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We consider the redundancy allocation problem (RAP) for multi-state series-parallel systems (MSSPSs), with the objective of maximizing system availability under cost constraint. We show that, to obtain the global optimum, an evolutionary algorithm (EA) only needs to search within a subset of the feasible region. To exploit this, a repair algorithm is designed in a genetic algorithm (GA), to ensure it generates individuals only within the boundary subset, without increasing its computational complexity. We also add a novel mutation operator to improve local search efficiency, via generalizing the local search operators that appear in previous MSSPS RAP literature. In benchmark test, our modified GA outperforms the comparative algorithms and finds a solution better than the published one.

INTRODUCTION

The redundancy allocation problem (RAP) is a wellknown optimization problem of relevance for the design of industrial systems, for which high reliability required [START_REF] Levitin | Redundancy optimization for seriesparallel multi-state systems[END_REF], Lisnianski, A. et al. 1996, etc). The objective is to allocate redundancies, for an optimal trade-offs between the reliability and the cost of the system, while all component and system constraints are satisfied (When repairs are considered, availability is used instead of reliability.). In principle, most RAPs are solvable by exact method such as branch-and-bound [START_REF] Kuo | An annotated overview of system-reliability optimization[END_REF][START_REF] Kuo | Recent advances in optimal reliability allocation[END_REF]. However, the NP-hard nature of RAP makes it a challenge for practical applications and algorithms must be designed that are able to produce approximate optimal solutions with low computational time. Meta-heuristic methods, particularly evolutionary algorithms (EAs) such as genetic algorithms (GAs), have been successfully applied for this.

In reliability engineering, systems are modeled as binary-state systems (BSSs) or multi-state systems (MSSs). The former have only two possible states, perfect functioning and complete failure, whereas the latter, which allows system and components to have finite number of states from perfect functioning to failure. With regards to system topology, series-parallel system (SPS) is one of the most common designs analyzed for redundancy allocation [START_REF] Kuo | Recent advances in optimal reliability allocation[END_REF][START_REF] Wang | Heterogeneous redundancy allocation for series-parallel multi-state systems using hybrid particle swarm optimization and local search[END_REF]. In this paper, the availability maximization model and cost minimization model for MSSPS RAP are denoted as "max MSSPS RAP" and "min MSSPS RAP", respectively.

MSSPS RAP is more difficult than BSSPS RAP. According to [START_REF] Yalaoui | A new dynamic programming method for reliability & redundancy allocation in a parallel-series system[END_REF], we regard BSSPS RAP is equivalent to a two-stage onedimension knapsack problem, after a simple logtransformation, and thus it is NP-complete. The MSSPS is more difficult, even the availability evaluation is exponential in time. For efficiency, metaheuristics appear more suitable for solving MSSPS RAP than exact approaches, since they can provide approximate optimal solutions in with much less time, even though they can still be rather time consuming for large systems. The min MSSPS RAP has been solved by meta-heuristics such as GA [START_REF] Kuo | Recent advances in optimal reliability allocation[END_REF], Tabu search (TS) [START_REF] Ouzineb | A heuristic method for non-homogeneous redundancy optimization of series-parallel multi-state systems[END_REF], particle swarm optimization (PSO) [START_REF] Wang | Heterogeneous redundancy allocation for series-parallel multi-state systems using hybrid particle swarm optimization and local search[END_REF], etc. On the contrary, max MSSPS RAP is not so frequently studied, e.g. in [START_REF] Gupta | Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system[END_REF], where a GA with dynamic penalty function is presented.

We study max MSSPS RAP in this work. We start from analyzing the monotonicity of MSSPSs and, then, show that an EA only need to search within a subset of the feasible region. Then, we modify GA according to this particular property: a repair algorithm and a novel mutation operator are designed A Novel Genetic Algorithm Developed on a Reduced Search Space for Optimal Redundancy Allocation in Multi-State Series-Parallel Systems to ensure that GA will only generate individuals within the subset.

The rest of this paper is organized as follows: in section II the formulation of max MSSPS RAP is presented; in section III the monotonicity property of MSSPS RAP and the research space reduction are presented; in section IV the repair algorithm, the novel mutation operator and the overall modified GA are presented; in section V our modified GA is tested on 3 benchmarks, comparing with the original GA and the published MSSPS RAP results; section VI concludes the study.

STATEMENT OF THE PROBLEM

The MSSPS

The structure of a MSSPS is shown in Fig. 1. The MSSPS is composed of 𝑁 subsystems connected in series. Each subsystem 𝑖 ∈ {1, 2, . . . , 𝑁} is composed of functionally equivalent components in parallel and there are 𝑛 𝑖 versions of components available on the market. For each component version 𝑗 ∈ {1, 2, . . . , 𝑛 𝑖 } in subsystem 𝑖 ("version 𝑗 in subsystem 𝑖" will be denoted as "version 𝑖𝑗" in the rest of this paper), there are at most 𝑋 𝑖𝑗 components available.

The states of the components in the system are assumed to be mutually s-independent. Each component version 𝑖𝑗 is characterized by its cost 𝐶 𝑖𝑗 and state distribution 𝑆 𝑖𝑗 , which is determined by the following sets:

𝐺 𝑖𝑗 = {𝑔 𝑘 𝑖𝑗 |𝑔 𝑘 𝑖𝑗 ∈ ℝ ≥0 , 𝑘 𝑖𝑗 ∈ ℕ, 𝑘 𝑖𝑗 ≤ 𝐾 𝑖𝑗 } (1) 𝑃 𝑖𝑗 = {𝑝 𝑘 𝑖𝑗 |𝑝 𝑘 𝑖𝑗 ∈ ℝ ≥0 , 𝑘 𝑖𝑗 ∈ ℕ, 𝑘 𝑖𝑗 ≤ 𝐾 𝑖𝑗 }

(2) where 𝐺 𝑖𝑗 is the set of states and 𝑃 𝑖𝑗 is the set of the corresponding probabilities of each component version 𝑖𝑗. The states in 𝐺 𝑖𝑗 are sorted in ascending order, with 𝑔 0 = 0 as "complete failure" and 𝑔 𝐾 𝑖𝑗 = max{𝐺 𝑖𝑗ℎ } as "perfect functioning".

Figure 1. The MSSPS

The state of each component ℎ of version 𝑖𝑗 is given by a random variable (RV) 𝐺 𝑖𝑗ℎ ~𝑆𝑖𝑗 , i.e., 𝐺 𝑖𝑗ℎ s are i.i.d. to 𝑆 𝑖𝑗 for each 𝑖𝑗. Then the state of each subsystem 𝑖 is defined as:

𝐺 𝑖 = ∑ ∑ 𝐺 𝑖𝑗ℎ 𝑥 𝑖𝑗 ℎ=1 𝑁 𝑖 𝑗=1 , 𝑖 ∈ {1,2, … , 𝑁} (3) 
where 𝑥 𝑖𝑗 is the number of components of version 𝑖𝑗. Then, the state of the whole system is defined as 𝐺 𝑠 = min 𝑖=1,2…,𝑁 𝐺 𝑖 (4) and, then, the availability of the system is defined as 𝐴 = Pr (𝐺 𝑠 ≥ 𝑊) (5) where 𝑊 is a RV denoting system demand, following an arbitrary discrete distribution defined by

𝐺 𝐷 = {𝑑|𝑑 𝑘 ∈ ℝ ≥0 , 𝑘 ∈ ℕ, 𝑘 ≤ 𝐾} (6) 𝑃 𝐷 = {𝑝|𝑝 𝑘 ∈ ℝ ≥0 , 𝑘 ∈ ℕ, 𝑘 ≤ 𝐾} (7)
where 𝐺 𝐷 is the set of demand states and 𝑃 𝐷 gives the probabilities for the respective states. After algebraic manipulations, the availability of the system can be written as the following formula

𝐴 = ∑ ∏ Pr (𝐺 𝑖 ≥ 𝑊 𝑘 )𝑝 𝑘 𝑁 𝑖=1 𝐾 𝑘=1
(8) Note that 𝐴 can be directly calculated given each Pr (𝐺 𝑖 ≥ 𝑊 𝑘 ), which can be evaluated by enumeration approaches such as universal generating function (UGF), as shown in [START_REF] Wang | Heterogeneous redundancy allocation for series-parallel multi-state systems using hybrid particle swarm optimization and local search[END_REF].

The MSSPS RAP

Let us define the decision vector 𝑥 ⃑ = (𝑥 11 , 𝑥 12 , … 𝑥 𝑖𝑗 , … , 𝑥 𝑁𝑛 𝑁 ) (9) and the cost constraint

𝐶(𝑥 ⃑) = ∑ ∑ 𝑐 𝑖𝑗 𝑥 𝑖𝑗 𝑛 𝑖 𝑗=1 𝑁 𝑖=1
≤ 𝐶 0 (10) Then, max MSSPS RAP is defined as:

Problem 2.1 max 𝐴(𝑥 ⃑) (11) s. t. 𝐶(𝑥 ⃑) ≤ 𝐶 0 (12) 𝑥 𝑖𝑗 ≤ 𝑋 0 (13) 𝑥 𝑖𝑗 ∈ ℕ (14
) where 𝐶 0 is the maximum system cost and 𝑋 0 is the maximum number for all versions of components.

MONOTONICITY AND SEARCH SPACE REDUCTION

3.1 Monotonicity Property 3.1 𝐴(𝑥 ⃑) is monotonically increasing on the feasible solution set 𝐹.

The monotonicity of MSSPS availability can be presented in partial order approach. Let us define the partial relation ≽ on 𝐹 as 𝑥 ⃑′ ≽ 𝑥 ⃑′′ iff ∀𝑖𝑗: 𝑥 𝑖𝑗 ′ ≥ 𝑥 𝑖𝑗 ′′ then, we have ∀𝑥 ⃑ ′ ∀𝑥 ⃑ ′′ : 𝑥 ⃑ ′ ≽ 𝑥 ⃑ ′′ ⇒ 𝐴(𝑥 ⃑ ′ ) ≥ 𝐴(𝑥 ⃑ ′′ ) i.e. 𝐴(𝑥 ⃑) is monotone increasing on 𝐹.

Search space reduction

Let us define 𝐵 𝑐 = {𝑥 ⃑ ∈ 𝐹: min({𝑐 𝑖𝑗 : 𝑥 𝑖𝑗 < 𝑋 0 }) > 𝑑}, where 𝑑 ≝ 𝐶 0 -𝐶(𝑥 ⃑) Assume 𝑥 ⃑′ ∈ 𝐵 𝑐 and 𝑥 ⃑′′ ≻ 𝑥 ⃑′ , then 𝐶(𝑥 ⃑′′) > 𝐶 0 since 𝐶(𝑥 ⃑) is strictly monotone increasing on 𝐹 (In partial order, " ≻" refers to "≽ 𝑎𝑛𝑑 ≠"). Hence, 𝐵 𝑐 is a subset of the boundary of the feasible region constrained by the cost.

Theorem 3.2

There is at least one global optimal solution for Problem 2.1 in the set 𝐵 𝑐 if 𝐵 𝑐 ≠ ∅.

Proof

𝐹\𝐵 𝑐 = {𝑥 ⃑ ∈ 𝐹: min({𝑐 𝑖𝑗 : 𝑥 𝑖𝑗 < 𝑋 0 }) ≤ 𝑑} Let us use the following algorithm to modify the number of components for one arbitrary feasible solution 𝑥 ⃑ ′′ ∈ 𝐹\𝐵 𝑐 .

Step 1. find one component version 𝑖𝑗 s.t.

𝑐 𝑖𝑗 ≤ 𝑑, 𝑥 𝑖𝑗 < 𝑋 0 Step 2. 𝑥 𝑖𝑗 = 𝑥 𝑖𝑗 + 1

Step 3. update 𝑥 ⃑ ′′ and 𝑑 according to step 2.

Step 4. terminate if {𝑖𝑗: 𝑐 𝑖𝑗 ≤ 𝑑, 𝑥 𝑖𝑗 < 𝑋 0 } = ∅ otherwise go back to step 1. The algorithm will terminate in finite steps since 𝐶(𝑥 ⃑) is monotonically increasing on 𝐹. Then, we shall have either {𝑖𝑗: 𝑥 𝑖𝑗 < 𝑋 0 } = ∅ or min({𝑐 𝑖𝑗 : 𝑥 𝑖𝑗 < 𝑋 𝑖𝑗 }) > 𝑑 The previous case is in contradiction with the condition 𝐵 𝑐 ≠ ∅. In the latter case, we have 𝑥 ⃑ ′′ ∈ 𝐵 𝑐 . Since there is always some 𝑥 𝑖𝑗 increased in the previous algorithm, we conclude that In GA, new individuals are generated during reproduction. In this paper, the repair algorithm is only used after crossover, to ensure the entire population is within 𝐵 𝑐 before mutation is performed.

∀𝑥 ⃑ ′ ∃𝑥 ⃑ ′′ : 𝑥 ⃑ ′ ∈ 𝐹\𝐵 𝑐 , 𝑥 ⃑ ′′ ∈ 𝐵 𝑐 ⇒ 𝑥 ⃑ ′′ ≻ 𝑥 ⃑ ′ Thus ∀𝑥 ⃑ ′ ∃𝑥 ⃑ ′′ : 𝑥 ⃑ ′ ∈ 𝐹\𝐵 𝑐 𝑥 ⃑ ′′ ∈ 𝐵 𝑐 ⇒ 𝐴(𝑥 ⃑ ′′ ) ≥ 𝐴(𝑥 ⃑ ′ )

The local-search mutation operator

In literature, the operators designed for local search in MSSPS RAP include (-1, +1), (-1, +𝛽) and (-𝑎𝑙𝑙, +𝛽) [START_REF] Ouzineb | Tabu search for the redundancy allocation problem of homogenous series-parallel multi-state systems[END_REF][START_REF] Wang | Heterogeneous redundancy allocation for series-parallel multi-state systems using hybrid particle swarm optimization and local search[END_REF]. In short, the (-1, +1) operator deletes one existing component from the current solution and then adds one component of a different version onto the changed solution. It has also been used to replace the standard mutation operator in GA by [START_REF] Levitin | Redundancy optimization for seriesparallel multi-state systems[END_REF]. The (-1, +𝛽) and (-all, +𝛽) operators, they are restricted within a selected subsystem, in which "-all" refers to removing all components of a selected version and 𝛽 is calculated to approximately compensate the availability difference caused by the "-1" or "-all" operation.

In this section, we provide a novel mutation operator for max MSSPS RAP, integrating the advantage of the above mentioned local search schemes. It assigns a uniform mutation probability 𝑝 𝑚 to each subsystem. When a subsystem 𝑖 mutates, it applies a (-𝛼, +𝛽) operator onto itself. The (-𝛼, +𝛽) operator removes 𝛼 components from a randomly selected component version 𝑖𝑗 and, then, adds 𝛽 components to a randomly selected component version 𝑖𝑗 ′ . Detailed steps of the mutation operator are given in Algorithm 2.

Algorithm 2. Mutation operator

Step 1. determine the subsystems that will mutate according to 𝑝 𝑚 and store the indexes of these subsystems in an index set 𝑀 𝑖 ;

Step 2. build a 1 -1 mapping 𝑓: 𝑀 𝑖 → 𝑓 𝑀 = {1,2, … |𝑀 𝑖 |} by using a randomized disorder algorithm 𝑓 on (𝑀 𝑖 × 𝑓 𝑀 );

Step 3. select element 𝑘 from 𝑓 𝑀 by ascending order, then decide the index 𝑖 of the selected subsystem by 𝑖 = 𝑓 -1 (𝑘); Step 4. select 𝑗 and 𝑗 ′ from the candidate component version set { 𝑖𝑗}, respectively, according to uniform distribution;

Step 5. calculate 𝑑 = 𝐶 0 -𝐶(𝑥 ⃑) for the current system;

Step 6. determine 𝛼 by one realization of the RV 𝑋 𝛼 ∼ 𝑈(1, 𝑥 𝑖𝑗 ) where 𝑈(1, 𝑥 𝑖𝑗 ) is a uniform integer distribution on the range (1,2,…, 𝑥 𝑖𝑗 );

Step 7. determine 𝛽 by the following equation:

𝛽 = ⌊ 𝑑 + 𝛼 • 𝑐 𝑖𝑗 𝑥 𝑖𝑗 𝑐 𝑖𝑗 ′ ⌋ + { 𝑋, when 𝑘 ≠ |𝑀 𝑖 | 0, when 𝑘 = |𝑀 𝑖 | where 𝑋~𝐵𝑒𝑟𝑛(0.5) is a Bernoulli trial; Step 8. if 𝑘 ≠ |𝑀 𝑖 |, go to
Step 3; otherwise terminate the algorithm. Note that in Step 7., 𝛽 is used to compensate the reduction of system cost caused by the "-𝛼" operation; the Bernoulli trial 𝑋 is used to allow the system having a 50% chance to slightly violate the cost constraint and another 50% chance to stay in 𝐵 𝑐 for 𝑘 < |𝑀 𝑖 | . When 𝑘 = |𝑀 𝑖 | , 𝑋 = 0 to ensure the system remains in 𝐵 𝑐 after mutation, since it is the last subsystem to be mutated. To ensure the index of the last subsystem to be repaired 𝑓 -1 (|𝑀 𝑖 |) is randomly selected, we use a randomized disorder algorithm in Step 2.

The integer-coded elitism GA with repair algorithm and modified mutation operator

In this paper, the repair algorithm and the mutation operator are integrated into an integer-coded elitism GA (IEGA). In IEGA, each bit in a chromosome represents the number of components of a certain version; for elitism, the parents will compete with the children in a tournament selection for survival, in which only the best half of the combined population will survive. For fitness evaluation, the value of the objective function of Problem 2.1 is calculated. The individuals with larger objective function values are considered to have better fitness rankings. To avoid selecting infeasible solutions for the next generation, a penalty term with large constant coefficient is added.

In our modified version of IEGA, named as r-nm-IEGA, the repair algorithm is inserted after the crossover and the original mutation operator is replaced by the novel mutation operator. The complete algorithm is given in the following Algorithm 3.

Algorithm 3. r-nm-IEGA

Step 1. Initialization: initialize the population size 𝑃 𝑠 , the maximum generation 𝑅 𝑚 , the length of each chromosome 𝐿 𝑐 = ∑ 𝑛 𝑖 𝑁 𝑖=1 , the crossover probability 𝑝 𝑐 , and the mutation probability 𝑝 𝑚 ; initialize the first population by assigning an integer number to each bit in the chromosome within the range (0,1, … 𝑋 0 ), and evaluate the fitness value of the initial population;

Step 2. Parents selection: select parents from the current population by binary tournament selection;

Step 3. Crossover: select pairs of parents for crossover according to 𝑝 𝑐 and, then, perform 2-point crossover between each pair of parents;

Step 4. Repair: each chromosome is repaired back to 𝐵 𝑐 by Algorithm 1 if it is in the initial population or has undergone crossover;

Step 5. Mutation: select chromosomes in current population for mutation according to 𝑝 𝑚 and, then, run the mutation operator defined in Algorithm 2;

Step 6. Fitness evaluation: compute the fitness values of the children population;

Step 7. Selection: combine the parents and children populations; build the new population of size 𝑃 𝑠 by running a binary tournament selection on the combined population;

Step 8. Termination: The algorithm terminates if the maximum generation 𝑅 𝑚 is reached.

The benchmark systems tested in this paper are P1 [START_REF] Levitin | Redundancy optimization for seriesparallel multi-state systems[END_REF], P2 [START_REF] Ouzineb | Tabu search for the redundancy allocation problem of homogenous series-parallel multi-state systems[END_REF][START_REF] Ouzineb | A heuristic method for non-homogeneous redundancy optimization of series-parallel multi-state systems[END_REF] and P3 [START_REF] Levitin | Structure optimization of power system with different redundant elements[END_REF]. In literature, P1 and P2 have been tested only for min MSSPS RAP; P3 is the only benchmark that has been tested for the max MSSPS RAP [START_REF] Gupta | Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system[END_REF]. The problem type, constraint setting and best optima found on P1~P3 are listed in Table 1. For P1 and P2, we can build the respective maximization problem in the following way: 1. set the cost of the current best solution as maximal system cost; 2. set the current best solution as the reference for the maximization problem.

The new formulations for P1 and P2 are given in Table 2. In this paper, r-nm-IEGA and IEGA are compared on P1~P3. On P3, the results published by [START_REF] Gupta | Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system[END_REF] are used for comparison. The sizes of the population and the maximum generation of rnm-IEGA, IEGA and the penalty-guided GA [START_REF] Gupta | Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system[END_REF]) are given in Table 3. To find the best settings of 𝑝 𝑐 and 𝑝 𝑚 for IEGA and r-nm-IEGA in each benchmark, each algorithm is tested on a range of parameter values: for r-nm-IEGA they are 𝑝 𝑐 = 0.1,0.2, … ,1 and 𝑝 𝑚 = 0.1,0.2, … ,1 and for IEGA they are 𝑝 𝑐 = 0.1,0.2, … ,1 and 𝑝 𝑚 = 0.02,0.04, … ,0.3. The mutation probabilities of r-nm-IEGA are much larger than those of the original GA, since our mutation operator works on subsystems instead of bits. Considering the local search scheme used in our mutation operator, it is straightforward to see that the mutation probability on each bit is still relatively small. The optimal parameters for each algorithm on each problem are listed in Table 4. The results for P1 and P2 are given in Table 5, and show that r-nm-IEGA reaches the reference availabilities given in Table 2 within 500 generations while IEGA does not. Figure 1 shows the convergence curves of the best runs and the averages of the 10 runs of r-nm-IEGA and IEGA with the optimal 𝑝 𝑐 and 𝑝 𝑚 settings. From Figure 1, we can observe that: 1. the best run of r-nm-IEGA reaches the reference availability within about 60 runs while IEGA does not for 500 runs; 2. the average convergence curve of r-nm-IEGA is better than the convergence curve of the best run of IEGA. Thus, we can conclude that r-nm-IEGA outperforms IEGA both in efficiency and robustness. Table 5 also shows that r-nm-IEGA obtains an optimal solution for P3 that is better than the one published in [START_REF] Gupta | Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system[END_REF]. The details about the solutions are presented in Table 6. Table 6. Best optimal solutions obtained by r-nm-IEGA and penalty guided GA [START_REF] Gupta | Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system[END_REF] 

CONCLUSION

The mathematical properties of the max MSSPS RAP allow the optimal solution and approximate optimal solutions to be found within a subset of the boundary of the feasible region, which ensures the effectiveness of using a repair algorithm for the search space reduction. Considering the seriesparallel structure of MSSPSs and the existing local search schemes in literature for min MSSPS RAP, a new mutation operator is designed for max MSSPS, which inherits the form of (-𝑥, +𝑦) and retain the population inside the reduced search space after mutation. In benchmark tests our modified r-nm-IEGA is compared with the original GA, i.e. the IEGA and the published method. The results indicate the superiority of the proposed r-nm-IEGA.

  according to Property 3.1. Then we immediately obtain max{𝐴(𝑥 ⃑): 𝑥 ⃑ ∈ 𝐵 𝑐 } ≥ max{𝐴(𝑥 ⃑): 𝑥 ⃑ ∈ 𝐹\𝐵 𝑐 } according to the monotonicity and thus max{𝐴(𝑥 ⃑): 𝑥 ⃑ ∈ 𝐵 𝑐 } = max{𝐴(𝑥 ⃑): 𝑥 ⃑ ∈ 𝐹} 4 ALGORITHM DESIGN 4.1 The repair algorithm Here we present a randomized repair algorithm to fix any solutions 𝑥 ⃑ ∉ 𝐵 𝑐 into 𝐵 𝑐 . The algorithm randomly selects a component from the current system design and removes it. The process repeats until 𝑥 ⃑ becomes feasible. Then, the algorithm randomly selects a component version from the following index set {𝑖𝑗: 𝑥 𝑖𝑗 < 𝑋 𝑖𝑗 , 𝑐 𝑖𝑗 < 𝑑} and add 𝑥 𝑖𝑗 by one. The process repeats until 𝑥 ⃑ enters 𝐵 𝑐 . The pseudo code is given in Algorithm 1. Algorithm 1. Repair algorithm 𝑑 = 𝐶 0 -∑ 𝑥 𝑖𝑗 𝑐 𝑖𝑗 𝑖𝑗 ; 𝑛 = ∑ 𝑥 𝑖𝑗 𝑖𝑗 ; while 𝑑 < 0 *𝑖𝑗 = randi(1, 𝑛, {𝑖𝑗: 𝑥 𝑖𝑗 > 0}); 𝑥 𝑖𝑗 = 𝑥 𝑖𝑗 -1; 𝑛 = 𝑛 -1; 𝑑 = 𝑑 + 𝑐 𝑖𝑗 ; end while; while 𝑑 ≥ min ({𝑐 𝑖𝑗 : 𝑥 𝑖𝑗 < 𝑋 𝑖𝑗 }) ** 𝑖𝑗 = rand(𝑖𝑗, {𝑖𝑗: 𝑥 𝑖𝑗 < 𝑋 𝑖𝑗 , 𝑐 𝑖𝑗 ≤ 𝑑}); 𝑥 𝑖𝑗 = 𝑥 𝑖𝑗 + 1; 𝑑 = 𝑑 -𝑐 𝑖𝑗 ; end while; * randi(1, 𝑛, {𝑖𝑗: 𝑥 𝑖𝑗 > 0}) uniformly samples one component from all the 𝑛 components installed on the current system and stores the component version of the sampled component. ** 𝑖𝑗 = rand(𝑖𝑗, {𝑖𝑗: 𝑥 𝑖𝑗 < 𝑋 𝑖𝑗 , 𝑐 𝑖𝑗 ≤ 𝑑} ) uniformly samples the component version from the version set {𝑖𝑗: 𝑥 𝑖𝑗 < 𝑋 𝑖𝑗 , 𝑐 𝑖𝑗 ≤ 𝑑} and stores it. The time complexity of Algorithm 1 is O(𝑛 2 ).
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 1 Figure 1. The convergence curves of P1

Table 1 .

 1 The best results on the benchmark problems

		Constraint Found optimal Problem Type
	P1 A ≥ 0.99	C = 8.18 A = 0.991	Min
	P2 A ≥ 0.99	C = 12.794 A = 0.992	Min
	P3	C ≤ 16	C =15.982 A = 0.994	Max

Table 2 .

 2 Maximization formulations for P1 and P2

		Constraint	Reference Availability
	P1	C ≤ 8.18	A = 0.991
	P2	C ≤ 12.794	A = 0.992

Table 3 .

 3 Population settings

		r-nm-IEGA	IEGA	Penalty-guided GA
	𝑃 𝑠	20	20	50
	𝑅 𝑚	500	500	2000

Table 4 .

 4 Optimal parameter settings

	(𝑝 𝑐 , 𝑝 𝑚 )	r-nm-IEGA	IEGA
	P1	(0.6,0.5)	(0.8,0.14)
	P2	(0.7,0.3)	(0.7,0.1)
	P3	(0.5,0.4)	(0.5,0.2)

Table 5 .

 5 Best optima obtained by the GAs

	Best optima	r-nm-IEGA	IEGA	Penalty-
				guided GA
	P1	0.991	0.986	/
	P2	0.992	0.982	/
	P3	0.997	0.986	0.994

  for P3

	Sub	r-nm-IEGA	Penalty-guided GA
	1	2(2)	5(1) 6(1) 7(2)
	2	5(6)	3(2)
	3	2(2) 3(1)	2(2) 3(1)
	4	7(3)	5(2) 7(1)
	5	4(3)	3(2) 4(1)