EDF, we need to advance the beginning
of the problem window and this could result in additional pessimism: such pes-
simism is inherent to limited CI techniques and cannot be completely avoided;
however, the computation of Ω2 reduces it considerably.

4.4 An over-approximate variant of RTA-LC-EDF

Here, we propose an over-approximation of the RTA-LC-EDF test of Theorem 3.
We aim to improve the run-time efficiency, while preserving certain guarantees

14

of the schedulability result.
Given the sub problem window [s0, s1) (Figure 3), we further concentrate on

its later part after the target job’s release, that is [a, s1). We denote y = s1− a.
Then, we define Ω(y) = max

∀Ak
{Ω(Ak + y,Ak) − mAk}. Ω(y) represents an

upper bound on the total interference over interval [a, s1). In the following, we
are interested in knowing if Ω(y) is large enough such that τk’s target job cannot
complete its worst-case execution in [a, s1); and we can still upper bound Ak
values to the smaller one between Aαk and Aβk . In the new test, we skip the
validity check of Ak (Equation (10)) for efficiency concern.

Moreover, we employ another bound on Ak that is dependent on the value
of y. That is, given any y, we are going to find (if there exists) the first Ak such
that the resulting interference does not leave enough space in the interval [a, s1)
for the target job’s worst-case execution.

Lemma 1. In order to decide whether the target job is eligible to finish its
worst-case execution within a time interval [a, s1) with length y, it is enough to

consider Ak values ≤ Ayk such that
⌊

Ω(Ayk+y,Ayk)−mAyk
m

⌋
> y − Ck.

Proof. If inequality
⌊

Ω(Ayk+y,Ayk)−mAyk
m

⌋
> y−Ck holds, it means that there exists

Ak = Ayk such that the target job cannot finish execution inside [a, a+ y).

Theorem 7. (RTA-LC-EDF-B) An upper bound of τk’s WCRT is the solu-
tion of the following iterative procedure starting from Y = φ with φ = Ck.

Y ← φ+

⌊
Ω(Y)

m

⌋
(13)

Proof. This can be proved using the same technique as in the proof of Theorem
3. We skip the complete proof for space concerns.

The complexity of RTA-LC-EDF-B is O(n3D2
maxN), where Dmax is the

maximum deadline among all tasks. However, the value of Ayk is usually very
small. This means that the overall number of Ak values checked in each step of
Equation (13) could be very low too, and this would further benefit the run-time
performance of RTA-LC-EDF-B.

As for the precision guarantee in RTA-LC-EDF-B, the following theorem
proves that it still dominates Bar and BC.

Theorem 8. RTA-LC-EDF-B � Bar and RTA-LC-EDF-B � BC.

Proof. For any Ak and Ck ≤ y ≤ Dk, there is Ω(Ak + y,Ak)−mAk ≤ Ω−mAk
and Ω(y) ≤

∑
i 6=k Ii,k(y), where Ω and

∑
i6=k Ii,k(y) are the total interference

upper bounds by Bar and BC respectively. Then, following the same reasoning
procedure as in the proof of RTA-LC-EDF’s dominance over Bar and BC (The-
orem 4), it holds that RTA-LC-EDF-B � Bar and RTA-LC-EDF-B � BC.

15

In the end, since Bar is optimal in single processors, so is RTA-LC-EDF-B.
That is, in case m = 1, a task is EDF schedulable if and only if the WCRT
estimation returned by RTA-LC-EDF-B is no larger than that task’s deadline.

5 Suspension-Aware Schedulability Analysis

Now, we are going to consider tasks that could suspend their executions. We
remind that now a task set T is explicitly separated into self-suspending tasks
T s and computational tasks T c (see Section 2 for more details). For simplicity,
we require that the size of T c is at least (m− 1).

5.1 Suspension-aware schedulability: prior results

The state-of-the-art suspension-aware test for multiprocessor G-EDF scheduling
in hard real-time systems is by Liu and Anderson [19], and we denote this test
as LA. LA makes an extension from Bar and still relies on its extended problem
window (see Figure 3).

A target job from τk is chosen for analysis and we use sk,e ∈ [0, Sk] to denote
the cumulative suspension time of this job; such suspension time is needed
to bound interference suffered by the target job within the extended problem
window. For a computational task, sk,e = 0 can be always assumed.

INCi,k =

{q
INCi (Ak +Dk)

yAk+Dk−Ck−sk,e+1
if i 6= k

q
INCi (Ak +Dk)− Ck

yJAk+Dk−TkK0
if i = k

ICIi,k =

{q
ICIi (Ak +Dk)

yAk+Dk−Ck−sk,e+1
if i 6= k

q
ICIi (Ak +Dk)− Ck

yJAk+Dk−TkK0
if i = k

When bounding the total interference, a key difference between task sets
with and without self-suspending tasks is that all self-suspending tasks can
bring carry-in workload in the beginning of the extended problem window. In
the end, together with the fact that there are at most (m − 1) computational
tasks with CI workload, the total interference in the extended problem window
becomes Ω = ∑

τi∈T s
ICIi,k +

∑
τj∈T c

INCj,k +
∑

the m−1 largest

IDIFFj,k

Theorem 9 (Adapted from Theorem 2 in [19]). A task set T = T s ∪ T c is
schedulable with G-EDF if, ∀τk ∈ T , ∀sk,e ∈ [0, Sk] and for any 0 ≤ Ak < Ak,
the following holds:

Ω ≤ m(Ak +Dk − Ck − sk,e) (14)

with Ak =
m·(Ck+sk,e)+

∑
τi∈T Ci

m−Utot −Dk.

16

5.2 RTA-LC-EDF(-B) with suspension-awareness

Here, we discuss how to apply RTA-LC-EDF(-B) to systems with self-suspensions.
Again, a target job of τk with suspension time sk,e is considered.

From suspension-oblivious context to suspension-aware analysis, a series of
adaptations are listed below.

• The suspension of a task does not contribute to its worst-case workload.
Thus, the workload formulation of a task, which could be from either T s
or T c, in Algorithm 1 and Algorithm 2 is still valid.

• In order for the target job (with suspension) to successfully terminate,
there should be enough processing time left for both its execution (Ck) and
suspension (sk,e). That is, when bounding the interference from workload,
we should consider the target job’s suspension.

INCi,k (x,Ak) =
q
WNC
i (x,L)

yx−Ck−sk,e+1

ICIi,k (x,Ak) =
q
WCI
i (x,L)

yx−Ck−sk,e+1

• All self-suspending tasks are regarded as CI tasks. The total interference
in the sub problem window is bounded by two estimates: Ω1 in Equation
(6) and Ω2 in Equation (7), where Ω1 is obtained by limiting the number
of CI tasks in the beginning of sub problem window. As all self-suspending
tasks are CI tasks now, we need to refine Ω1’s formulation.

Ω1 =
∑
τi∈T s

ICIi,k (x,Ak) +
∑
τj∈T c

INCj,k (x,Ak)

+ max
the m−1 largest

IDIFFj,k (x,Ak)

Similarly, the total workload W (x) within the sub problem window for-
mulated in Equation (11) is refined as follows.

W (x) =
∑
τi∈T s

WCI
i (x,L) +

∑
τj∈T c

WNC
j (x,L)

+ max
the m−1 largest

WDIFF
j (x,L)

• In the suspension-aware context, all self-suspending tasks may bring CI
workload into a problem window. Hence, we re-compute Aαk as

C ′Σ +
∑
τi∈T s Ci +

∑
τi∈T (Ti − Ci)Ui

m− Utot

and Aβk as

C ′Σ +
∑

τi∈T s
Ci +

∑
τi∈T

(Ti −Di)Ui + (Utot − Uk)Dk

m− Utot

17

with C ′Σ denoting sum of the (m−1) largest WCETs among computational
tasks.

On the other hand, to decide if the interference Ω(y) is too large so that
the target job’s execution, together with its self-suspension, exceeds the
interval [a, s1), it is enough to bound Ak by the following Ayk with⌊

Ω(Ayk + y,Ayk)−mAyk
m

⌋
> y − Ck − sk,e.

• The last step to adapt RTA-LC-EDF and RTA-LC-EDF-B for Suspension-
Awareness (SA) context is a new starting point, which should take into
account the suspension time sk,e, for their respective RTA procedures.
That is, φ = Ck + sk,e for Equation (9) and Equation (13).

In the end, the adapted tests are denoted as RTA-LC-EDF-SA and RTA-LC-
EDF-SA-B. Instead of enumerating all possible sk,e in [0, Sk] for the WCRT
of the target task, we prove that it is enough to only consider the job with
maximum suspension time Sk.

Theorem 10. The WCRT of τk can be upper bounded when its target job has
sk,e = Sk.

Proof. Let us first have a look at RTA-LC-EDF-SA. Suppose that φ1 = Ck+sk,e
and φ2 = Ck + s′k,e are two starting points (let us say Ak = 0) for Equation
(9) in the suspension-aware context and sk,e > s′k,e. Given two sub problem
windows with length X1 and X2 corresponding to φ1 and φ2 respectively and
X1 −X2 = sk,e − s′k,e, for any task, the upper bound on its interference in the
two cases is X1 − φ1 + 1 = X2 − φ2 + 1. That means, if we choose an arbitrary
iteration step, the difference between the results starting from φ1 and φ2 is at
least (sk,e−s′k,e). By assuming sk,e = Sk, the resulting WCRT estimation would
be a safe upper bound.

For RTA-LC-EDF-SA-B, a similar proof can be conducted.

In the end, we prove the dominance of the new suspension-aware algorithms
over LA.

Theorem 11. RTA-LC-EDF-SA � RTA-LC-EDF-SA-B � LA.

Proof. Here we only sketch the proof for RTA-LC-EDF-SA-B � LA. Similarly
to the suspension-oblivious situation, when explicitly taking the self-suspending
time sk,e into account, we have Ω(Ak+y,Ak)−mAk ≤ Ω−mAk; Ω(Ak+y,Ak)
and Ω are estimated by RTA-LC-EDF-SA-B and LA (Theorem 9) respectively.
Thanks to the more precise estimation of workload and interference, RTA-LC-
EDF-SA-B � LA.

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

S
c
h
e
d
u
l
a
b
l
e

t
a
s
k

s
e
t
s

Task set utilisation

A
B

Bar/BC
DC-BC

(a) m = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

S
c
h
e
d
u
l
a
b
l
e

t
a
s
k

s
e
t
s

Task set utilisation

A
B

Bar/BC
DC-BC

(b) m = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 4.5 5 5.5 6

S
c
h
e
d
u
l
a
b
l
e

t
a
s
k

s
e
t
s

Task set utilisation

A
B

Bar/BC
DC-BC

(c) m = 8

Figure 5: Simulation results for tasks without self-suspension

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

S
c
h
e
d
u
l
a
b
l
e

t
a
s
k

s
e
t
s

Task set utilisation

SA-A
SA-B

A
LA

(a) m = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.6 1.8 2 2.2 2.4 2.6

S
c
h
e
d
u
l
a
b
l
e

t
a
s
k

s
e
t
s

Task set utilisation

SA-A
SA-B

A
LA

(b) m = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8

S
c
h
e
d
u
l
a
b
l
e

t
a
s
k

s
e
t
s

Task set utilisation

SA-A
SA-B

A
LA

(c) m = 8

Figure 6: Simulation results for tasks with self-suspension

6 Performance Evaluation

In this part we evaluate the performance of different schedulability tests with or
without explicitly taking task suspension time into account. For simplicity, we
use A and B as abbreviations for RTA-LC-EDF and RTA-LC-EDF-B, respec-
tively; SA-A and SA-B denote the suspension-aware counterparts. Recently,
[15] developed a “divide and conquer” technique and applied it to BC, denoted
as DC-BC (more specifically, we refer to the NEW-CEDF in [15]). In brief, DC-
BC judges the target task τk to be schedulable if there exists an integer pair
configuration (c′, l) ∈ [0, Ck]× [0, Dk] dividing τk into two parts such that both
parts satisfy certain interference-based conditions derived from BC. We include
DC-BC in the comparison.

Due to space limitation, here we focus on major trends when reporting sim-
ulation results2.

6.1 Tasks without self-suspension

Each task set in the simulation is characterised by a tuple (m,n,Utot) such
that m is the number of processors, n is the number of tasks and Utot is the
total task utilisation. We consider m ∈ {2, 4, 8}, and we set n = 10 · m. For

2An extended version of this paper, which contains the comprehensive comparision, is
available online: https://sites.google.com/site/theyoucheng/rtss15.

19

each (m,n,Utot) configuration, we randomly generate 1000 task sets. For a task
set with some Utot, tasks’ utilisations are generated according to Randfixedsum
algorithm [12]. Task periods are randomly sampled with uniform distribution in
the range [10, 1000]. Then, the WCET of a task τi is simply computed as Ti ·Ui
and the relative deadline Di is randomly chosen with uniform distribution in a
range [0.8 · Ti, Ti].

For each generated task set, different schedulability tests are applied, and we
record the the number of schedulable task sets returned by each test. Results
are reported in Figure 5. The x-axis denotes the total task utilisation Utot
and the y-axis represents the percentage of schedulable task sets detected by
different tests. The line marked with Bar/BC counts the task sets that are
found schedulable by at least one of the two.

Clearly RTA-LC-EDF and RTA-LC-EDF-B substantially improve over all
the other tests.

6.2 Tasks with self-suspension

We evaluated the performance of our new suspension-aware tests SA-A and
SA-B. Task sets are generated in the same way as before; given any task τi,
its maximum suspension time Si is then chosen in the range [0.5 · Ci, Ci]. Be-
sides comparing with the state-of-the-art suspension-aware test LA, we also
apply RTA-LC-EDF in the suspension-oblivious way, i.e., by simply treating
self-suspending time as task execution.

Results are in Figure 6. Notice that LA is very pessimistic and gives positive
results for very few task sets. The suspension-aware version of RTA-LC-EDF
further improves over the suspension-oblivious version.

6.3 Run-time efficiency

As we have seen from simulation results, the performances of RTA-LC-EDF and
of its over-approximation RTA-LC-EDF-B are rather close to each other. How-
ever, RTA-LC-EDF-B has a better run-time performance, as shown in Figure
7, where we report the running time of the two algorithms on task sets with
m = 8, n = 10 ·m and different utilisations. Notice that the running time of
RTA-LC-EDF-B is up to 100 times shorter than that of RTA-LC-EDF.

7 Conclusion

In this paper, we provided more accurate algorithms for computing the response
times of real-time tasks scheduled by G-EDF. We also extended the methodology
to self-suspending tasks. Our algorithms strictly dominate the state-of-the-
art algorithms, and substantial performance improvements are confirmed by
simulation results. In the future, we plan to extend the algorithm to other task
models, taking into account interaction through shared resources.

20

 0

 50

 100

 150

 200

 250

 300

 350

 400

 4 4.5 5 5.5 6 6.5 7 7.5

T
i
m
e

(
s
e
c
o
n
d
s
)

Task set utilisation

A
B

Figure 7: Run-time comparison between the new tests.

References

[1] Theodore Baker. Multiprocessor EDF and deadline monotonic schedula-
bility analysis. IEEE Real-Time Systems Symposium (RTSS), 2003.

[2] Theodore Baker and Sanjoy Baruah. An analysis of global EDF schedu-
lability for arbitrary-deadline sporadic task systems. Real-Time Systems,
43(1):3–24, 2009.

[3] Theodore P Baker and Michele Cirinei. Brute-force determination of mul-
tiprocessor schedulability for sets of sporadic hard-deadline tasks. In Prin-
ciples of Distributed Systems, pages 62–75. Springer, 2007.

[4] Sanjoy Baruah. Techniques for multiprocessor global schedulability anal-
ysis. In Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE
International, pages 119–128, 2007.

[5] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Se-
bastian Stiller. Implementation of a speedup-optimal global EDF schedula-
bility test. In Real-Time Systems, 2009. ECRTS’09. 21st Euromicro Con-
ference on, pages 259–268. IEEE, 2009.

21

[6] Sanjoy K Baruah, Aloysius K Mok, and Louis E Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one processor. In Real-Time
Systems Symposium, 1990. Proceedings., 11th, pages 182–190. IEEE, 1990.

[7] Marko Bertogna and Sanjoy Baruah. Tests for global EDF schedulability
analysis. Journal of Systems Architecture, 57(5):487–497, 2011. Special
Issue on Multiprocessor Real-time Scheduling.

[8] Marko Bertogna and Michele Cirinei. Response-time analysis for globally
scheduled symmetric multiprocessor platforms. In Real-Time Systems Sym-
posium, 2007. RTSS 2007. 28th IEEE International, pages 149–160. IEEE,
2007.

[9] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Improved schedula-
bility analysis of EDF on multiprocessor platforms. In Real-Time Systems,
2005.(ECRTS 2005). Proceedings. 17th Euromicro Conference on, pages
209–218. IEEE, 2005.

[10] Vincenzo Bonifaci and Alberto Marchetti-Spaccamela. Feasibility analysis
of sporadic real-time multiprocessor task systems. Algorithmica, 63(4):763–
780, 2012.

[11] Robert Davis and Alan Burns. Improved priority assignment for global
fixed priority pre-emptive scheduling in multiprocessor real-time systems.
Real-Time Systems, 47(1):1–40, 2011.

[12] Paul Emberson, Roger Stafford, and Robert Davis. Techniques for the syn-
thesis of multiprocessor tasksets. In 1st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS),
pages 6–11, 2010.

[13] Gilles Geeraerts, Joël Goossens, and Markus Lindstrõm. Multiprocessor
schedulability of arbitrary-deadline sporadic tasks: complexity and an-
tichain algorithm. Real-Time Systems, 49(2):171–218, 2013.

[14] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. New response time bounds
for fixed priority multiprocessor scheduling. In Real-Time Systems Sympo-
sium, 2009, RTSS 2009. 30th IEEE, pages 387–397. IEEE, 2009.

[15] Jinkyu Lee. Time-reversibility of schedulability tests. In Real-Time Systems
Symposium (RTSS), 2014 IEEE, pages 294–303. IEEE, 2014.

[16] Jinkyu Lee and Insik Shin. Limited carry-in technique for real-time multi-
core scheduling. Journal of Systems Architecture, 59(7):372–375, 2013.

[17] Jinkyu Lee, Kang G. Shin, Insik Shin, and Arvind Easwaran. Composi-
tion of schedulability analyses for real-time multiprocessor systems. IEEE
Trans. Computers, 64(4):941–954, 2015.

22

[18] Juri Lelli, Dario Faggioli, Tommaso Cucinotta, and Giuseppe Lipari. An
experimental comparison of different real-time schedulers on multicore sys-
tems. Journal of Systems and Software, 85(10):2405–2416, 2012.

[19] Cong Liu and James H Anderson. Suspension-aware analysis for hard real-
time multiprocessor scheduling. In Real-Time Systems (ECRTS), 2013 25th
Euromicro Conference on, pages 271–281. IEEE, 2013.

[20] Marco Spuri. Analysis of deadline scheduled real-time systems. 1996.

[21] Youcheng Sun and Giuseppe Lipari. A weak simulation relation for real-
time schedulability analysis of global fixed priority scheduling using linear
hybrid automata. In Proceedings of the 22nd International Conference on
Real-Time Networks and Systems, page 35. ACM, 2014.

[22] Youcheng Sun, Giuseppe Lipari, Nan Guan, and Wang Yi. Improving the
response time analysis of global fixed-priority multiprocessor scheduling. In
Embedded and Real-Time Computing Systems and Applications (RTCSA),
2014 IEEE 20th International Conference on, pages 1–9. IEEE, 2014.

[23] Guangmo Tong and Cong Liu. Supporting read/write applications in em-
bedded real-time systems via suspension-aware analysis. In Embedded Soft-
ware (EMSOFT), 2014 International Conference on, pages 1–10. IEEE,
2014.

23

