
HAL Id: hal-01239051
https://inria.hal.science/hal-01239051

Submitted on 7 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimating Rewards & Rare Events in Nondeterministic
Systems

Axel Legay, Sean Sedwards, Louis-Marie Traonouez

To cite this version:
Axel Legay, Sean Sedwards, Louis-Marie Traonouez. Estimating Rewards & Rare Events in Nondeter-
ministic Systems. Proceedings of the 15th International Workshop on Automated Verification of Crit-
ical Systems (AVoCS 2015), Sep 2015, Edinburgh, United Kingdom. �10.14279/tuj.eceasst.72.1023�.
�hal-01239051�

https://inria.hal.science/hal-01239051
https://hal.archives-ouvertes.fr

Estimating Rewards & Rare Events in

Nondeterministic Systems

Axel Legay, Sean Sedwards and Louis-Marie Traonouez

Inria Rennes – Bretagne Atlantique

Abstract. Exhaustive verification can quantify critical behaviour aris-
ing from concurrency in nondeterministic models. Rare events typically
entail no additional challenge, but complex systems are generally in-
tractable. Recent work on Markov decision processes allows the extremal
probabilities of a property to be estimated using Monte Carlo techniques,
offering the potential to handle much larger models. Here we present al-
gorithms to estimate extremal rewards and consider the challenges posed
by rarity. We find that rewards require a different interpretation of con-
fidence and that reachability rewards require the introduction of an aux-
iliary hypothesis test. We show how importance sampling can signifi-
cantly improve estimation when probabilities are low, but find it is not
a panacea for rare schedulers.

1 Introduction

Complex systems often contain implicit elements of uncertainty, arising from hu-
man interactions or unknown deployment configurations. Such uncertainty may
be expressed as nondeterminism in formal models and then analysed using for-
mal verification. In this work we focus on Markov decision processes (MDP),
although the techniques we present are adaptable to other formalisms that in-
clude nondeterminism.

MDPs interleave nondeterministic actions and probabilistic transitions and
may be seen as comprising probabilistic subsystems whose transitions depend
on the states of the other subsystems. Assigning rewards to actions, MDPs have
proven useful in many real optimisation problems [20]. Rewards are a useful
decoration to model quantitative aspects of systems that are not expressible as
probabilities, such as information, energy and financial cost.

Given a system represented as an MDP, model checking [1] may be used
to detect and optimise its critical performance, but exhaustive numerical algo-
rithms have complexity related to the size of the system’s state space and scale
exponentially with respect to the number of independent variables in the model.
The application of symmetry reductions and compositional approaches may help,
but real systems are typically intractable due to their scale and heterogeneity.

Statistical model checking (SMC) describes a collection of Monte Carlo tech-
niques that approximate the results of numerical model checking and aim to
avoid considering the entire state space. States are generated on the fly during

simulation and results are given with statistical confidence. Monte Carlo tech-
niques may be divided linearly on parallel computation architectures and are
generally insensitive to the number of states of a model, but the number of sim-
ulations required for a given confidence scales quadratically with the rarity of the
event being quantified. Since systems are designed to function correctly, failure
is typically very rare and critically important. Rare event techniques, such as
importance sampling [19] and importance splitting, have therefore been applied
to SMC.

SMC requires a means to sample execution traces, but MDPs deliberately
avoid completely specifying how a system executes. The notion of a scheduler is
thus used to transform an MDP into a discrete time Markov chain that can be
executed using stochastic simulation. The verification problem becomes one of
finding optimal schedulers—schedulers that optimise some quantitative property.

Early attempts to apply SMC to MDPs store schedulers explicitly, but sched-
ulers typically have the same complexity as the system as a whole, so these ap-
proaches tend to scale no better than numerical algorithms. In [15, 5] the authors
use pseudo-random number generators to define the possibly infinite behaviour
of schedulers in constant memory, allowing them to be sampled at random and
tested individually. While sampling offers a significant computational saving over
enumeration, it raises the problems of rare schedulers and rare events. The prob-
lem of rare schedulers has been partially ameliorated by ‘smart sampling’ [5],
but properties with low probability make even non-rare schedulers difficult to
find.

In this work we enhance the ideas of [15, 5] with importance sampling, to sig-
nificantly increase the chance of finding optimal schedulers when properties have
low probability. Since rewards properties have not yet been implemented in the
sampling context of [15, 5], we also present an algorithm to find schedulers that
approximately maximise or minimise expected rewards. Unlike probabilities, re-
wards have no inherent a priori bounds, so the standard statistical techniques to
bound the absolute error do not apply. Our solution is to use a relative bound,
based on a generalisation of the Chernoff-Hoeffding bound often used in SMC
[17]. A further challenge is that the commonly used ‘reachability rewards’ [11]
assume the probability of a property is known with absolute certainty and de-
fine the reward of properties with probability less than 1 to be infinite. With no
additional information about the property, this definition induces an unknown
distribution with potentially infinite variance. As such its properties cannot be
directly estimated by sampling. Our solution is to introduce an auxiliary hy-
pothesis test to assert that the probability of the property is 1. The estimation
results can then be said to lie within the specified confidence bounds given that
the hypothesis is true, while the confidence of the hypothesis test can be made
arbitrarily high.

In Section 2 we provide the notational definitions used in the sequel. In
Section 3 we review the notions of lightweight verification that underlie our
approach. In Section 4 we briefly describe smart sampling [5] and show how it
may be profitably extended with importance sampling. In Section 5 we present

our algorithm for rewards properties. In Section 7 we present experimental results
that demonstrate the effectiveness and limitations of our algorithms. Section 8
concludes the paper.

Related Work

The Kearns algorithm [10] is a well known sampling algorithm for discounted
MDPs which approximately optimises rewards over infinite horizons. The re-
wards used in model checking, however, are typically not discounted and are
defined over finite horizons [11].

In [14] the authors use an adaptation of the Kearns algorithm to find a
memoryless scheduler that is near optimal with respect to a discounted reward
scheme. The resulting scheduler induces a Markov chain whose properties may be
verified with standard SMC, but these are not rewards properties of the original
MDP.

In [2, 6] the authors present algorithms to remove ‘spurious’ nondeterminism
on the fly, so that standard SMC may be used. This approach is limited to the
class of MDPs whose nondeterminism is not affected by scheduling.

In [7] the authors count the occurrence of state-actions in simulations, to
iteratively improve a probabilistic scheduler that is assessed using sequential
hypothesis testing. If an example that satisfies the hypothesis is found it is
correct, but the frequency of state-actions is not in general indicative of global
optimality.

In [3] the authors present learning algorithms to bound the maximum prob-
ability of (unbounded) reachability properties. The algorithms refine upper and
lower bounds associated to state-actions, according to the contribution of indi-
vidual simulations. The algorithms converge very slowly and may not converge
to the global optimum.

In [15] the authors define the behaviour of a scheduler by combining a pseudo-
random number generator with an incremental hash function. Schedulers are
selected at random and SMC is applied to each of the discrete time Markov chains
they induce, to find one that is approximately optimal. This simple sampling
approach is made more efficient by ‘smart sampling’ in [5]: an initial candidate
set of randomly selected schedulers is progressively refined by discarding those
which are sub-optimal and re-assigning their simulation budget to the schedulers
that remain. The present work builds on these results, which are reviewed in more
detail in Sections 3 and 4.

Importance sampling has been widely applied to quantify failure in ‘highly
reliable’ systems (e.g., [19]) and more recently in the specific context of SMC
(e.g., [9]). We believe the present work is the first to apply importance sampling
to MDPs.

2 Preliminaries

In this work an MDP comprises a possibly infinite set of states S, a finite set
of actions A, a finite set of probabilities Q and a relation T : S × A × S × Q,

such that ∀s ∈ S and ∀a ∈ A,
∑

∀s′∈S T (s, a, s′) = r, where r ∈ {0, 1}. The
execution of an MDP proceeds by a sequence of transitions between states,
starting from an initial state, inducing a set of possible traces Ω = S+. Given
an MDP in state s, an action a is chosen nondeterministically from the set
{a′ ∈ A :

∑

∀s′∈S T (s, a′, s′) = 1}. A new state d ∈ S is then chosen at random
with probability T (s, a, d). We assume that rewards are defined by some function
R : S+ → Q or R : A+ → Q that maps a sequence of states or a sequence of
actions to a total reward. In what follows we abuse the notation and simply
write R(ω) to mean the total reward assigned to trace ω ∈ Ω according to an
arbitrary reward scheme.

Our algorithms find deterministic schedulers that approximately maximise or
minimise expected rewards and probabilities for an MDP. A history-dependent
scheduler is a function S : Ω → A. A memoryless scheduler is a function
M : S → A. Intuitively, at each state in the course of an execution, a history-
dependent scheduler chooses an action based on the sequence of previous states
and a memoryless scheduler chooses an action based only on the current state.
History-dependent schedulers therefore include memoryless schedulers. In the
context of SMC we consider finite simulation traces of bounded length, hence S
and M are finite.

A scheduler applied to an MDP induces a Markov chain over which there
is a probabilistic measure F : Ω → R such that

∫

Ω
dF = 1. Given a set of

paths ω ∈ Ω that satisfy some bounded linear temporal logic property ϕ, de-
noted ω |= ϕ, the probability of ϕ is given by p =

∫

Ω
1(ω |= ϕ)dF , where

1 : {true, false} → {0, 1} is an indicator function that returns 1 if its argument
is true and 0 otherwise. To estimate p, SMC algorithms typically construct an
automaton to decide the truth of the statement ωi |= ϕ, i.e., whether concrete
simulation trace ωi satisfies property ϕ. The estimated probability of ϕ is then
given by

p̂ =
1

N

N
∑

i=1

1(ωi |= ϕ) ωi ∼ F, (1)

where ω1, . . . , ωN are N statistically independent random simulation traces dis-
tributed according to F , denoted ωi ∼ F , and p̂ denotes the estimate of p. To
bound the estimation error it is common to use the “Chernoff” bound of [17].
The user specifies an absolute error ε and a probability δ to define the bound
P(| p̂− p |≥ ε) ≤ δ. The bound is guaranteed if N satisfies the relation

N ≥
⌈

(ln 2− ln δ)/(2ε2)
⌉

. (2)

3 Lightweight Verification of Markov Decision Processes

We recall here the lightweight verification techniques of [15] that underlie our
approach.

Schedulers as Pseudo-Random Number Generators To avoid storing schedulers
as explicit mappings, we construct schedulers on the fly using uniform pseudo-
random number generators (PRNG) that are initialised by a seed and iterated
to generate the next pseudo-random value. Our technique uses two independent
PRNGs that respectively resolve probabilistic and nondeterministic choices. The
first is used in the conventional way to make pseudo-random choices during a
simulation experiment. The second PRNG is used to choose actions such that
the choices are consistent between different simulations in the same experiment.
Given multiple simulation experiments, the further role of the second PRNG
is to range uniformly over all possible sets of choices. The seed of the second
PRNG can be seen as the identifier of a specific scheduler.

To estimate the probability of a property under a scheduler, we generate
multiple probabilistic simulation traces by fixing the seed of the PRNG for non-
deterministic choices while choosing random seeds for the PRNG for probabilistic
choices. To ensure that we sample from history-dependent schedulers, we con-
struct a per-step PRNG seed that is a hash of a large integer representing the
sequence of states up to the present and a specific scheduler identifier [15].

A Hash Code to Identify a Trace We assume that the state of an MDP is an
assignment of values to a vector of n system variables vi, i ∈ {1, . . . , n}, with
each vi represented by a number of bits bi. The state can thus be represented by
the concatenation of the bits of the system variables, while a sequence of states
(a trace) may be represented by the concatenation of the bits of all the states.
We interpret such a sequence of states as an integer of

∑n

i=1
bi bits, denoted

s, and refer to this as the trace vector. A scheduler is identified by an integer
σ of bσ bits, which is concatenated to s (denoted σ : s) to uniquely identify a
trace and a scheduler. Our approach is to generate a hash code h = H(σ : s)
and to use h as the seed of a PRNG that resolves the next nondeterministic
choice. In this way we can approximate the scheduler functions S and M: H
maps σ : s to a seed that is deterministically dependent on the trace and the
scheduler; the PRNG maps the seed to a value that is uniformly distributed
but also deterministically dependent on the trace and the scheduler. Algorithm
1 implements these ideas as a simulation function that returns a trace, given a
scheduler and bounded temporal property as input. The uniformity of scheduler
selection is demonstrated by the accuracy of the estimates labelled ‘uniform
prob’ in Figs. 1–3.

An Efficient Incremental Hash Function To implement our approach we use
an efficient hash function that constructs seeds incrementally using standard
precision mathematical operations. The function is based on modular division,
such that h = (σ : s) mod m, where m is a large prime not close to a power of
2 [4, Ch. 11]. Since s is typically very large, we use Horner’s method [4, Ch. 30]
to generate h: we set h0 = σ and find h ≡ hn (n as above) by iterating the
recurrence relation

hi = (hi−12
bi + vi) mod m. (3)

Algorithm 1: Simulate

Input:
M: an MDP with initial state s0
ϕ: a bounded temporal logic property
σ: an integer identifying a scheduler

Output:
ω: a simulation trace

1 Let Uprob,Unondet be uniform PRNGs with respective samples rpr, rnd
2 Let H be a hash function
3 Let s denote a state, initialised s← s0
4 Let ω denote a trace, initialised ω ← s
5 Let s be the trace vector, initially empty
6 Select seed of Uprob randomly
7 while ω |= ϕ is not decided do

8 s← s : s
9 Set seed of Unondet to H(σ : s)

10 Iterate Unondet to generate rnd and use to resolve nondeterministic choice
11 Iterate Uprob to generate rpr and use to resolve probabilistic choice
12 Set s to the next state
13 ω ← ω : s

Equation (3) allows us to generate a hash code knowing only the current
state and the hash code from the previous step. When considering memoryless
schedulers we need only know the current state. Using suitable congruences
[15], the following equation allows (3) to be implemented using efficient native
arithmetic:

(hi−12
j) mod m = (hi−12

j−1) mod m+ (hi−12
j−1) mod m

In a typical implementation on current hardware, a hash function and PRNG
may span around 1019 schedulers. This is usually many orders of magnitude more
than the number of schedulers sampled. There is no advantage in sampling from
a larger set of schedulers until the number of samples drawn approaches the size
of the sample space.

Confidence with Multiple Estimates To avoid the cumulative error when choosing
a single probability estimate from a number of alternatives, [15] defines the
following Chernoff bound for multiple estimates:

N ≥
⌈(

ln 2− ln
(

1− M
√
1− δ

))

/(2ε2)
⌉

. (4)

Given M estimates {p̂1, . . . , p̂M} of corresponding true probabilities {p1, . . . ,
pM} each generated with N samples, (4) asserts that for any estimate p̂i, in
particular the minimum or maximum, P(| p̂i − pi |≥ ε) ≤ δ. Note that when
M = 1, (4) degenerates to (2).

4 Smart Sampling with Importance Sampling

Smart sampling [5] builds on the foregoing techniques to maximise the proba-
bility of finding an optimal scheduler with a finite simulation budget. It works
by iteratively eliminating sub-optimal schedulers from a candidate set and re-
allocating their budget to those that remain.

The problem of finding optimal schedulers by sampling has two independent
components: the probability of near-optimal schedulers (denoted pg) and the
average probability of the property under near-optimal schedulers (denoted pg).
A near-optimal scheduler is one whose reward or probability (depending on the
context) is within some ε of the optimal value. If we select M schedulers at
random and verify each with N simulations, the expected number of traces
that satisfy the property using a near-optimal scheduler is thus MpgNpg. The
probability of seeing a trace that satisfies the property using a near-optimal
scheduler is the cumulative probability

(1− (1− pg)
M)(1− (1− pg)

N). (5)

To maximise the chance of finding a good scheduler with a simulation budget
of Nmax = NM , N and M should be chosen to maximise (5). Then, following a
sampling experiment using these values, any scheduler that produces at least one
trace that satisfies the property becomes a candidate for further investigation.
Since the values of of pg and pg are usually unknown a priori, it is necessary
to perform an initial uninformed sampling experiment to estimate them, set-
ting N = M = ⌈

√
Nmax⌉. The results can be used to numerically optimise (5),

however an effective heuristic is to set N = ⌈1/p̂g⌉, where p̂g is the maximum ob-
served estimate (or minimum non-zero estimate in the case of finding minimising
schedulers).

The best scheduler is found by iteratively refining the candidate set. At each
iteration the per-iteration simulation budget (Nmax) is divided between the re-
maining candidates, simulations are performed and the average probability or
reward for each scheduler is estimated. Schedulers whose estimates fall into the
“worst” quantile (lower or upper half, depending on context) are discarded. Re-
finement continues until estimates are known with specified confidence, according
to (4). With a per-iteration budget satisfying (2), the algorithm is guaranteed
to terminate with a valid estimate.

Smart sampling offers a potentially exponential improvement in performance
over the simple sampling strategy described in Sect. 3, but if the property is a
rare event, i.e., pg is small, finding a good scheduler may remain challenging
even if schedulers are not rare. To address this we enhance the basic algorithm
with the variance reduction technique of importance sampling, to make pg ≈ 1
and thus maximise the number of schedulers considered.

Importance sampling is a standard variance reduction technique that works by
weighting the executable model of a probabilistic system to make a rare event
occur more frequently in simulations. The proportion of simulations in which the
event occurs using the weighted model overestimates the true probability, but

the estimate may be exactly compensated by the weights. This arises from the
equality p =

∫

Ω
1(ω |= ϕ)dF =

∫

Ω
1(ω |= ϕ)dF

dG
dG, where F and G are measures

over Ω such that 1(ω |= ϕ)dF
dG

> 0, ∀ω |= ϕ. F is the original (unweighted) mea-

sure, G is the importance sampling (weighted) measure and dF
dG

is the so-called
likelihood ratio. From this we construct the importance sampling counterpart of
(1):

p̂ =
1

N

N
∑

i=1

1(ωi |= ϕ)
dF (ωi)

dG(ωi)
ωi ∼ G. (6)

N simulation traces ωi are generated under measure G and their contribution
is compensated by the likelihood ratio, which is calculated on the fly. If G is
constructed to strongly favour ϕ, a high percentage of traces will satisfy ϕ and
(6) will converge much faster than (1).

We use this phenomenon to significantly improve the performance of smart
sampling when pg ≪ 1. If pg denotes the fraction of traces we expect to satisfy
ϕ using near-optimal schedulers under F and p′g is the fraction of traces we
expect to satisfy ϕ using near-optimal schedulers under G, then importance
sampling will increase the expectation of seeing a near-optimal scheduler by
p′g/pg. Typically, p

′
g ≈ 1, so the improvement is ≈ 1/pg.

The smart sampling algorithm with importance sampling follows the pro-
cedure described above, but substitutes p′g, p̂

′
g for pg, p̂g to optimise (5) and

generate the initial candidate set of schedulers. Thereafter, the algorithm uses
the corrected estimates, i.e., according to (6), to order and refine the candidate
set.

Given F generated by an optimal scheduler, the theoretically optimal impor-
tance sampling distribution G∗ is defined by dG∗ = 1(ω |= ϕ)dF/p, where p is
the probability of ϕ. To maintain the advantages of sampling, G is typically gen-
erated by a syntactic re-parametrisation of F and constructed by efficient means
that do not iterate over the entire state space, such as ‘failure biasing’ [19] and
cross-entropy minimisation [9]. These techniques generally find G that only ap-
proximate G∗, but are nevertheless very effective. We make use of failure biasing
in one of our case studies in Section 7 and leave cross-entropy minimisation for
future work.

A well known limitation of importance sampling is that the standard statis-
tical confidence bounds do not apply. In our application this is less important
because the principal goal is to make near-optimal schedulers more visible. Once
such schedulers have been found, we are at liberty to use other methods to
estimate the probability of the property, such as standard Monte Carlo. The
values estimated by importance sampling may nevertheless provide useful non-
zero bounds when standard Monte Carlo returns a zero estimate because the
probability is too low.

5 Statistical Model Checking of MDPs with Rewards

In the classic context, rewards are assigned to actions [18]. In the context of
formal verification, rewards are often assigned to states or transitions between
states [11]. In both cases the rewards are summed over the length of a trace and
the expected reward is calculated by averaging the total reward with respect to
the probability of the trace. In this work we focus on MDPs in the context of
formal verification, but the mechanism of accumulating rewards is unimportant
to our algorithms and we simply assume that a total reward is assigned to a
finite trace.

The notions of probability estimation used in standard SMC can be adapted
to estimate the expected reward of a trace. Given a function R(ω) ∈ [a, b], a, b
finite, that assigns a total reward to simulation trace ω, the expected reward may
be estimated by 1

N

∑N

i=1
R(ωi), where ω1, . . . , ωN are statistically independent

simulation traces. Since rewards may take values outside [0, 1], we must use
Hoeffding’s generalisation of (2) to bound the errors [8]. To guarantee P(| r̂−r |≥
ε) ≤ δ, where r and r̂ are respectively the true and estimated values of expected
reward, N is required to satisfy the relation

N ≥
⌈

ln(2/δ)× (a− b)2/(2ε2)
⌉

. (7)

For non-trivial problems the values of a and b are usually not known, while
guaranteed a priori bounds (e.g., by assuming maximum or minimum possible
rewards on each step) may be too conservative to be useful. Although it is
possible to develop a strategy using a posteriori estimates of a and b, i.e., based
on maxi∈{1,...,N}(R(ωi)) and mini∈{1,...,N}(R(ωi)), we see that N depends on
the ratio of the absolute error ε to the range of values (a− b). The confidence of
estimates of rewards may therefore be specified a priori as a percentage of the
maximum range of the support of R. We adopt this idea in Algorithm 2, where
we use (2) and (4) and assume that ε expresses a percentage as a fraction of 1.

Rewards Properties

The rewards properties commonly used in numerical model checking are based
on an extension of the logic PCTL [11]. This extension defines ‘instantaneous’
rewards (the average reward assigned to the kth state of all traces, denoted Ik),
‘cumulative’ rewards (the average total reward accumulated up to the kth state
of all traces, denoted Ck) and ‘reachability’ rewards (the average accumulated
reward of traces that eventually satisfy property ϕ, denoted Fϕ). Instantaneous
and cumulative rewards are based on finite traces and can be immediately ap-
proximated by sampling, using (2) and (4) to bound the errors. Reachability
rewards are based on unbounded reachability (F) and require additional consid-
eration.

By the definition of reachability rewards [11], properties that are not satisfied
with probability 1 are assigned infinite reward. The rationale behind this is that
if P(Fϕ) < 1, there must exist an infinite path that does not satisfy ϕ, whose

rewards will accumulate infinitely. This definition is somewhat arbitrary, since
rewards are not constrained to be positive nor to have a minimum value. An
infinite sum of positive and negative values can equate to zero and it is also
possible for an infinite sum of positive values to converge, as in the case of
discounted rewards.

The definition of reachability rewards makes sense in the context of numerical
model checking, where paths are not considered explicitly and unbounded prop-
erties can be quantified with certainty, but it causes problems for sampling. In
particular, using sampling alone it is not possible to say with certainty whether
P(Fϕ) = 1, even if every observed trace of finitely many satisfies ϕ. Without
additional guarantees, the random variable from which samples are drawn could
include the value infinity, giving it infinite variance. Statistical error bounds,
which generally rely on an underlying assumption of finite variance, will there-
fore not be correct without additional measures.

To accommodate the standard definition of reachability rewards, our solution
is to implement Fϕ as Fkϕ, i.e., bounded reachability where ϕ must be true
within k steps, with an auxiliary hypothesis test to assert that P(Fϕ) = 1
is true. A positive result is thus an estimate within user-specified confidence
plus an accepted hypothesis within other user-specified confidence. A negative
result is a similar estimate, but with an hypothesis that is not accepted. This
approach is consistent with intuition and with the SMC ethos to provide results
within statistical confidence bounds. The hypothesis test may be implemented
in any number of standard ways. Our implementation uses a convenient normal
approximation model, which we describe in Section 6.

In practice, the bound k for reachability rewards is set much longer than it is
supposed necessary to satisfy ϕ and the hypothesis is of the form P(Fkϕ) ≥ p0,
p0 / 1. Intuitively, the more traces of length ≤ k that satisfy ϕ, the more
confident we are that P(Fϕ) ≥ p0 is true. Traces that fail to satisfy ϕ after k
steps may nevertheless satisfy ϕ if allowed to continue, hence the value of p0
defines how certain we wish to be after k steps. If the hypothesis is rejected, we
may either conclude that the average reward is infinite (by definition), accept
the calculated average reward as a lower bound or increase k and try again.

Our SMC engine quits as soon as a property is satisfied or falsified, so there is
very little penalty in setting k large when we require high confidence, i.e., when
p0 ≈ 1. Simulations that satisfy the property will only take as many steps as
necessary, independent of a much larger value of k, while those that do not satisfy
the property will be few because the auxiliary hypothesis is falsified quickly when
p0 is close to 1.

For the standard rewards properties described above, the value of pg in (5)
is effectively 1. In the case of instantaneous and cumulative rewards, traces are
not filtered with respect to a property, so the probability of acceptance is 1.
In the case of reachability rewards, either nearly all traces satisfy the property
(‘nearly’ because the auxiliary hypothesis test allows for the case that not all
traces satisfy the property) or the reward is assumed to be infinite. Hence, the
case of probabilities significantly less than 1 does not have to be quantified, just

detected. The consequence of this is that there is no need for an undirected
simulation experiment to estimate pg and the initial candidate set will contain
the maximum number of schedulers for the specified budget, i.e., N = 1 and
M = Nmax.

6 Smart Reward Estimation Algorithm

Algorithm 2 builds on Algorithm 4 in [5] to find schedulers that maximise re-
wards. The algorithm to minimise rewards follows intuitively: replace instances
of ‘max’ with ‘min’ in lines 16, 17, 21 and the Output line, and replace line 20
with S ← {σ ∈ S | σ = Q′(n) ∧ n ∈ {1, . . . , ⌈|S|/2⌉}}.

The reward property ρmay be of type instantaneous, cumulative or reachabil-
ity, which are denoted Ikϕ, Ckϕ and Fkϕ, respectively, to unify the description.
The reward function Rρ : N × Ω → Q maps the identifier of a scheduler and a
trace to a reward, given reward property ρ. In the case of Ikϕ and Ckϕ, k is the
standard user-specified parameter for these rewards and ϕ is implicitly Gktrue

(i.e., true in the initial state and for k steps). In the case of Fkϕ, ϕ is user-
specified and k is set as large as feasible to satisfy the hypothesis P(Fkϕ) ≥ p0,
with confidence defined by α (described below). Given that our actual require-
ment is that P(Fϕ) = 1, both p0 and α will typically be close to 1, such that
very few traces will be necessary to falsify the hypothesis.

The initial candidate set of schedulers and corresponding estimates are gen-
erated in lines 1 to 4. Applying (5), 1 simulation is performed using each of Nmax

schedulers chosen at random. The function Q maps schedulers to their current
estimate. A number of initialisations take place in lines 5 to 6.

The function trues is used by the auxiliary hypothesis test and counts the
total number of traces per scheduler that satisfy the property. The variable
samples is also used by the auxiliary hypothesis test and counts the total number
of traces used per scheduler. The value of conf , initialised to 1 to ensure at least
one iteration, is the probability that the estimates exceed their specified bounds
(defined by ε), given the current number of simulations. The main loop (lines 6
to 20) terminates when conf is less than or equal to the specified probability δ.
Typically, the per-iteration budget will be such that the required confidence is
reached according to (4) before the candidate set is reduced to a single element.
Lines 10 to 14 contain the main simulation loop, which quits as soon as the
required confidence is reached. Lines 15 to 20 order the results by estimated
reward and select the upper quantile of schedulers.

The auxiliary hypothesis test necessary for reachability rewards is provided
in lines 21 to 23. To test P(Fkϕ) ≥ p0, it considers the error statistic Z =
samples × (p̂ϕ − p0)/

√

samples × p0(1− p0), where p̂ϕ = trues(σmax)/samples

is the estimate of P(Fkϕ). For typical values of samples , the distribution of Z
is well approximated by a normal with mean = 0 and variance = 1 when the
expectation of p̂ϕ, denoted E(p̂ϕ), is equal to p0. To test the hypothesis with
confidence α, the algorithm compares the statistic Z with the standard normal
quantile of order α, denoted z(α). The value of z(α) may be drawn from a table

Algorithm 2: Reward Estimation

Input:
M: an MDP
ρ ∈ {Ikϕ,Ckϕ,Fkϕ}: a reward property
Rρ: the reward function for ρ
H0 : P(Fkϕ) ≥ p0: the auxiliary hypothesis
z(α): confidence of H0, the normal quantile of order α
ε, δ: the reward estimation Chernoff bound
Nmax > ln(2/δ)/(2ε2): the per-iteration budget

Output:
r̂max ≈ rmax, where rmax ≈ rmax and P(|rmax − r̂max| ≥ ε) ≤ δ

1 N ← 1, M ← Nmax

2 S ← {M seeds chosen uniformly at random}
3 ∀σ ∈ S,∀j ∈ {1, . . . , N} : ωσ

j ← Simulate(M, ϕ, σ)

4 Q← {(σ, q) | σ ∈ S ∧Q ∋ q =
∑N

j=1
Rρ(σ, ω

σ
j)/N}

5 ∀σ ∈ S : trues(σ)← 0
6 samples ← 0, conf ← 1, i← 0
7 while conf > δ ∧ S 6= ∅ do
8 i← i+ 1
9 Mi ← |S|, Ni ← 0

10 while conf > δ ∧Ni < ⌈Nmax/Mi⌉ do
11 Ni ← Ni + 1

12 conf ← 1− (1− e−2ǫ2Ni)Mi

13 ∀σ ∈ S : ωσ
Ni
← Simulate(M, ϕ, σ)

14 samples ← samples + 1

15 Q← {(σ, q) | σ ∈ S ∧Q ∋ q =
∑Ni

j=1
Rρ(σ, ω

σ
j)/Ni}

16 σmax ← argmaxσ∈S Q(σ)
17 r̂max ← Q(σmax)
18 ∀σ ∈ S, j ∈ {1, . . . , Ni} : trues(σ) = trues(σ) + 1(ωσ

j |= ϕ)
19 Q′ : {1, . . . , |S|} → S is an injective function s.t.

∀(n, σ), (n′, σ′) ∈ Q′ : n > n′ =⇒ Q(σ) ≥ Q(σ′)
20 S ← {σ ∈ S | σ = Q′(n) ∧ n ∈ {⌊|S|/2⌋, . . . , |S|}}

21 Z ← (trues(σmax)− samples × p0)/
√

samples × p0 (1− p0)
22 if Z ≤ z(α) then
23 H0 is rejected

or approximated numerically. If E(p̂ϕ) ≥ p0, the value of Z will be ≥ z(α) with
probability ≥ α.

To simplify the presentation, the auxiliary hypothesis test is also used by the
instantaneous and cumulative rewards. In these latter cases, however, the test is
guaranteed to always be satisfied.

7 Case Studies

The following results demonstrate typical performance on a selection of stan-
dard case studies. We necessarily use models whose expected rewards can be
calculated or inferred using numerical methods, but observe that this does not
give our algorithms any advantage. The models and properties can be found on
the Plasma website1 and are illustrated in detail on the Prism case studies
website2. All timings are based on parallel simulations using 64 simulation cores
of the IGRIDA cluster3.

In most instances of reward estimation we were able to achieve accurate re-
sults with a relatively modest per-iteration simulation budget of Nmax = 105

simulations, using a Chernoff bound of ε = δ = 0.01. In the case of the gossip
protocol this budget was apparently not sufficient for all considered parameters.
We nevertheless claim that the results provide useful conservative bounds. Note
that for all reachability rewards we made the value of k in the auxiliary hypoth-
esis test sufficiently large to ensure that all traces satisfied the property, giving
us maximum confidence for the specified budget.

The figures plot the estimates generated by our algorithms against the values
calculated using numerical methods. In addition to maximum and minimum, we
also plot the the average estimates of the initial candidate set. This average cor-
responds to the expected reward or probability using the uniform probabilistic
scheduler or, equivalently, treating the MDP as a DTMC with uniform probabil-
ities assigned to nondeterministic choices. The average estimates are consistently
accurate, demonstrating that Algorithm 1 is sampling uniformly from scheduler
space.

Network Virus Infection This case study is based on [13] and comprises a net-
work of linked sets of nodes. Initially, there is a set containing one node infected
by a virus, a set with no infected nodes and a set of uninfected barrier nodes that
divides the first two sets. A virus chooses which node to infect nondeterministi-
cally and infects it with probability 0.5. A node detects a virus probabilistically.
Figure 1 plots the results of using a rewards property to estimate the expected
number of attacks before a particular node is infected, varying the probability
that a barrier node detects a virus as a parameter. Each point required approx-
imately 15 seconds of simulation time. All estimates are within ±1% of the true
values. Figure 2 plots the results of using importance sampling to estimate the

1 project.inria.fr/plasma-lab
2 www.prismmodelchecker.org/casestudies
3 igrida.gforge.inria.fr

1
0

2
0

5
0

1
0
0

Detection probability

E
x
p
e
c
te

d
a
tt
a
c
k
s

b
e
fo

re
in

fe
c
ti
o
n

0 0.2 0.4 0.6 0.8 1

max

minuniform prob

estimate

Fig. 1. Network virus infection: reward
estimation.

20 40 60 80 100

Steps

P
ro

b
a

b
ili

ty
o

f
in

fe
c
ti
o

n

10
−19

10
−15

10
−11

10
−7

10
−3

estimate

max

min

uniform prob

Fig. 2. Network virus infection: probabil-
ity estimation using importance sampling.

probability of infection when the probability of a virus infecting a node is re-
duced to 0.01. Our importance sampling distribution is generated by the simple
expedient of setting this parameter to its original value of 0.5. The plotted esti-
mates are the average of 10 individual estimates generated using a per-iteration
budget of just 104 simulations. In most cases this budget is orders of magnitude
less than the expected number of simulations necessary to see a single trace that
satisfies the property.

50 100 150 200

Time (steps)

E
x
p
e
c
te

d
p
a
th

le
n
g
th

2
2
.5

3
3
.5

4

max

uniform prob

estimate min

Fig. 3. Gossip protocol.

Gossip Protocol The gossip protocol
of [12] uses local connectivity to prop-
agate information globally. Using a
reachability reward property, our al-
gorithms accurately estimate the ex-
pected minimum and maximum num-
ber of rounds necessary for the net-
work to become connected as 1.486
and 4.5, compared to correct values
1.5 and 4.5. The average simulation
time per estimate was approximately
1 minute.

Figure 3 plots the maximum and
minimum estimated path length at
different time steps, using an instan-
taneous reward property. We see that
the estimates are accurate up to about
75 time steps, but less so above this
value. Since pg in (5) is effectively 1, this problem cannot be overcome by impor-
tance sampling. The estimates are nevertheless guaranteed by (4) not to exceed
the true values by more than a factor of 1 + ε with probability δ.

Choice Coordination To demonstrate the scalability of our approach we consider
instances of the choice coordination model of [16] with BOUND = 100. This
value makes most of the models intractable to numerical model checking, however
it is possible to infer the correct values of rewards from tractable instances. The
chosen reachability property gives the expected minimum number of rounds
necessary for a group of tourists to meet. The following table summarises the
results:

Number of tourists 2 3 4 5 6 7 8 9 10

Estimated minimum rounds to converge 4.0 5.0 7.0 8.0 10.0 11.0 12.0 13.0 14.0

All the estimates are exactly correct, while the average time to generate each
result was just 8 seconds.

8 Prospects and Challenges

In this work we have focused on estimating the expected values of rewards and
rare events. We believe the same techniques may be immediately extended to
sequential hypothesis testing, as in [15] and [5]. Ongoing work suggests that
estimating rewards in continuous time models will also be feasible.

With respect to rewards, our case studies demonstrate that our approach is
effective and can be efficient with state space that is intractable to numerical
methods. We do not yet provide numerical confidence with respect to optimality,
but our techniques generate useful conservative bounds with correct statistical
guarantees of accuracy: the estimate will be greater (less) than the true maximum
(minimum) expected reward by a factor of ≥ 1 + ε with probability ≤ δ.

The use of importance sampling can improve the performance of smart sam-
pling by a factor of 1/pg. We have demonstrated this technique using an impor-
tance sampling distribution generated by simple failure biasing, but as future
work we propose to develop a cross-entropy minimisation algorithm to find an
optimal parametrised distribution, along the lines of [9].

In the case of standard rewards properties, pg = 1 and importance sampling
cannot help. Figure 3 illustrates circumstances where our chosen per-iteration
budget of 105 is apparently not sufficient to explore the tails of the distribution
of schedulers. Merely increasing the budget will not in general be adequate, since
near-optimal schedulers may be arbitrarily rare. Our proposed future solution is
to combine sampling with learning to construct composite schedulers.

Acknowledgements

This work was partially supported by the European Union Seventh Framework
Programme under grant agreement numbers 295261 (MEALS) and 318490 (SEN-
SATION).

References

1. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

2. Jonathan Bogdoll, Luis Maŕıa Ferrer Fioriti, Arnd Hartmanns, and Holger Her-
manns. Partial order methods for statistical model checking and simulation. In
Formal Techniques for Distributed Systems, pages 59–74. Springer, 2011.

3. Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmeĺık, Vojtěch Forejt, Jan
Křet́ınský, Marta Kwiatkowska, David Parker, and Mateusz Ujma. Verification
of markov decision processes using learning algorithms. In Franck Cassez and
Jean-Franois Raskin, editors, Automated Technology for Verification and Analysis,
volume 8837 of LNCS, pages 98–114. Springer, 2014.

4. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 3rd edition, 2009.

5. Pedro D’Argenio, Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Smart
sampling for lightweight verification of Markov decision processes. International
Journal on Software Tools for Technology Transfer, 17(4):469–484, 2015.

6. Arnd Hartmanns and Mark Timmer. On-the-fly confluence detection for statistical
model checking. In NASA Formal Methods, pages 337–351. Springer, 2013.

7. David Henriques, Joao G. Martins, Paolo Zuliani, André Platzer, and Ed-
mund M. Clarke. Statistical model checking for Markov decision processes. In
9thInternational Conference on Quantitative Evaluation of Systems (QEST2012),
pages 84–93. IEEE, 2012.

8. Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American statistical association, 58(301):13–30, 1963.

9. Cyrille Jegourel, Axel Legay, and Sean Sedwards. Cross-entropy optimisation of
importance sampling parameters for statistical model checking. In P. Madhusudan
and Sanjit A. Seshia, editors, Computer Aided Verification, volume 7358 of LNCS,
pages 327–342. Springer, 2012.

10. Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm
for near-optimal planning in large Markov decision processes. Machine Learning,
49(2-3):193–208, 2002.

11. M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In
M. Bernardo and J. Hillston, editors, Formal Methods for the Design of Computer,
Communication and Software Systems: Performance Evaluation (SFM’07), volume
4486 of LNCS (Tutorial Volume), pages 220–270. Springer, 2007.

12. Marta Kwiatkowska, Gethin Norman, and David Parker. Analysis of a gossip
protocol in PRISM. SIGMETRICS Perform. Eval. Rev., 36(3):17–22, November
2008.

13. Marta Kwiatkowska, Gethin Norman, David Parker, and Maria Grazia Vigliotti.
Probabilistic mobile ambients. Theoretical Computer Science, 410(12-13):1272–
1303, 2009.

14. Richard Lassaigne and Sylvain Peyronnet. Approximate planning and verification
for large Markov decision processes. In Proc. 27th Annual ACM Symposium on
Applied Computing, pages 1314–1319. ACM, 2012.

15. A. Legay, S. Sedwards, and L.-M. Traonouez. Scalable verification of Markov
decision processes. In 4thWorkshop on Formal Methods in the Development of
Software (FMDS 2014), LNCS. Springer, 2014.

16. U. Ndukwu and A. McIver. An expectation transformer approach to predicate ab-
straction and data independence for probabilistic programs. In Proc. 8thWorkshop
on Quantitative Aspects of Programming Languages (QAPL’10), 2010.

17. Masashi Okamoto. Some inequalities relating to the partial sum of binomial prob-
abilities. Annals of the Institute of Statistical Mathematics, 10(1):29–35, 1958.

18. Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley-Interscience, 1994.

19. Perwez Shahabuddin. Importance sampling for the simulation of highly reliable
Markovian systems. Management Science, 40(3):333–352, 1994.

20. Douglas J. White. A survey of applications of Markov decision processes. Journal
of the Operational Research Society, 44(11):1073–1096, Nov 1993.

