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Ostwald ripening has been broadly studied because it plays a determinant role in the evolution of cluster

size during both chemical and physical synthesis of nanoparticles. This thermoactivated process causes

large particles to grow, drawing material from the smaller particles, which shrink. However, this

phenomenon becomes more complex when considering the coarsening of metallic alloy clusters. The

present experimental and theoretical investigations show that the relative composition of CoPt nano-

particles can be strongly modified during high temperature annealing and displays a size-dependent

behavior. This compositional change originates from the higher evaporation rate of Co atoms from the

nanoparticles. More importantly, this effect is expected in all alloy clusters containing species with

different mobilities.
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Metallic alloy clusters, also called nanoalloys, are at-
tracting increasing attention because of the immense tech-
nological potential that arises from the combination of size
effects with composition effects. However, the design of
nanosystems with new and tunable properties requires
understanding the phenomena that influence cluster size
and composition. Ostwald ripening, first described by the
Lifshitz-Slyozov-Wagner theory [1,2], is a major mecha-
nism in the heat-induced size change of nanoparticles
(NPs) on a substrate [3] or in solution [4]. If NPs’ coarsen-
ing has been intensively studied, very little attention has
been paid to the impact of this phenomenon on the com-
position of nanoalloys [5,6]. Here, energy dispersive x-ray
(EDX) nanoanalysis carried out on a transmission electron
microscope provides evidence that the relative composi-
tion of CoPt NPs can be strongly modified during anneal-
ing and displays a size-dependent behavior. This effect,
explained within a thermodynamical framework, is ex-
pected in all nanoalloys containing species with different
mobilities.

NP thin films were produced by pulsed laser deposition
[7–9]. This method allows the fabrication of NP thin
films with a strict control over the targeted composition
(� 2 at:%) [7]. Commercial TEM Cu grids on which a
10-nm-thick amorphous carbon film was deposited were
used as the substrate. Following the synthesis, the speci-
mens were covered with a 2-nm-thick layer of amorphous
Al2O3 deposited by pulsed laser deposition to protect the
NPs from air oxidation. Two samples with a nominal
thickness of 1 nm were prepared at room temperature
(as-grown NPs, sample A) and were subsequently annealed
for 1 h at 650 �C (sample B) and 750 �C (sample C),

respectively. Reference samples with the same nominal
thickness of pure Pt and pure Co NPs were also grown
and annealed for 1 h at 700 �C.
TEM experiments were carried out on a JEM-2100F

field-emission electron microscope operating at 200 kV
and equipped with a JED 2300T EDX analyzer from
JEOL. To calibrate the x-ray analyzer, we determined the
Cliff-Lorimer k factor [10] with a Co45Pt55 reference bulk
sample [11]. We performed single particle composition
measurements by using a 1 nm-size scanning probe [12].
Depending on the size of the NPs, the absolute error on the
composition of a single sub-10 nm NP was estimated to lie
between 3% and 5%, when considering the statistical
fluctuations associated with the integrated counts below
the Pt M and Co K peaks at a 95% confidence level [13].
Very generally, NPs’ size and shape evolve during an-

nealing as a consequence of Ostwald ripening and coales-
cence. The morphology of CoPt nanoparticles before and
after annealing procedures is shown in Fig. 1. The mean
size and polydispersity (that is, standard deviation divided

FIG. 1. TEM images of CoPt NPs with the corresponding
particle size distribution in the insets. (a) As-grown NPs
(sample A), (b) NPs after 1 h at 650 �C (sample B), and
(c) NPs after 1 h at 750 �C (sample C).
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by the mean size) of as-grown NPs are 3 nm and 33%,
respectively [sample A, Fig. 1(a)]. As previously reported
[7,14], growth mechanisms are weakly active below
700 �C in CoPt NPs embedded in an amorphous matrix.
Consequently, the size and polydispersity of the NPs re-
main unchanged after 1 h at 650 �C [sample B, Fig. 1(b)],
whereas we observe a substantial increase of the NPs’ size
and polydispersity (4.8 nm and 45%, respectively) after 1 h
at 750 �C [sample C, Fig. 1(c)].

Standard EDX measurements, performed in a TEM on
NP assemblies of samples A, B, and C, indicate a compo-
sition close to the equiatomic stoichiometry (� 1 at:%).
We then undertook EDX nanoanalysis for simultaneously
analyzing size and composition of single NPs. As observed
in Fig. 2, the composition of the particles in samples A and
B is found to be Co50Pt50 with a dispersion of�5%, which
is very close to the absolute error on the composition
measurements of single sub-10 nm clusters. Moreover,
the composition of the particles does not show any depen-
dence with their size. However, in sample C, EDX nano-
analyses reveal a clear correlation between particle size
and composition: the Co-to-Pt ratio increases with the
particle size. Indeed, the largest particles in a size range
from 6 to 10 nm formed by the growth mechanisms during
annealing present a large excess of cobalt (68� 4 at:%),
whereas particles below 3 nm present a lower cobalt con-
centration (45� 5 at:%). Unfortunately, it was not pos-
sible to measure the composition of very small particles
(less than 1.5 nm) due to their instability under beam
irradiation. However, we can easily assume that the num-
ber of Co and Pt atoms in a nanoparticle assembly stays
constant during annealing, since material loss is prevented
by the amorphous alumina layer. No Co or Pt atoms were
detected between the particles. Therefore the excess of
Co in the larger particles obviously comes from the smaller
particles, which necessarily present an excess of Pt.

These experimental results demonstrate that growth
mechanisms induce a size-dependent compositional

change of CoPt NPs. Such an effect has already been
observed in AuPd NPs [5,6], but up to now the origin of
this key phenomenon for nanoalloy studies and applica-
tions has never been properly explained.
Cluster growth during annealing generally occurs

through atom exchange between clusters, or through clus-
ter diffusion and coalescence. If cluster diffusion and
coalescence are the dominant processes, no variation of
composition with size can occur. We can thus assume that
at 750 �C (sample C), growth mainly occurs through
Ostwald ripening: atoms evaporate from the clusters, dif-
fuse onto the substrate, and condense on other clusters.
However, these fluxes of atoms are driven by the difference
in chemical potentials between large and small particles.
These energetic factors cause small NPs to shrink because
of their higher evaporation rate (i.e., higher chemical po-
tential). Ostwald ripening is a thermally activated process,
and two regimes can be distinguished: detachment limited
kinetics and diffusion limited kinetics.
In order to understand the size-dependent concentration

after annealing, we have observed the thermal behavior of
monometallic NPs. Pure Pt and pure Co NPs were annealed
during 1 h at 700 �C. Ostwald ripening is effective for both
metals, but the cluster density after annealing is 3 orders of
magnitude lower for Co than for Pt, indicating a much
higher mobility of Co atoms. This higher mobility results
either from a higher diffusion coefficient for Co than for
Pt or a higher evaporation rate for Co atoms. An estimate of
the rate of these different processes is given by the energy
barriers. For evaporation to the substrate, the energy barrier
�E is at least given by the energy difference between
initial and final states. In a first approximation, neglecting
cluster size effects, this leads to �E � Ea � Ec, where Ea

is the adsorption energy of an adatom on the surface and Ec

is the bulk cohesive energy of the metal. ECo
c and EPt

c are
�4:386 and �5:853 eV, respectively [15]. The adsorption
energy of Co and Pt atoms on graphene has been obtained
by recent ab initio calculations [16,17]. They can be used
as a first estimate of the adsorption energy of atoms on
amorphous carbon (ECo

a ¼ �1:3 eV and EPt
a ¼ �1:2 eV).

The energy barrier for atomic evaporation from a large
particle to the substrate is thus higher for Pt (�EPt �
4:7 eV) than for Co (�ECo � 3:1 eV). These barriers are
also much higher than the energy barriers for diffusion,
especially on graphite where values as small as 0.1 eV are
expected for metal atom diffusion [18]. In our case, atoms
diffuse on amorphous carbon and the whole sample is
covered by an alumina layer. However, the diffusion barrier
should remain small as compared to the values of �ECo

and �EPt. Therefore, Ostwald ripening is first limited by
the evaporation rate of atoms from the NPs. Moreover,
from the Arrhenius dependence of the evaporation rate
with the energy barrier �ECo and �EPt, neglecting the
contribution of the prefactors, one expects this rate to be
about 108 times higher for Co than for Pt at 700 �C.
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FIG. 2 (color online). Single particle composition measured by
EDX nanoanalysis, as a function of their size. Blue triangle, as-
grown NPs (sample A).; black square, NPs after 1 h at 650 �C
(sample B); red circle, NPs after 1 h at 750 �C (sample C).
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For CoxPt1�x alloys, these rates should be different since
the cohesive energy is stronger due to the negative mixing
enthalpy. Experiments have shown that the thermodynamic
properties of CoxPt1�x alloys are well described by a
regular solution model [19]. In that case, at equiatomic
composition, the effect of the mixing on the evaporation
rate should be the same for both species. Similarly to the
case of pure metals, the evaporation rate from bimetallic
NPs is thus much higher for Co atoms than for Pt atoms
in the studied range of temperature. The decrease of
NP density, i.e., the number of particles per unit area, is
thus governed by the low evaporation rate of Pt atoms,
whereas NPs’ size and composition are governed by the
fast exchange of Co atoms between the NPs. In that case,
once equilibrium is achieved, the chemical potential of
Co atoms is the same for each NP and for Co adatoms.
The chemical potential for Co atoms is given by

�Co ¼ @G

@NCo

�
�
�
�
�
�
�
�T;P

; (1)

where NCo is the number of Co atoms in the NP and G is
the free enthalpy of the NP. G ¼ H � TS, where H ¼
ðNCo þ NPtÞhðxÞ and S ¼ ðNCo þ NPtÞsðxÞ are the enthalpy
and the entropy of CoxPt1�x particles, respectively. For
CoxPt1�x bulk alloys, at zero pressure, the enthalpy per
atom is written as

hðxÞ ¼ xECo
c þ ð1� xÞEPt

c þ �hmix; (2)

where �hmix is the mixing enthalpy at this composition.
For entropy, an expression similar to Eq. (2) is obtained:

sðxÞ ¼ xsCo þ ð1� xÞsPt þ�smix; (3)

with sCo ¼ 3:11 � 10�4 eV � K�1 at�1, sPt ¼
4:32� 10�4 eV � K�1 at�1 [15], and

�smixðxÞ ¼ �k½x lnðxÞ þ ð1� xÞ lnð1� xÞ� þ �sexcessðxÞ;
(4)

where �hmix and �sexcessðxÞ have been measured for
CoPt alloys in the 0.1–0.9 concentration range and in the
800 �C–1000 �C temperature range [19]. Extrapolating the
data up to 750 �C, we obtain values of the mixing free
enthalpy (�gmix) that can be quite well approximated by

�gmixðxÞ ¼ �hmixðxÞ � T�smixðxÞ ¼ �g0mixxð1� xÞ;
(5)

with �g0mix ¼ �0:75 eV=at.
For small NPs, the surface energy (Es) is not negligible

and then G ¼ H � TSþ Es. Previous electron tomogra-
phy studies have shown that CoPt NPs annealed at 750 �C
are almost all spherical [14,20]. The surface energy can
then be approximated by

Es ¼ �ðxÞa20ðxÞ�ð3N=2�Þ2=3; (6)

where a0 is the lattice constant, � is the mean surface free
energy, and N is the total number of atoms in a NP. Since

Pt and Co almost have the same surface free energy [21],
the composition dependence of the surface free energy can
be neglected. By neglecting the variation of a0 with con-
centration, the chemical potential in a NP can be written as
(Ref. [22])

�CoðT;xÞ¼�0
CoðTÞþ�g0mixð1�xÞ2þ�a20

�

2�

3N

�
1=3

; (7)

where �0
CoðTÞ ¼ ECo

c � TsCo ¼ �4:704 eV=at is the

chemical potential for Co atoms in pure bulk cobalt.
For a given Co chemical potential, inverting Eq. (7)

leads to a simple relation between composition and volume
for the alloyed NPs:

x ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�CoðT; xÞ ��0
CoðTÞ � �a20ð2�=3NÞ1=3
�g0mix

v

u

u

t : (8)

In a model of a sphere, particle diameter is easily obtained
from N. The comparison between calculations using this
analytical model and the size-dependent composition re-
sulting from 1 h annealing at 750 �C (sample C) is pre-
sented in Fig. 3(a). Parameters have been determined using
a least-squares fit. It shows that experimental data are well
described by our simple model with ��Co¼�Co��0

Co¼
�0:021 eV=at and � ¼ 1:2 J �m�2. Using experimental
uncertainties both on NP diameter (� 0:3 nm) and compo-
sition (� 5%) we have calculated the errors on � and �Co

to be 0:1 J �m�2 and 0:08 eV=at, respectively. This sur-
face energy is small compared to recent density functional
theory calculations at 0 K [23] [1:7 J �m�2 for (111)
surfaces]. This discrepancy may have different origins.
Firstly, the surface free energy is known to decrease with
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FIG. 3 (color online). (a) Co composition of single NPs as a
function of their size after 1 h annealing at 750 �C. Comparison
between experiments (red circle) and the theoretical curve (black
line) obtained by using Eq. (8) with ��Co ¼ �0:021 eV=at and
� ¼ 1:2 J �m�2. (b) Variation of the composition with the
number of atoms per particle N (the corresponding NP diameter
in nanometer is indicated). Plain black curves are obtained by
using Eq. (8) with � ¼ 1:2 J �m�2 and a fixed ��Co indicated
on the right and upper sides of the graph. Red dashed curves
are obtained by using Eq. (9) for a fixed number of Pt atoms.
The blue arrows show how the thermodynamic equilibrium of
Co atoms (towards ��Co ¼ �0:021 eV=at, bold black line)
induces the size-dependent compositional change of the particles
labeled 1 and 2.
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temperature. Secondly, atomic-structure ordering induces a
higher mixing enthalpy, leading to a higher value for �,
and, most probably, the simple assumptions made about the
shape evolution with size of the particles.

To provide a deeper understanding of growth mecha-
nisms in nanoalloys, we have plotted in Fig. 3(b) the
equipotentials corresponding to Eq. (8), for different �Co

values, and the evolution of composition with size for
particles where the number of Pt atoms (N0

Pt) is constant.
This assumption is valid in the limit of a much lower
evaporation rate for Pt atoms than for Co atoms, and the
composition inside a given NP follows the equation

xðNÞ ¼ 1� N0
Pt=N: (9)

As-grown NPs are in an out-of-equilibrium state: they are
close to equiatomic composition [xðNÞ ¼ 0:5], and conse-
quently their Co chemical potential depends on their size.
During annealing, xðNÞ converges to the equipotential
curve given by Eq. (8). Particles with a high �Co before
annealing have a high evaporation rate so that their number
of cobalt atoms decreases [particle 1 in Fig. 3(b)]. On
the contrary, particles with a low �Co before annealing
have a low evaporation rate so that their number of cobalt
atoms increases [particle 2 in Fig. 3(b)]. After annealing,
all the particles have the same�Co and this thermodynamic
equilibrium induces a size-dependent composition. Note
that this equilibrium is stable since desorption of Co atoms
from a particle decreases its evaporation rate and
vice versa. This stable equilibrium means that NPs’ growth
due to Co atoms’ migration is suppressed. This situation is
similar to the case of emulsions where droplets are stabi-
lized by trapped species [24,25]. Experimentally, Ostwald
ripening still occurs due to Pt evaporation, but on a much
longer time scale, leading to a slow and continuous low-
ering of �Co.

In conclusion, we exploited the performances of EDX
nanoanalyses to show the complex phenomena that arise
during coarsening of nanoalloys. The size-dependent com-
position of CoPt NPs observed after annealing originates
from the fact that the evaporation rate of atoms from
particles is about a few orders of magnitude higher for
Co than for Pt. Consequently, the system tends towards the
thermodynamic equilibrium of Co atoms, and it is then
impossible to maintain the initial composition of the par-
ticles. Therefore, this work illustrates the complexity of
controlling together size and composition in nanoalloys,

which is nevertheless crucial for understanding and ex-
ploiting their physical and chemical properties.
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