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Shared Integer Dichotomy

Jean Vuillemin1

École normale supérieure, Département d’informatique
45, rue d’Ulm, f-75230, Paris Cedex 05, France.

Abstract. The Integer Dichotomy Diagram IDD(n) represents a natural number n ∈ N by a
Directed Acyclic Graph in which equal nodes are shared to reduce the size s(n). That IDD also
represents some finite set of integers by a Digital Search DAG where equal subsets are shared. The
same IDD also represents representing Boolean Functions, IDDs are equivalent to (Zero-suppressed)
ZDD or to (Binary Moment) BMD Decision Diagrams. The IDD data-structure and algorithms
combines three standard software packages into one: arithmetics, sets and Boolean functions.
Unlike the binary length l(n), the IDD size s(n) < l(n) is not monotone in n. Most integers are
dense, and s(n) is near l(n). Yet, the IDD size of sparse integers can be arbitrarily smaller.
We show that a single IDD software package combines many features from the best known special-
ized packages for operating on integers, sets, Boolean functions, and more.
Over dense structures, the time/space complexity of IDD operations is proportional to that of
its specialized competitors. Yet equality testing is performed in unit time with IDDs, and the
complexity of some integer operations (e.g. n < m, n ± 2m, 22

n

, . . . ) is exponentially lower than
with bit-arrays.
In general, the IDD is best in class over sparse structures, where both the space and time com-
plexities can be arbitrarily lower than those of un-shared representations. We show that sparseness
is preserved by most integer operations, including arithmetic and logic operations, but excluding
multiplication and division.

Keywords: computer arithmetic, integer dichotomy & trichotomy, sparse & dense struc-
tures, dictionary package, digital search tree, minimal acyclic automata, binary Trie, boolean
function, decision diagram, store/compute/code once .
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1 Introduction

The Integer Dichotomy Diagram IDD is a Directed Acyclic Graph DAG introduced in [28] to
represent natural numbers and to perform arithmetic operations in novel ways. We extend [28]
by showing that the very same IDD structure results from binary Tries [15] digital search trees,
by simply sharing equal sub-trees. For Boolean functions [16], the IDD is shown equivalent to
the bit-level Binary Moment Diagram BMD from [5], and we further clarify its equivalence to
the Zero Suppressed Decision Diagram ZDD from [19] and [16].

Plan We review the unshared representations of binary integers by arrays and tree in sec. 2.
We next present the shared IDD data-structure from its three key facets: binary numbers in sec.
3, digital search trees and Boolean functions in sec. 4. All operations on dictionaries (search,
insert, delete, merge, intersect, sort, split, size, min, max, median,· · ·) and on Boolean functions
(¬,∩,∪,⊕,⊗, · · ·) are reduced to efficient IDD integer operations.

Sec. 5 presents the key IDD algorithms in more details than [28].

The data-structure and algorithms are analyzed in sec. 6. In general, most structures are
dense: their size is near the worst case. Nevertheless, we show that the running time of each
presented IDD algorithm is within a constant factor c of that from the best known specialized
package: bit-arrays for integers [1, 10, 14], binary Tries for dictionaries [15], and BMD/ZDD for
Boolean functions [5, 19, 16]. Constant c can be large (say 20) for some integer operations, due
to the overheads involved in hash-tables, memo functions and storage allocation. Constant c is
lower for dictionaries, and we observe that the overhead involved in the key search operation is
minimal. With proper implementation, no overhead is involved in the manipulation of Boolean
functions: same data-structure, same algorithms.

At the same time, many natural structures are sparse: their size is smaller than in the
worst case; operating over sparse structures can be arbitrarily faster than over dense ones.
The success of binary decision diagrams is a key illustration for Boolean functions and circuits
[4, 16]. Indeed, we show that all Boolean operations over IDDs preserve sparseness. A similar
observation applies to dictionaries, and it can be systematically exploited in order to reduce the
size of some of the huge tables which are routinely used to index the web1.

Likewise, many arithmetics operations (add, subtract, multiply by a constant, . . . ) also
preserve sparseness. While in general, integer product and quotient do not preserve sparseness,
we nevertheless demonstrate that it is possible to operate efficiently over huge sparse numbers:
our reader will encounter the largest integers ever operated upon!

We finally conjecture that the IDD is a universal compression method: for a long enough
stochastic input source s, the size of IDD(s) is proportional to the entropy(s), from information
theory [24]. Some theoretical evidence in this direction comes from Flajolet [unpublished], and
we provide further experimental evidence.

2 Binary Numbers

We first review two representations of natural numbers by bit-arrays and bit-trees.

1 At this time, we cannot disclose more in this topic.
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2.1 Bit-arrays

Arithmetic packages [1, 10] store the binary representation of n ∈ N in a finite array of memory
words containing all n0···l−1 = 2[B

n
0 · · ·Bn

l−1] the significant l bits nk = Bn
k ∈ B = {0, 1} of

n = n0···l−1 =
∑
k∈N

B
n
k2

k =
∑
k<l

nk2
k =

∑
k∈n

2k.

The binary length l = l(n) of n ∈ N is defined here by

l(n) = ⌈log2(n+ 1)⌉ = (n = 0) ? 0 : 1 + l(n÷ 2).

Note that 0 = l(0) and l(n) = 1+⌊log2(n)⌋ for n > 0. For example, integer 818 (3 decimal digits)
has l(818) = 10 bits, namely 818 = 20100110011. The subscript 2 is explicitly written here to
indicate Little Endian L.E . (from least to most significant bit), rather than Big Endian B .E .
(fromMSB to LSB) which we write 818 = 11001100102 as in [16]. Depending on the algorithm’s
processing order, one endian is better than the other: say L.E . for add and subtract, B .E . for
compare and divide.

Since bit-arrays yield the value of any bit in n in constant time (in the RAM model of
computations), one can traverse the bits with equal efficiency in both L.E . & B .E . directions.
We assume familiarity with [14] which details the arithmetic operations and their analysis over
bit-arrays.

An important hidden feature of bit-array packages is their reliance on sophisticated storage
management, capable of allocating & de-allocating consecutive memory blocks of arbitrary
length. The complexity of such storage allocation [13] is proportional to the size of the block, at
least if we amortize over long enough sequences. Yet, the constants involved in allocating/de-
allocating bit-arrays are not negligible against those of other linear time O(l(n)) arithmetic
operations, such as comparison, add and subtract. Performing the arithmetic operations in-
place (without changing memory allocation) is a well-known key to the efficient processing of
arbitrary precision integers [10]. For example, changing the LSB of n requires a single in-place
operation (n := n ⊕ 1), against O(l(n)) if we copy (m = n ⊕ 1). The functional programming
community has long recognized this ”functional array” problem, where ”updating” a single
element in a large array becomes exceedingly expensive [9].

2.2 Bit-trees & Dichotomy

Lisp [18] languages allocate computer memory differently: a word per atom (0 or 1 on a single
bit computer), and a pair of word-pointers for each cons. In exchange, storage allocation and
garbage collection are fully automatic and (hopefully) efficient.

Representing an integer by its bit-list2, say 818 = (0 1 0 0 1 1 0 0 1 1) is good for L.E . oper-
ations. It is bad for B .E . operations, which must be preceded by a (linear time and memory)
list reversal [18].

Arithmetics in the LeLisp [2] language uses a middle endian approach. Each integer is
represented by a (perfectly balanced binary) bit-tree, such as:

818 = ((((0.1).(0.0)).((1.1).(0.0))).(((1.1).(0.0)).((0.0).(0.0)))).

2 The list notation (a b) stands in Lisp for (a.(b.()))
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A number n > 1 is represented by a tree whose leaves are the bits of n = n0···2p−1, padded with
zeroes up to length 2p ≥ l(n). The bit-tree has 2p < 2l(n) (atomic) leaves, and 2p − 1 internal
cons nodes. The height of the tree is the binary depth p = ll(n) of n

ll(n) = (n < 2) ? 0 : l(l(n)− 1),

such that p = ⌈log2 log2(n+ 1)⌉ for n > 0. A tree of depth p can represent all integers

Np = {n : n < x(p)}

smaller than the base: x(p) = 22
p
, where x(0) = 2 and x(p+ 1) = x(p)× x(p).

Dichotomy thus represents a number n ∈ Np+1 of depth p+1 by a pair cons(n0, n1) = n0·n1
of integers n0, n1 ∈ Np of depth p. The MSD3 is the quotient n1 = n÷x(q) ∈ Np in the division
of n by x(p); the LSD4 is the remainder n0 = n ÷ x(q) ∈ Np, so that n = n0 + x(p)n1. Both
digits n0 and n1 are padded with non significant zeroes up to length 2p, and the decomposition
continues recursively down to the bit level N0 = B = {0, 1}, or to that Nm of the machine
word (sec. 5.5) on a computer whose bit-width is w = 2m.

A dichotomy package implements arithmetics on bit-trees as in Baker [3]. It accesses any
bit (word) of n in time proportional to the depth p = ll(n) of the tree. It achieves L.E . for
pre-order [13] tree-traversal, and B .E . for post-order.

Dichotomy codes integer operations on 2 digits numbers by sequences of (recursive divide
& conquer) operations on single digits numbers.

For instance, the multiply-add-accumulate operation

M(p)(a, b, c, d) = a× b+ c+ d = r0 + x(p)r1 = (r0 · r1) = cons(r0, r1)

is defined, for a, b, c, d ∈ Np by the (recursive Lisp like, pseudo Jazz) code:

M(p)(a, b, c, d) = (r0 · r1) \\a× b+ c+ d = r0 + x(p)r1
{(r0 · r1) = (p = 0) ? (s0 · s1) : (i0 · i1);
(s0 · s1) = a× b+ c+ d; \\ Four 1 bit inputs, result on 2 bits
(a0 · a1) = a; (b0 · b1) = b; \\ Name input digits from a, b
(c0 · c1) = c; (d0 · d1) = d; \\ Name input digits from c, d
(e0 · e1) = M(p− 1)(a0, b0, c0, d0); \\ a0× b0 + c0 + d0
(f0 · f1) = M(p− 1)(a0, b1, e1, d1); \\ a0× b1 + e1 + d1
(g0 · g1) = M(p− 1)(a1, b0, c1, f0); \\ a1× b0 + f0 + c1
(h0 · h1) = M(p− 1)(a1, b1, f1, g1); \\ a0× b1 + c1 + e1
(i0 · i1) = ((e0 · g0) · (h0 · h1))}\\ Name the four result digits

(1)

Computing a two-digits product M(p+1) by (1) entails to (recursively) compute 4 single-digit
products M(p), plus a few data movements. The time complexity of this (naive dichotomy)
product M(p) is quadratic O(l2) in the operand’s length l = 2p. 5

3 Most Significant Digit
4 Least Significant Digit
5 Never mind here the (cute) dichotomy code for Karatsuba, with just 3 (recursive) single-digit products (see
sec. 5.3). Its complexity is sub-quadratic over dense numbers and our LeLisp experiments show that the point
where it gets faster than the naive product (1) is much lower with bit-trees than with bit-arrays. Yet, the
pre/post-processing digit operations dilute sharing, and Karatsuba can be worse than (29) over sparse shared
numbers.
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818 =

20100110011

0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0

00

0

0002
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3

3

3

3

350

818

1

2 3

50

818

0

0'' 2'  3'

3''

0'

818=50·3′′

50=2′·3′ 3′′=3′·0′′

2′=2·0 3′=3·0′ 0′′=0′·0′

0′=0·0 2=0·1 3=1·1

Fig. 1. Bit-array, bit-tree, minimal deterministic automaton and cons-chain for decimal integer 818. The integer
labels {0, 1, 2, 3, 50, 818} at tree and dag nodes are computed rather than stored. The labels {0′, 2′, 3′, 0′′, 2′′, 3′′}
name copies which are padded with non-significant zeroes, and they will be eliminated by trichotomy.

In general, bit-trees require (nearly) twice the storage for bit-arrays, in exchange for auto-
matic memory allocation & garbage collection ”à la Lisp” [2].

2.3 Bit-trees & Continued Fractions CF

One benchmark on real life CF [26] for bit-trees [2] against bit-arrays [10] shows that (after word
size optimization - sec. 5.5) on a w = 16 = 24 bits (vintage 1982!) computer, the average time
for bit-tree operations is slower than bit-arrays (on the same computer) by a factor c < 3. This
benchmark is biased towards small numbers by Paul Lévy’s theorem [17] on the coefficients of
a ”random” CF: the probability pk = limn→∞ P (xn = k) (famously studied by Kuz’min, Lévy,
Khinchin and Wirsing) that the n-th coefficient be k > 0 is

pk = − log2

(
1− 1

(1 + k)2

)
.

As 91% of the CF coefficients ”fit” within 16 bits, our benchmark only accounts for 9% of the
tree/array overhead, beyond word size optimization at w = 16 bits. As 74% of the coefficients
still fit within 4 bits, the same benchmark showed in 1993 a slow-down beneath c < 4, on a
w = 4 bits computer, namely the symbolic (Lisp based) pocket calculators manufactured by
Hewlett Packard at the time.

3 Data Structure

We now combine integer dichotomy with a motto: store it once!
Sharing equal sub-trees in the bit-tree leads to a representation of integers by a binary DAG,

which is a Minimal Deterministic Automaton MDA.
Sharing equal integers further reduces the structure to a ternary DAG, the IDD.
All these structures are shown in fig. 1 & 2.

3.1 Dichotomy & Minimal Automata

The lisp constructor cons(n,m) = n ·m is now implemented by the (hash cons) memo-function
hcons. Both functions construct equivalent Lisp structures

∀n,m : hcons(n,m) = cons(n,m) = n ·m, (2)
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818 = 20100110011
= 11001100102

0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0

00

0

0002

2

3

3

3

3

350

818

1

2 3

50

818

2

3

0 0

818 = τ(50, 3, 3)
50 = τ(2, 2, 3)
3 = τ(1, 0, 1)
2 = τ(0, 0, 1)

Fig. 2. Bit-array, bit-tree, IDD and minimal triplet-chain for decimal integer 818. The labels {0, 1, 2, 3, 50, 818}
outside tree and DAG nodes are computed rather than stored. The labels {0, 2, 3} inside the DAG nodes are
implicit pointers to the nodes externally labeled by 0, 2 and 3. The decimal labels in the code denote symbolic
variables.

yet in computer memory hcons shares equal structures while cons duplicates. A Lisp expression
(such as the above for 818) is represented in computer memory (with cons) by a (unshared
complete binary) Tree. Using hcons yields a (maximally shared binary) DAG - fig. 1.

Elementary automata theory (in the finite language case) reveals that the above DAG for
n ∈ Np is isomorphic to the Minimal Deterministic Automaton MDA(n). The language
Ln ⊆ Bp accepted by MDA(n) is the set of length p = ll(n) binary words

Ln = {k0 · · · kp−1 ∈ Bp : k =
∑
i

ki2
i, 1 = nk = B

n
k}

which index all bits nk = 1 at one in n =
∑

k nk2
k.

For instance L818 = {0001, 0100, 0101, 1000, 1001} and MDA(818) is shown in fig 1.
One (inefficient) way to build the MDA is to start from the bit-tree, and to systemati-

cally share all tree nodes of equal list value, as in fig. 1. The resulting Minimal Deterministic
Automaton is a binary DAG which represents n by |MDA(n)| nodes in computer memory.

3.2 Trichotomy & IDD

An alternative to (2) is to decompose every number n > 1 into three integers n0, p, n1 such that

n = τ(n0, p, n1) = n0 + x(p)n1 and x(p) = 22
p
. (3)

Decomposition (3) by trichotomy is made unique for n > 1 by imposing that

p = ll(n)− 1 and max(n0, n1) < x(p), (4)

Note that (4) implies that n1 > 0. The IDD(n) results from applying (3) recursively, and by
sharing all equal integer nodes along the way.

One (inefficient) way to build the IDD is to start from the bit-tree, and to systematically
share all tree nodes with equal integer value, as in fig. 2. The resulting Integer Dichotomy
Diagram is a ternary DAG which represents n by s(n) nodes in computer memory.

If we regard symbol τ as a ternary primitive operator, the most efficient way to construct
(say) IDD(818) is to start from 0 and 1, and to execute the following symbolic code (fig. 2):

2 = τ(0, 0, 1); 3 = τ(1, 0, 1); 50 = τ(2, 2, 3); 818 = τ(50, 3, 3).
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1

h2

5

h3h3-1

h2-1

4

h3+1

h2+1

6

2

1 1 1 101

2h2

2h3h2 h2 h2 h2

5 5 5 5

0

Fig. 3. These 14 DAG nodes represent the 4 huge numbers h3 − 1, h3, h3 + 1 and 2h3.

Bit 0 is stored exactly once, for example at the specific memory address 0. Likewise, bit 1
is stored exactly once (say at the memory address 1). Any other node n = τ(n0, p, n1) is stored
(exactly once) at memory location n.a by a triplet of pointers to the memory addresses of the
operands, and we let n.0, n.p and n.1 denote the access functions to each field.

By construction, the numbers represented at these memory addresses are related by:

n = n0 + x(p)n1, p = ll(n)− 1, n0 = n ÷ x(p), n1 = n÷ x(p) where x(p) = 22
p
.

Based on conditions (3) and(4), we construct a unique triplet n = τ(n0, p, n1) at some
unique memory address n.a. This is achieved through a global hash table

H = {(n.h, n.a) : n is already present in memory}.

Table H stores all pairs of unique hash-codes n.h = hash(n.0.a, n.p.a, n.1.a) and addresses
n.a amongst all numbers constructed thus far. If (h, a) ∈ H, we return the address a of the
already constructed result. Else, we allocate a new triple n = τ(n0, p, n1) at the next available
memory address a = n.a, we update table H := (n.a, n.h)∪H, and we return a. In other words,
the constructor T is a global memo function implemented through table H, and defined by:

T(n0, p, n1) = (n1 = 0) ? n0 : ((h,m) ∈ H) ?m : τ(n0, p, n1) (5)

where h = hash(n0.a, p.a, n1.a) and max(n0.p, n1.p) < p.
We assume that searching & updating table H is performed in (average amortized) constant

time [15]. It follows that constructing node n, and accessing its trichotomy fields n.0, n.p, n.1
are all computed in constant time with bit-dags.

A key consequence of the store once paradigm is that testing equality between numbers
n and m reduces to testing equality between their memory addresses n.a and m.a. This is
achieved in one machine instruction, regardless of the respective sizes of n and m. Note that
testing equality with bit arrays or trees requires l(n) operations in the worst case.

Huge Numbers The virtues of IDDs appear over sparse integers. To illustrate this fact,
consider the largest integer hs = max{n : s(n) = s+ 1} which can be represented by an IDD
with s+ 1 nodes:

h0 = 1, hs+1 = hs × (1 + 22
hs
) = T(hs, hs, hs). (6)
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The letter h stands here for huge: h1 = 5; h2 = 21474836485 and h3 > 22
h2

far exceeds the
number of earth’s atoms - it will never be represented by a bit-array! It follows from (6) that
hn > 2∗(2n), where the super-exponential 2∗ is defined by: 2∗(0) = 1 and 2∗(n + 1) = 22

∗(n).
Some vital statistics for hn:

l(hn) =
∑
k<n

2hk ; ll(hn) = hn−1; ν(hn) =
∑
k

B
hn
k = 2n.

Yet, fig. 3 shows a few small DAGs related to h3, and we note that

s(1 + hn) = 2n, s(hn − 1) = 2n, s(2hn) = 2n+ 1.

Our IDD package routinely performs (some) arithmetic operations involving h8 and other related
huge sparse integers within milliseconds, and the humongous h128 within minutes.

3.3 IDD Size

Integer labels in IDD(n1 · · ·nk) form the least integer set which contains {n1 · · ·nk}, and is
closed by trichotomy. This set S(n1 · · ·nk) of labels is defined by:

S(0) = {}, S(1) = {1},
S(n1, n2 · · ·nk) = S(n1) ∪ S(n2 · · ·nk),
S(n = τ(g, p, d)) = {n} ∪ S(g, p, d).

The zero node is present in all IDDs. It is convenient to let all references to 0 remain implicit:
neither drawn, nor counted. The size of n is then the number s(n) = |S(n)| of nodes in IDD(n),
excluding 0. For example (fig. 2) S(818) = {1, 2, 3, 50, 818} and s(818) = 5.

Since S(1 · · ·n) = {1 · · ·n}, consecutive integers are optimally coded by IDD

s(1 · · ·n) = n. (7)

The corresponding size for bit-arrays is n× l(n).
Another (near) optimal example is the IDD for representing the powers of 2:

s(20 · · · 2n) < n+ l(n).

The corresponding size for bit-arrays is (at least) n(n+ 1)/2.
A third (optimal) case is the IDD for the representing the powers of powers of 2:

s(22
0 · · · 22n) ≤ 2n.

The corresponding size 2n+1 for bit-arrays is exponentially larger.

Sparse Sequences So far, we have used the word sparse in an intuitive way, say 2n is sparse
while n ∈ N may not be (i.e. n is dense). Of course, this makes no sense for small numbers (is
1 dense or sparse?), or for that matter any fixed integer (is 818 sparse?).

One brings flesh to the concept by considering infinite sequences of numbers.

Definition 1. A sequence k 7→ nk of integers nk ∈ N is sparse if there exists a (fixed) poly-
nomial P such that

s(nk) < P (ll(nk))

for all k ∈ N large enough.

Once said, it makes sense to call dense a sequence which is not sparse. It will soon be apparent
that both sequences k 7→ 2k and k 7→ 22

k
are sparse, while k 7→ k is not.
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{1} {4} {5} {8} {9}

{4,5}

{8,9}{1,4,5}

{1,4,5,8,9}

2

3

{1,4,5,8,9}

{1,4,5}

{0,1}{1}

{0}

0 0

Fig. 4. The (incomplete) digital search tree to the left is the binary Trie [15] for the integer set set(818) = {k :
k ∈ 818} = {1, 4, 5, 8, 9}; the corresponding IDD nodes are labeled here by sets of integers, rather than by integers
as in fig. 2.

4 Coding Sets & Boolean Functions by Integers

We introduce the IDD data-structure in two other isomorphic ways, for representing sets of
integers and Boolean functions, by relying on the coding power of binary numbers.

4.1 Dictionaries

Finite sets of natural numbers are efficiently represented by IDDs through the isomorphism

set(n) = {k : k ∈ n} ⇀↽ n =
∑

k∈set(n) 2
k (8)

which transforms set operations (∩, ∪, ⊕) into logical ones ( AND , OR , XOR ). We further
extend set operations to integers k, n ∈ N by letting

k ∈ n ⇔ 1 = B
n
k and k ⊆ n ⇔ k = k ∩ n.

For example, set(818) = {1, 4, 5, 7, 8, 9} and the set h3 defined by (6) contains 8 elements,
namely set(h3) = {1, 4,x(5), 4x(5),x(h2), 4x(h2),x(5)x(h2), 4x(5)x(h2)}.

Through isomorphism (8), the size of set(n) = {k : k ∈ n} is the binary weight6:

ν(n) =
∑

k<l(n)

B
n
k = |set(n)|.

The binary length l(n) = i+1 of n > 0 is then equal to the largest i = max{k : k ∈ n} element
plus one, and its depth is ll(n) = l(i).

Testing for membership k ∈ n amounts to computing bit k of n. Likewise, operations on
dictionaries [15] such as member, insert, delete, min, max, merge, size, intersect, median, range
search all translate by (8) into (efficient) integer operations over IDDs.

Fig. 4 illustrates why sharing all equal sub-sets in the representation of set(n) by a binary
Trie [15] leads to IDD(n).

The set of integers set(n) which labels the IDD node n = τ(n0, p, n1) is defined by:

set(n) = set(n0) ∪ {k + 2p : k ∈ set(n1)}.
6 a.k.a Hamming weight, population count, sideways sum, number of ones in the binary representation.
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1

x0

2

3

x0+x2(1+x0)

1+x0

x0+x2(1+x0)+x3(1+x0)

0 0

f818 = f50 ⊕ x3f3
f50 = x0 ⊕ x2f3
f3 = 1⊕ x0

1

x0 1

2

3

x1(x0x2+x2)

x1((x0x2+x2)x3 +x2x3)

0 0

g818 = x3?g50 : x0

g50 = x2?x0 : 1

Fig. 5. The BMD(f) and the ZDD(g) are both isomorphic to IDD(818) from fig. 2. These Boolean functions are
f818 = funx(818) and g818 = fund(4, 818).

Since s(n) ≤ ν(n)ll(n), the size of set representations is smaller with IDDs than with sorted
lists of integers (size ν(n)l(n)). Because of sharing and regardless of number density, the IDD
is smaller than all un-shared tree representations of dictionaries described in [15].

4.2 Boolean functions

A Boolean function f ∈ B∗ 7→ B may coded by its truth-table t = table(f), a bit-array which
represents a (binary) integer n = num(t). It is finally realized by IDD(n) so as to map the
operations {NOT , AND , OR , XOR } over Boolean functions to efficient operations over IDDs.
We consider two ways to code Boolean functions by integers (fig. 5):

– The exclusive number nx = numx(f) is a one-to-one map (f = funx(nx)) between func-
tions f ∈ B∗ 7→ B and natural numbers nx ∈ N. There results a one-to-one map between
BMD(f) [5] and IDD(nx).

– The disjunctive number nd = numd(i, f) is a one-to-one map (f = fund(i, nd)) between
functions f ∈ Bi 7→ B and natural numbers nd ∈ Ni = N (modx(i)). There results a
one-to-one map between ZDDi(f) [19] and IDD(nd).

n 0 1 2 3 4 5 10 15 17 85 170 255

bin(n) 20 21 201 211 2001 2101 20101 21111 210001 21010101 201010101 211111111

funx(n) 0 1 X0 x0 X1 x1 X0x1 x0x1 x2 x1X2 X0x1x2 x0x1x2

fund(1, n) 0 x0x1 X0x1 x1 x0X1 x0 X0 1 x0x1 x0 X0 1

fund(2, n) 0 x0x1x2 X0x1x2 x1x2 x0X1x2 x0x2 X0x2 x2 x0x1 x0 X0 1

Fig. 6. The exclusive and disjunctive numbers of a few Boolean functions. We let xn = 1− Xn for n ∈ N.

For n < x(i), we note that the Boolean functions g = fund(i, n) and f = funx(n) are related
by the (order i) Boolean Moebius Transform (as defined say by [6]): peep in fig. 6.

Exclusive Number Let expression f(x0 · · ·xi) denote a Boolean function f ∈ Bi+1 7→
B whose i + 1 inputs are named by x0 · · ·xi, in order. We note by f [xk = b] the result
f(x0 · · ·xk−1, b,xk+1 · · ·xi) of partially evaluating f at xk = b, for b ∈ B. The partial derivative
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(a.k.a. binary moment [5]) of f with respect to xk is

∂kf = f [xk = 0]⊕ f [xk = 1].

Note that function f depends on variable xk if and only if ∂kf ̸= 0, i.e. xk is active in f . We
let i = msv(f) = max{k : 0 ̸= ∂kf} and msv(f) = −∞ when f is constant (f = 0 or f = 1).
It follows that xi is the most significant active variable in a non-constant Boolean function f .

The exclusive number n = numx(f) ∈ N of a Boolean function f ∈ B∗ 7→ B is defined by:

numx(f) = (i < 0) ? f : numx(f [xi = 0]) + x(i)× numx(f [xi = 1]), (9)

where i = msv(f) and x(i) = 22
i
. Conversely, the Boolean function f = funx(n) numbered by

n is:
funx(n) = (i < 0) ? n : funx(n ÷ x(i))⊕ xi ∩ funx(n÷ x(i)), (10)

where i = ll(n)− 1 and x(i) = 22
i
. It follows that numx and funx are respective inverses:

∀n ∈ N : n = numx(funx(n)) and ∀f ∈ B∗ 7→ B : f = funx(numx(f)).

Relation (10) yields a direct way to label IDD nodes by Boolean functions: node n = τ(n0, p, n1)
represents the function funx(n) = f0⊕ xpf1, where f0 = funx(n0) and f1 = funx(n1).

This establishes a direct one-to-one correspondence between Bryant’s BMD(f) [5] and
IDD(numx(f)). A very different proof results from exer. 256 & 257 in [16].

Logical operations over Boolean functions map to integer operations as follows:

numx(0) = 0, numx(1) = 1,
numx(NOT f) = 1⊕ nf, numx(f XOR g) = nf ⊕ ng,

numx(f AND g) = nf ⊗ ng, numx(f OR g) = nf ⊕ ng ⊕ (nf ⊗ ng),

where nf = numx(f) and ng = numx(g). The multilinear-modular-product which is defined
above and noted by ⊗ is further discussed and efficiently implemented with IDDs in sec. 5.3.

Disjunctive Number A more classical representation of Boolean functions relies on the dis-
junctive truth-table [16] which we code, for f ∈ Bi 7→ B, by the integer:

numd(i, f) =
∑
n<2i

f(Bn
0 · · ·Bn

i−1)2
n.

Unlike before, the correspondence is only one-to-one between Boolean functions Bi 7→ B and
integers Ni = N (mod x(i)).

In exchange, Boolean operations map to integer operations by:

numd(i, 0) = 0, numd(i, 1) = x(i)− 1,
numd(i,NOT f) = nf ⊕ (x(i)− 1), numd(i, f XOR g) = nf ⊕ ng,

numd(i, f AND g) = nf ∩ ng, numd(i, f OR g) = nf ∪ ng,

where nf = numd(i, f) and ng = numd(i, g).
We refer to exer. 256 in [16] to prove that IDD(numd(i, f)) is isomorphic to the Zero

Suppressed Decision Diagram ZDDi(f) from [19].
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Fig. 7. The BMD or ZDD for truth-table 2818 has 6 = W (2818) nodes. So does an IDD optimized for word size
w ≥ 4. The corresponding bit-level IDD has 10 = s(2818) nodes.

Depth Coding In the BMD and ZDD above, the depth level is coded by integers, while the
IDD relies on pointers to DAG nodes - see fig. 7. In theory, this matters when processing very
large numbers like h16 from (6). In practice (once optimized for word size w = 64 as in sec. 5.5),
this hardly matters: it currently limits BMDs or ZDDs to handle integers of depth less than 264

which is just enough for representing h3, but not h4.

Let W (n) = |S ′(n)| be the number of labels met in traversing the bit-dag for n, ignoring
depth labels, i.e. the size of both BMD(funx(n)) and ZDDi(fund(i, n)) for i = ll(n).

The corresponding set of labels (ignoring depth nodes) is given by:

S ′(0) = {}, S ′(1) = {1},
S ′(T(g, p, d)) = {g + x(p)d} ∪ S ′(g) ∪ S ′(d).

Since S ′(n) ⊆ S(n) ⊆ S ′(n) ∪ {1 · · ·n.p}, it follows from (7) that

W (n) ≤ s(n) < W (n) + ll(n). (11)

5 Algorithms

We postpone discussing machine specific word size optimizations to sec. 5.5, and (till then)
apply all IDD algorithms down to the bit-level. Likewise, negative numbers Z are introduced
in sec. 5.4 and we restrict (till then) to natural numbers N.

We first present some basic IDD operations whose running time is intrinsically faster than
with bit-arrays.

5.1 Fast Operations

Testing for integer equality in IDD reduces to testing equality between memory addresses, in
one machine cycle, since n = m ⇔ n.a = m.a.
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Integer Comparison Comparison cmp(n,m) = sign(n − m) ∈ {−1, 0, 1} is computed (for
n,m > 1) over IDDs by

cmp(n,m) = (n = m) ? 0 : \\terminate when equal
(n.p ̸= m.p) ? cmp(n.p,m.p) : \\unless equal, compare depths
(n.1 ̸= m.1) ? cmp(n.1,m.1) : \\unless equal, compare MSD
cmp(n.0,m.0) \\otherwise, compare LSD

(12)

At most 3 equality tests are performed at each node. Exactly one path is followed down the
respective IDDs and the computation of cmp(n,m) visits at most min(ll(n), ll(m)) nodes. Al-
together, this amounts to less than 3ll(min(n,m)) cycles.

In the worst case, this is exponentially faster than with bit-arrays.

Decrement Computing D(n) = n− 1 for n > 0 follows a single DAG path:

D(n) = (n = 1) ? 0 :
(n.0 ̸= 0) ? T(D(n.0), n.p, n.1) : T(X′(n.p), n.p,D(n.1)).

(13)

Function X′(q) = x(q)− 1 = 22
q − 1 is computed in time O(q) by

X
′(0) = 1 and X

′(q + 1) = T(a, q, a) {a = X
′(q)}.

It follows that s(X′(q)) < q is small. Implementing X′ as a memo function, and making it global
(to share its computations with other IDD operations) effectively washes out this extra cost.

Either way, we compute D(n) in O(ll(n)) operations.

Increment Likewise, computing I(n) = n+ 1 follows a single DAG path:

I(n) = (n = 0) ? 1 : (n = 1) ? T(0, 0, 1) :
(n.0 ̸= X′(n.p)) ? T(I(n.0), n.p, n.1) :
(n.1 ̸= X′(n.p)) ? T(0, n.p, I(n.1)) : T(0, I(n.p), 1).

(14)

Altogether, computing I(n) or D(n) requires at most ll(n) operations (along a single DAG
path), to which we may (or not by declaring x′ as MF) add p = ll(n)−1 operations to compute
x(p)− 1. In the worst case, this is again exponentially faster than bit-arrays. Moreover, since

s(n, n− 1) < s(n) + ll(n),

the incremental memory cost for representing n± 1 and n (dense or not) is (at most) ll(n) for
IDDs, against (at least) l(n) for bit-arrays (fig. 3).

Powers of 2 The 2-power of the binary representation of n =
∑

k∈n 2
k is

2n = 2
∑

k∈n
2k =

∏
k∈n

22
k
=

∏
k∈n

x(k). (15)

The IDD for 2n is small: since W (2n) = ν(n), it follows from (11) that s(2n) < l(n) + ll(n) for
n > 1. So, the sequence n 7→ 2n is sparse: its bit-size l(2n) = n is exponential in that of the
IDD (fig. 7).
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We compute 2n = Im(0, n) by (17) below in time O(ll(n)) and space

s(2n) < ν(n) + l(n) ≤ 2l(n).

Both complexity measures are exponentially lower than the corresponding O(n) for bit-arrays.

The 2-powers are the atoms from which IDDs get built (fig. 4). Indeed, an integer n > 0 is a
sum of 2-powers n =

∑
k∈n 2

k. Replacing each 2k by (15) yields the following sum of products:

n =
∑
k∈n

2k =
∑
k∈n

∏
i∈k

x(i).

Replacing each number x(i) by the symbolic input variable xi expresses the Boolean function

funx(n) =
⊕
k∈n

∏
i∈k

xi

as a multilinear sum of products, a.k.a Reed-Muller form and Algebraic Normal Form [6].

Binary length Computing 2n and the length l = l(n) of n are mutual IDD operations.

1. For n > 0, let remove MSB7 be Rm(n) = (m, i), where i = l(n)− 1 and m = n− 2i.

2. For m < 2i, let insert MSB be Im(m, i) = m+ 2i.

Both are computed by the mutually recursive IDD pair:

Rm(1) = (0, 0);
Rm(τ(g, p, d)) = (T(g, p, e), Im(l, p))

{(e, l) = Rm(d)}.
(16)

Im(0, 0) = 1; Im(0, 1) = 2; Im(1, 1) = 3;
Im(m, i) = (l > m.p) ? T(m, l, Im(0, e)) :

T(m.0, l, Im(m.1, e))
{(e, l) = Rm(i)}.

(17)

The justification for (16) is:

n = g + x(p)d = g + x(p)(e+ 2l) = m+ 2i, where m = g + x(p)e and i = l + 2p.

The justification for (17) is: n = m + 2i = m + x(l)2e, where i = e + 2l and l ≥ m.p since
m < 2i; if l = m.p, we finish by n = m.0 + x(l)(m.1 + 2e) else by n = m+ x(l)(0 + 2e).

The analysis of (16,17) shows that, if n = m + 2i and m < 2i, the time for computing
Im(m, i) and Rm(n) is O(ll(n)): indeed, both (17) and(16) follow a single DAG path with at
most ll(n) nodes, and there are at most four atomic (constant time) operations at each node.

Computing m±2i when 2i ≤ m is a variation on the algorithms I,D presented above which
follow two DAG pathes rather than one. It follows that s(m ± 2i) < s(m) + 2ll(m) in this
restricted case. It follows that, for all m, i, the sparseness of m implies the sparseness of both
m± 2i. Computing n± 2i is (always) exponentially faster with IDDs than with bit-arrays.

7 Most Significant Bit
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Dictionaries The 2-powers are the elements of the set {k : k ∈ n} represented by n ∈ N. Each
element corresponds to a path from the root to a leaf labeled by 1, in both the digital search
trees and in the corresponding IDD (sec. 4.1).

With digital search trees [15], each dictionary operation {search, insert, delete, min, max}
follows a single path from root to leaf. This path is determined by a simple decision made at
each node: go left or right, and the decision depends on the specific operation. The same applies
to IDDs, and we leave it as an exercise to code the above operations in time O(ll(n)), i.e. the
same complexity as binary Tries.

5.2 Arithmetic & Logic Operations

We rely on the above efficient operations to derive the other integer operations over IDDs.

Constructor The node constructor T(g, p, d) is constrained in (5) by max(g, d) < x(p). It is
convenient to remove this constraint and to implement a general linear constructor C such that

C(g, p, d) = g + x(p)d

for all g, p, d ∈ N. This is achieved (for g > 1) by:

C(g, p, d) = (p > g.p) ? C1(g, p, d) :
(p = g.p) ? C1(g.0, p, A(d, g.1)) : C(C(g.0, p, d), g.p, g.1).

(18)

Note that definition (18) is mutually recursive with (the forthcoming) addition A (21), and with
the next constructor C1(g, p, d) = g + x(p)d, which is constrained by g < x(p):

C1(g, p, d) = (d < 2 ∪ p > d.p) ? T(g, p, d) :
(p = d.p) ? T(T(g, p, d.0), I(p), d.1) :

C(C1(g, p, d.0), d.p, C1(0, p, d.1)).
(19)

Note that C1 now relies on increment I. The justification for the mutually recursive codes C
(18), C1 (19), I (14), ×2 (20) and A (21) is a tedious exercise in linear algebra and inequalities.

Twice As a warm-up, we consider function 2×n = n+n = 2n which is a special case for add,
multiply and shift. One computes twice by the straightforward IDD definition

2× 0 = 0, 2× 1 = 2,
2× τ(g, p, d) = C(2× g, p, 2× d),

(20)

which relies on constructor C to pass ”bit carries” from one digit to the next.
Let us then compute 2 × hn for say hn as defined by (6). We know from sec. 3 that both

input and output remain small: s(hn) = n+ 1, s(2hn) = 2n+ 1 and s(hn, 2hn) = 2n+ 1.
Yet tracing the computation of 2 × hn shows that 2 × 1 is recursively evaluated 2n times,

2n−1 times for 2× 5 . . . Computing 2× hn in this naive way takes exponential time O(2n)!

Operating on shared structures like hn is hopeless, without a second motto: compute once!
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We fix the problem by (automatically) turning 2× into a local memo function. On the first
call, a table H2× of computed values is created. Each recursive call 2×m gets handled by first
checking if 2m has been computed before i.e. m ∈ H2×: if so, we simply return the address of the
already computed value; if not, we compute 2×m and duly record the address of the result in
H2× for further use. After returning the final result, table H2× is released and garbage-collected.

Once implemented as a memo function, the number of operations for computing 2 × hn
becomes linear O(n). The IDD package relies extensively on (local and global) memo functions,
for many operations. The benefit is to effectively compute over ”monster numbers” like h128.

We still have to pass the carries hidden by C in (20). The number of nodes in S(n) at depth
q < ll(n) can at most double in S(2 × n): after shifting, and depending on the position, the 0
parity may change to 1 (as shifted out of the previous digit). Finally, at most one node may be
promoted to depth p+ 1, when carry 1 is shifted out from the MSB. For n > 1, it follows that

s(2n) < 2s(n).

Note that the above argument applies to any ALU like function which takes in a single carry
bit, and releases a single carry out. In particular, it follows that s(3n) < 2s(n) for n > 1. Thus,
if n is sparse, so are 2n and 3n (fig. 3). If k 7→ nk is a sparse sequence, this argument can be
generalized to show that the product k 7→ c× nk by a fixed constant c ∈ N is sparse as well.

Add Trichotomy defines integer addition A(a, b) = a+ b recursively by:

A(a, b) = (a = 0) ? b : (a = 1) ? I(b) :
(a = b) ? 2× a : (a > b) ?A(b, a) :
(a.p < b.p) ? C(A(a, b.0), b.p, b.1) : Am(a, b).

(21)

For 1 < a < b and a.p = b.p, integer addition gets defined by

Am(a, b) = C(A(a.0, b.0), a.p, A(a.1, b.1)). (22)

The reason for separating case (22) from (21) is to declare Am a local memo function, rather than
A. In this way, table HA only stores the results of (recursively computed) additions Am(a, b)
when a < b and both operands have equal depth a.p = b.p. The size of table HA is thus (strictly)
less than s(a)s(b). By the argument used above to analyze 2×, releasing the carries hidden by
C in (21,22) can at most double that size. It follows for a > b > 1 that

s(a+ b) < 2s(a)s(b). (23)

So, the sum k 7→ nk + n′
k of two sparse sequences k 7→ nk and k 7→ n′

k is sparse as well.

Subtract The one’s complement n′ = n ⊕ X′(p) of n ∈ N, for p > n.p and X′(p) = x(p) − 1
is reduced to computing one exclusive-or (sec. 5.2). The effect is to negate all bits of n up to
2p − 1, so that n′ + n = X′(p) and s(n′) < s(n) + p follows for n < x(p).

For a > b we compute the positive difference by the two’s complement formula

a
.
− b = (1 + a+ b′) · 0 where b′ = Oc(b, a.p). (24)

Combining s(b′) < s(b) + p with (23) yields

s(a
.
− b) < 2s(a)(s(b) + ll(a)− 1).

So, the difference k 7→ nk − n′
k of two sparse sequences is a sparse sequence.
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Logic Operations The IDD code for the logical intersection And(a, b) = a ∩ b is:

And(a, b) = (a = 0) ? 0 : (a = 1) ? 1 ∩ b :
(a = b) ? a : (a > b) ?And(b, a) :
(a.p < b.p) ?And(a, b.0) : Am(a, b)

(25)

which relies (when a.p = b.p and a < b) on the memo-code

Andm(a, b) = T(And(a.0, b.0), a.p, And(a.1, b.1)). (26)

The codes for OR (a, b) = a∪ b and XOR (a, b) = a⊕ b have a similar structure. Unlike addition
(21), the codes for logical operations rely on constructor T rather than C: no carry!

For a, b > 1, it follows that:

max{s(a ∪ b), s(a ∩ b), s(a⊕ b)} < s(a)s(b).

So, for all Arithmetic & Logic ALU integer operations op ∈ {+,−,∪,∩,⊕}, the output sequence
k 7→ op(nk, n

′
k) is sparse when both input sequences are sparse.

Dictionaries Most basic dictionary operations have already been treated, except for size,
median and sort. The size of set(n) is reduced to computing ν(n) by:

ν(0) = 0, ν(1) = 1,
ν(τ(g, p, d)) = ν(g) + ν(d).

(27)

Clearly, function ν must (again) be a memo function. Computing ν(n) entails one addition per
node over integers smaller than l(n). The running time for (27) is thus bounded by O(s(n)ll(n)).

Once the IDD weights are computed and stored, it is straightforward to find the median (or
the k-th element) in set(n), by following the appropriate DAG pathes in time O(s(n)ll(n)).

Sorting is a simple pre-order DAG traversal, with a strong caveat : the output size (number
of elements in the set) may be exponentially bigger than the input size (IDD size): it follows
from (6) that s(hn) = n+ 1 while ν(hn) = 2n.

A way out is use the next ”print” routine, whose size is proportional to that of the input.

Print & Read The triplet-list of n ∈ N is the (topologically sorted) sequence of atomic op-
erations required to construct n from 0 and 1 according to IDD(n). Rather than physically
implemented in computer memory as before, the triplet-list is now printed as a symbolic se-
quence of instructions.

Our running example IDD(818) can be ”symbolically printed” by the triplet-list

n = τ(n1, n3, n3); n1 = τ(n2, n2, n3); n3 = τ(1, 0, 1); n2 = τ(0, 0, 1).

in which the symbols represent the integers n = 818, n1 = 50, n3 = 3 and n2 = 2. There are
s(n) symbols in the triplet-list and its bit-size (sec. 3.3) is (at most) Bs(n) < 3s(n)ll(n).

It is a simple exercise in symbolic manipulation to traverse the DAG and to output the
triplet-list. Conversely, on can ”read” the triplet-list for n and construct IDD(n) in linear time.
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5.3 Multiplications

Multilinear Modular Product The multilinear-modular-product is defined in sec. 4.2:

a⊗ b = numx(funx(a) ∩ funx(b)).

An alternative definition for ⊗ is based on the Boolean Moebius Transform [6].
Either way, it simply follows that:

∀a, b ∈ N : 0⊗ b = 0, 1⊗ b = b and a⊗ b = b⊗ a, a⊗ a = a.

If b = b0 + x(q)b1 and a.p < q, it follows that:

a⊗ (b0 + x(q)b1) = a⊗ b0 + x(q)(a⊗ b1).

The above relations allow one to reduce the computation of a ⊗ b to the case: 1 < a < b and
l(a) = l(b) = p+ 1. This final case could be handled by:

(a0 + x(p)b1)⊗ (b0 + x(p)b1) = a0⊗ b0 + x(p)(a0⊗ b1⊕ a1⊗ b0⊕ a1⊗ b1). (28)

Yet, this formula for computing a⊗b involves 4 recursive calls to ⊗, over half-length arguments.
A quadratic O(l(a)2) complexity would classically result. The distribute law

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c).

lets us rewrite (28) in the equivalent form

a⊗ b = a0⊗ b0 + x(p)(a0⊗ b1⊕ a1⊗ (b0⊕ b1)).

There are only 3 recursive calls, and the time complexity is reduced to O(l(a)log2(3)), à la
Karatsuba [14]. Our final solution replaces (28) by the equivalent:

a⊗ b = p0 + x(p)(p0⊕ p1) where p0 = a0⊗ b0 and p1 = (a0⊕ a1)⊗ (b0⊕ b1).

Since the computation of ⊗ now involves 2 recursive ⊗ (and 3 ⊕) over half-length operands, its
final complexity is O(l(a)ll(a)) - an improvement over the original BMD algorithm from [5].

Open question: is the ⊗ product of sparse operands sparse, or not?

Integer product The IDD product P (n,m) = n×m is defined by:

P (a, b) = (a = 0) ? 0 : (a = 1) ? b :
(a > b) ? P (b, a) : C(P (a, b.0), b.p, P (a, b.1)).

(29)

We declare P as memo code. The size of its hash table HP is bounded by the product s(n)s(m)
of the operand’s sizes. In practice, this is sufficient to compute some remarkably large products,
such as 818× h128 and h128 × h3.

Yet constructor C in (29) is now hiding digit carries, as opposed to bit carries in the previous
ALU operations. It follows that, in general, the product of sparse numbers is not sparse. A first
example was found by Don Kuth ([16], exer. 256). Another example is provided by the product
(shift) n× 2m whose IDD size can be (nearly) as big as 2ms(n).

It nevertheless follows from the safe haven analysis in sec. 6.3 that the naive code (29) for
computing a×b has a quadratic O(l(a)×l(b)) running time: indeed, unwinding once the recursion
in (29) yields a code which is equivalent to the 4 digit products of multiply-add-accumulate (1).

The algorithms for big-shift (product by x(p)) and shift (product by 2i) are left as fun
exercises for the reader. Big-shift has an unusual property: the bigger p, the faster! Indeed, the
product d× x(p) = T(0, p, d) is computed in unit time as soon as d < x(p).
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Karatsuba Squaring An alternative is to reduce multiply to squaring by:

n×m = ((n+m)2 − (n−m)2)/4. (30)

We reduce the computation of a 2-digits square to 3 single-digit squares by:

02 = 0, 12 = 1,
τ(g, p, d)2 = C(C(s0, p, q), 1 + p, s1)
{s0 = g2; s1 = d2; s2 = (g − d)2;
q = s0 + s1− s2; }

(31)

There are advantages to (30,31) over (29): the memo-table has a single argument rather than
two, although the benefits from this memo-table are debatable [21]. The worst-case complexity
for computing n2 is O(l(n)log2(3)) [14] rather than O(l(n)2).

The drawback lies in the overhead from the extra add/sub: 6 are visible and 2 are hidden
by C in (30,31). It follows that Karatsuba squaring is only faster than the naive product for
n is large enough. A package which uses Karatsuba must first be bench-marked in order to
determine the break-even point against the naive method. This technique is classical [14, 21]
over dense numbers. How to extend it over sparse numbers remains a puzzle.

Division Baker [3] performs dichotomy division based on the 2-adic inverse a.k.a. Hensel’s
odd division [22], Montgomery division [20] or GB division [25]. The odd division is the basis
for the Stehlé & Zimmermann dichotomy algorithm [25] which is the most efficient known for
computing the greatest common divisor of two integers. We won’t further discuss division.

5.4 Negative numbers

We represent a signed integer z ∈ Z by the pair (s = sign(z), n = abs(z)) formed by its sign (1
if z < 0, else 0) and its absolute value represented by IDD. The opposite is then defined by

−z = (n = 0) ? (0, 0) : (1− s, n).

Logical negation follows by ¬z = −(1 + n), and thus s(¬n) < s(n) + ll(n). We extend all
previously defined operations from N to Z, in obvious ways [28]. For example, subtract is
derived from the (above) positive subtract by

a− b = (a = b) ? 0 : (b < a) ? a
.
− b) : −(b

.
− a).

5.5 Word size optimization

For the sake of software efficiency, the recursive decomposition (4) is not carried out all the
way down to bits, but stopped at the machine-word size, say w = 32 = x(5) or w = 64 = x(6)
bits. In this manner, primitive machine operations rather than recursive definitions are used
on word size operands, at minimal cost. Our package is parameterized by a single constant
the word-depth d, for a machine word-size w = 2d. The triplet interpretation which remains
invariant throughout the code changes from (3) (for d = 0 on a w = 1 bit machine) to:

τ(n0, p, n1) = n0 + 22
p+d

n1. (32)
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Knuth [16] discusses the same idea for BDDs in exer. 113, and dismisses it in his answer.
Nevertheless, it is clear from our benchmarks that word-size optimization is worthwhile for
IDDs: rather than being orders of magnitude slower than their competitors for w = 1, our
benchmarks become less than one order of magnitude slower for w = 64 on a standard PC. At
the same time, we retain the ability to efficiently process sparse structures.

6 Analysis of IDD

6.1 Worst & Average Size

While bit-trees are (on average twice) bigger than bit-arrays, node sharing guaranties that
bit-dags are always smaller [28]: n > 0 ⇒ s(n) < l(n).

For n large enough, more sharing must take place [28]:

s(n) <
2l(n)

ll(n)− l(ll(n))
.

The worst and average IDD sizes are reduced in [28] to those of the BDD or ZDD, as analyzed
in [16]. It is follows from [27] that the worst size w(p) = max{s(k) : k < x(p)} is such that

w(p) = c(p)
2p

p

where c(p) oscillates between 1 = lim infp→∞ c(p) and 2 = lim supp→∞ c(p).
The average IDD size

a(p) =
1

x(p)

∑
k<x(p)

s(k)

is near the worst. It follows from [27] that 1 = lim supp→∞w(p)/a(p), and

1− 1

2e
= lim inf

p→∞
w(p)/a(p) ≃ 0.81606 · · ·

So, a ”random” integer n is dense: its average size is near the worst size s(n) ≃ w(ll(n)), with
probability approaching 1 for n large enough.

Note that the worst and average size of IDD(n) is near twice Shannon’s [23] lower bound
on the size of any Boolean circuit which has n for exclusive-number. It follows that we can
synthesize from IDD(n) a circuit whose size is no worse than twice the minimal one: a small
price to pay for such automation.

6.2 Flajolet’s Conjecture

Shared DAGs (like Bryant’s BDDs [4] and others) are known to compress data and to asymp-
totically meet Shannon’s [24] entropy lower bound, under various stochastic data models. Such
results are surveyed by Kieffer in [11]. Yet, known proofs of this phenomenon (say [12]) all seem
to rely on specific (Huffman or Arithmetic) codes for some finite subset of the source string.

We try to abstract away from specific codes by considering the bit-size of n ∈ N:

Bs(n) = s(n)× l(s(n)). (33)



21

The triplet-list for n ∈ N is coded by a sequence of 3×Bs(n) bits. Shorter codes exist [12], but
never mind. It follows from sec. 6.1 that the average bit-size is expressed by

Bs(n) = c(ll(n))l(n)(1 + o(1)),

where c is a bounded oscillating function and bits of n are equaly likely. If the bits of n are
drawn by a stochastic process of entropy H Shannon/bit [24], we conjecture that:

Bs(n) = H × os(ll(n))l(n)(1 + o(1)). (34)

Flajolet [unpublished] went a fair way into proving (34) in its simplest probabilistic setting: a
Bernoulli memoryless source where 0 has probability p0, and the entropy is

H = −p0 log2(p0)− p1 log2(p1).

The challenge in Flajolet’s [unfinished] proof resides in deriving manageable expressions for the
oscillating os and asymptotic o(1) terms in (34), from powerful techniques introduced by [7].

6.3 Time Analysis

Sec. 5 shows that operations on dictionaries and Boolean functions preserve sparseness; likewise
for add & subtract, but not for multiply and divide. Over sparse structures, IDD algorithms
can be arbitrarily faster than their competition from unshared structures.

Dichotomy is a safe haven where to analyze the time of IDD algorithms over random dense
structures. Indeed, let us turn off all hash-tables in the IDD package: we end up performing the
very same (bit per bit) operations as bit-trees. It follows that the space & time complexity of
trichotomy is bounded, in the worst case (no sharing) by that of dichotomy, within a constant
time factor c to account for the cost of searching the hash-tables.

With w = 32 word size optimization, our experimental benchmarks over dense structures
achieves c < 20 for arithmetic operations against bit-arrays, and c < 4 for dictionary operations
against binary Tries. At the same time, they use less memory and remain much faster over
(large) sparse structures.

7 Conclusion

A number of natural extensions can be made to the IDD package, for multi-sets, polynomials,
and sets of points in the Euclidean space: quad-trees [3] in 2D and oct-trees in 3D or more
dimensions. In each case, the extension is made through some natural integer encoding which
maps the operations from the application domain to natural operations over binary integers.

In theory, the running time of the extension should be proportional to that of the best
known specialized implementations, and it should use less memory on account of sharing. In
practice, each extension should perform faster than the competition over sparse structures, such
as stellar galaxies or internet indexes.

One common underlying principle is: do it once!

1. Store once by systematically sharing equal sub-structures.
2. Compute once by systematically using memo-functions.
3. Code once by systematically abstracting & sharing common code patterns.
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7.1 HUGNUM

The holly grail is to design & implement a HUGNUM (Huge Numbers) package which would
replace all at once the ancillary packages which most software developers must import as prelim-
inaries to their own code: hash-tables, memory management, dictionaries and arbitrary precision
arithmetics BIGNUM.

To achieve this goal, the theory and implementation of HUGNUM must improve to the
point where the gains in generality & code sharing (one package replaces many) overcome the
time performance loss over dense structures, and keep alive the demonstrated advantages over
sparse structures.

In its current Jazz [8] implementation, our IDD package relies on external software for
both hash tables and memory management. Yet, after word-size optimization, our experimental
benchmarks reveal that both are critical issues in the overall performance. It would be nice
to incorporate either or both features into HUGNUM. After all, a hash-table is a sparse array
with few primitives: is-in, insert, remove-all. The memory available for the application is another
sparse resource, where one merely allocate & free HUGNUM nodes.

It would be nice to be able to efficiently distinguish dense sub-structures from sparse ones.
One could then implement HUGNUM as a hybrid structure, where dense integers are repre-
sented by bit-arrays, operated upon in-place without memo functions, and allocated through
some IDD indexed buddy-system [13]. Sparse integers would be dealt with as before, and one
could then hope for the best of both worlds, over dense & sparse structures.
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